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This paper develops a general trans-dimensional Bayesian methodology for geoacoustic inversion.

Trans-dimensional inverse problems are a generalization of fixed-dimensional inversion that in-

cludes the number and type of model parameters as unknowns in the problem. By extending the

inversion state space to multiple subspaces of different dimensions, the posterior probability density

quantifies the state of knowledge regarding inversion parameters, including effects due to limited

knowledge about appropriate parametrization of the environment and error processes. The inversion

is implemented here using a reversible-jump Markov chain Monte Carlo algorithm and the seabed

is parametrized using a partition model. Unknown data errors are addressed by including a data-

error model. Jumps between dimensions are implemented with a birth–death methodology that

allows transitions between dimensions by adding or removing interfaces while maintaining detailed

balance in the Markov chain. Trans-dimensional inversion results in an inherently parsimonious so-

lution while partition modeling provides a naturally self-regularizing algorithm based on data infor-

mation content, not on subjective regularization functions. Together, this results in environmental

estimates that quantify appropriate seabed structure as supported by the data, allowing sharp dis-

continuities while approximating smooth transitions where needed. This approach applies generally

to geoacoustic inversion and is illustrated here with seabed reflection-coefficient data.

VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3500674]

PACS number(s): 43.30.Pc, 43.30.Ma, 43.60.Pt [AIT] Pages: 3393–3405

I. INTRODUCTION

Knowledge of geoacoustic properties and associated un-

certainties is important for a variety of acoustic and sonar

applications. Inferring geoacoustic parameters requires the

assumption of a model describing the observed physical sys-

tem including the physical theory, its appropriate parameter-

ization, and a statistical representation for the data-error proc-

esses. In the past, Bayesian inference has been applied widely

to geoacoustic inverse problems.1–8 However, model selec-

tion and comparison, a fundamental aspect of Bayesian infer-

ence, has seen only limited applications in acoustics.2,9–12

In addition, ambiguity and subjectiveness in the choice of

model causes parameter uncertainties that have been ignored

in geoacoustic inversion. The choice of model parametriza-

tion strongly influences parameter uncertainty estimates, with

under-parametrized models generally under-estimating uncer-

tainties while over-parametrized models over-fit the data and

over-estimate uncertainties.11 In addition, since the model is

an approximation of the actual environment, the ambiguities

resulting from this approximation cause parameter uncer-

tainty that should be accounted for by integrating over the

range of applicable parametrizations. In addition, parameter

estimates can appear biased if an inappropriate parametriza-

tion is chosen.

This paper develops a trans-dimensional formulation

of the geoacoustic inverse problem, where the number of

parameters (environmental, data-error model, etc.) is itself

an unknown in the problem. This results in a trans-dimen-

sional posterior probability density (PPD) that intrinsically

addresses model selection and accounts for parameter uncer-

tainty due to the choice of model parametrization by inte-

grating over possible choices rather than picking a single

model. Trans-dimensional inference was introduced by the

landmark papers of Green13,14 and has since been applied to

several problems in geophysics15–18 and other fields.19

To sample from trans-dimensional distributions, Green13

introduced a generalization of the Metropolis–Hastings (MH)

algorithm20,21 termed the reversible-jump Markov chain

Monte Carlo (rjMCMC) sampler that allows the Markov

chain to transition between dimensions of the state space

(i.e., the model parameter space) while maintaining detailed

balance22 of the chain. The rjMCMC formulation is based on

an extended acceptance rule similar to MH acceptance and

can be applied to a wide range of problems and dimension

transitions.14,19 The rjMCMC methodology used in this paper

is based on a partition modeling19 approach and trans-dimen-

sional jumps of the birth–death15 form, which allow for a

straightforward implementation. Partition modeling is a pop-

ular form of parametrization in biological and medical appli-

cations19 where spatially variable parameters are common.

This paper applies a partition model to the layering structure

of the seabed sediment by describing the sediment as an inter-

val over a certain depth with layer interface locations deter-

mined by the data. Partition models have been shown17 to

give results similar to regularized inversions when ensemble

inference is carried out on the posterior. However, common
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regularizations23 used in geophysical inverse problems put

subjective constraints on the solution, such as requiring the

smoothest environmental model. With such regularization

terms, the parameter-uncertainty estimates are difficult to

interpret. Here, the partition model, together with a trans-

dimensional approach, results in a naturally parsimonious

self-regularization that is driven by the data. Results combine

the ability to resolve sharp discontinuities as well as approxi-

mate smooth transitions (such as gradients) of arbitrary shape.

The integrated “map” of interfaces shows increased probabil-

ity where the data support structure.24

The trans-dimensional Bayesian inference approach is

applied here to geoacoustic inversion of seabed reflection-

coefficient data measured in the Straits of Sicily, Mediterra-

nean Sea. The results highlight the strength of the approach,

recovering both sharp discontinuities and smooth transitions

at different depths, as supported by core measurements.

II. TRANS-DIMENSIONAL BAYESIAN INFERENCE

A. Bayesian inference theory

Let d [ R
N be a random variable of N observed data con-

taining information about a physical system. Further, let I
denote the model specifying a particular choice of physical

theory, model parameterization, and error statistics to explain

that system. Let m [ R
M be a random variable of the M free

parameters representing a realization of model I . Bayes’ rule
can then be written

Pðmjd; IÞ ¼
Pðdjm; IÞPðmjIÞ

PðdjIÞ
; (1)

where the conditional probability Pðmjd; IÞ represents the

PPD of the unknown model parameters given the observed

data, prior information, and choice of model I . The condi-

tional probability Pðdjm; IÞ describes the data-error statis-

tics. Since data errors include both measurement and theory

errors (which cannot generally be separated), the specific

form of this distribution is often not known. To interpret

Eq. (1) quantitatively, some particular form that describes

the data-error statistics reasonably well must be assumed for

this distribution. In practice, mathematically simple distribu-

tions, such as multivariate Gaussian distributions, are com-

monly used; the validity of such assumptions should be

checked a posteriori using statistical tests.6,25 The general

multivariate Gaussian distribution for real data is given by

Pðdjm; IÞ ¼
1

ð2pÞN=2jCdj
1=2

� exp �
1

2
ðd� dðmÞÞ>C�1

d ðd� dðmÞÞ

� �

;

(2)

where Cd is the data covariance matrix and d(m) is the mod-

eled data. The covariance matrix Cd is often unknown since

the source of errors may be poorly understood. In some

cases, data-error statistics can be parameterized (e.g., as var-

iances or as a covariance matrix based on an assumed form

such as an auto-regressive moving average26) and included

in the inversion, either implicitly27 or explicitly as unknown

parameters with assigned priors.16,27,28 Data-error covari-

ance matrices can also be estimated non-parametrically from

data residuals.25 In Bayesian inversion, Pðdjm; IÞ is inter-

preted as the likelihood function Lðm; IÞ of m for fixed

(observed) data d. Note that given a Gaussian data-error dis-

tribution, the likelihood function is not Gaussian distributed

for nonlinear inverse problems. The term PðmjIÞ in Eq. (1)

represents the model parameter prior distribution and can

contain any information about model parameters that is

available a priori and can be expressed probabilistically.

The conditional probability PðdjIÞ in Eq. (1) is commonly

referred to as the normalizing constant or evidence of I . It
describes how likely a particular choice of model I is given

the observed data and prior information. Since the evidence

PðdjIÞ normalizes Eq. (1), it can be written

ZðIÞ ¼ PðdjIÞ ¼

ð

M

Pðdjm; IÞPðmjIÞdm; (3)

where the integration is over the state space M. Solving

Eq. (3) for nonlinear geoacoustic inference is a challenging

problem and can be addressed using thermodynamic in-

tegration,29 annealed importance sampling,30 or nested sam-

pling.10,31 Computing the evidence is one approach to model

selection that provides a quantitative measure for the natural

parsimony22 intrinsic to Bayes’ rule. This natural parsimony

is the key to model selection which is a fundamental compo-

nent of estimating parameter uncertainties, as illustrated in

Fig. 1. Let dobs be an observed data vector given as one point

in the data space D. Further, let I 1 be one model parameter-

ization (hypothesis) and I 2 be a second model parameteriza-

tion that is more complex than I 1. Since model I 1 has a lim-

ited number of parameters, it can only access a certain

subspace D1 of the total data space D. Since I 2 is a more

complex model with more parameters, it can access a larger

subspace D2 which includes D1. As long as dobs falls into a

region of the data space that can be accessed by both models,

Bayes’ theorem [Eq. (1)] generally favors the simpler model

I 1 [i.e., PðdjIÞ is larger for I 1].

B. Trans-dimensional formulation

Another approach to using natural parsimony in inversion

is to formulate the inverse problem as trans-dimensional,

FIG. 1. The concept of natural parsimony as given by Bayes theorem [after

MacKay (Ref. 22)].
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meaning that the number of unknowns in the problem is itself

an unknown that is integrated over, resulting in a posterior that

spans multiple spaces of different dimensions. A crucial

advantage of treating a problem as trans-dimensional is that

the posterior includes the uncertainty due to the limited knowl-

edge of the model. Green13 shows that Eq. (1) can be written

as a Bayesian hierarchical model to include a parameter k,

Pðk;mkjdÞ ¼
PðkÞPðdjk;mkÞPðmkjkÞ

X

k02K

ð

M

Pðk0ÞPðdjk0;m0
k0ÞPðm

0
k0 jk

0Þdm0
k0

;

(4)

where k 2 K (K is a countable set) can be interpreted as

indexing possible choices of models (as commonly used in

model selection using evidence or point estimates thereof)

or, in a trans-dimensional sense, where k is a variable dimen-

sion parameter of a single model that spans several multi-

dimensional spaces. In Eq. (4) P(k) is the prior over the K
models to be considered. The state variables of the inversion

for the trans-dimensional case are then given by (k, mk) and

are of dimension Mk. The state space is trans-dimensional

and given by the union of all fixed dimension spaces in K,

i.e.,
S

k2K ðfkg � RMkÞ. A Markov chain that samples this

state space can be defined which converges to the trans-

dimensional joint posterior P(k,mkjd) (see Sec. II D). The

denominator in Eq. (4) can be interpreted as the total evi-

dence over all models in K.

C. Partition modeling

Partition modeling has been widely applied in biological

and medical applications19 where spatially variable parame-

ters and data are common. Bodin and Sambridge17 apply a

partition modeling approach to two-dimensional seismic to-

mography to obtain a self-parametrizing algorithm that gives

results similar to regularized inversions while using substan-

tially fewer cells and maintaining resolution of sharp discon-

tinuities. However, partition modeling can be applied in a

Monte Carlo sampling framework and requires fewer discre-

tizing parameters since the data introduce a self-smoothing

through marginalization of the resulting PPD estimate,

removing unrealistic high-frequency spatial structure from

the result.

A partition modeling approach is applied here to para-

metrize the positions of sediment interfaces in the environ-

mental model for the sediment extending from the seafloor

to a maximum depth of interest. Environmental models in

geoacoustic inversion most commonly treat the sediment

structure as a stack of layers with each layer assigned a

thickness parameter. Perturbing this type of parametrization

leads to changes for the whole model below the layer being

considered. In MCMC inversion, this can lead to high rejec-

tion rates/poor mixing in the algorithm since a relatively

small perturbation to one layer thickness parameter can

result in relatively large changes to the model. Perturbing

one interface in a partition model only changes the neighbor-

ing two layers and leaves the rest of the model invariant; this

is consistent with the idea that relatively small steps are of

interest and should improve acceptance in the Markov chain.

These perturbations are generally small compared to the dis-

tance to the nearest interface neighbor to avoid crossing of

interfaces. Mixing can also be improved by occasionally

allowing large changes to the partition model, which can be

achieved by removing a randomly chosen interface and plac-

ing it at a new (random) depth.

The PPD estimate from an MCMC sampling process

then contains many partition models and inference can be

carried out with ensemble averages over the structure. The

results are similar to the regularized inversions, but without

the problematic requirement of specifying subjective regula-

rization terms. In essence, the environmental model is regu-

larized by the data which determine wherein the partition

structure is supported. The amount of structure allowed can

vary with depth and does not depend on a subjective regula-

rization term that applies to the whole depth interval of inter-

est. For example, in this framework, gradients in sound

speed may be approximated by the ensemble structure of

several interfaces spread over some parts of the partition

model while other areas can have homogeneous structure.

Sharp discontinuities can be supported by ensembles of

interfaces being confined to a tightly limited depth range.

The number of sediment interfaces required for this par-

ametrization can also be determined by the data and is

addressed here by treating the problem as trans-dimensional,

with the model index k in Eq. (4) indicating the number of

interfaces in the partition.

D. Reversible-jump MCMC

A Markov chain that samples the posterior in Eq. (4) in

a trans-dimensional sense must be able to undergo dimen-

sion changes (jumps) in the state space while not violating

the requirement of detailed balance. Green13 accomplishes

this by introducing a transformation

ðk;mk; uÞ Ð ðk0;m0
k0 ; u

0Þ; (5)

where (k, m) is the current state of the chain and ðk0;m0
k0Þ is

a proposed state in a state space of possibly different dimen-

sion or type. The vectors u and u0 are random variables

accounting for potential dimension changes so that the di-

mensions d match: d(k) þ d(m) þ d(u) ¼ d(k0) þ d(m0)

þ d(u0). A jump between states can then be defined by a

transformation h as

ðk0;m0
k0 ; u

0Þ ¼ hðk;mk; uÞ;

ðk;mk; uÞ ¼ h�1ðk0;m0
k0 ; u

0Þ: (6)

The function h and its inverse must exist and be differentia-

ble (h is a diffeomorphism). Otherwise, the choice is arbi-

trary which allows for powerful and general choices in

jumps including state spaces spanning multiple subspaces of

varying dimension as well as different types of state spaces

(i.e., the underlying physical theory and type of parameters

can change). In the fixed-dimension case (k ¼ k0), the MH

algorithm can be used to sample from the posterior by
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implementing the well known acceptance criterion for a step

from the current model mk to a proposed model m0
k, as

a ¼ min 1;
Pðm0

k0ÞPðdjm
0
k0Þ

PðmkÞPðdjmkÞ

Qðmkjm
0
k0Þ

Qðm0
k0 jmkÞ

� �

; (7)

where the product consists of, from left to right, the prior

ratio, the likelihood ratio (containing the information intro-

duced by the data), and the proposal ratio (the proposal dis-

tribution Q is used to propose a perturbation to the parame-

ters that can be accepted or rejected according to a). In

practice, Eq. (7) is implemented by drawing a random num-

ber u [ [0, 1] and a perturbation is accepted if a > u.

Green13,14 shows that the rjMCMC can be implemented in a

manner similar to the MH algorithm by generalizing the Me-

tropolis acceptance [Eq. (7)] to give the acceptance for a

step from the current model (k, mk) to a proposed model

ðk0;m0
k0Þ as

a ¼ min 1;
Pðk0;m0

k0Þ

Pðk;mkÞ

Pðdjk0;m0
k0Þ

Pðdjk;mkÞ

Qðk;mkjk
0;m0

k0Þ

Qðk0;m0
k0 jk;mkÞ

jJj

� �

;

(8)

where jJj is the determinant of the Jacobian for the diffeo-

morphism h from (k,mk) to ðk0;m0
k0Þ,

jJj ¼
@hðk;mk; uÞ

@ðk;mk; uÞ

�

�

�

�

�

�

�

�

: (9)

Note that in many fixed-dimensional MCMC applications,

the proposal ratio cancels when symmetric proposals are

used and the proposal steps are inherently reversible. In addi-

tion, commonly used uniform priors result in unit prior

ratios. The classic MH acceptance [Eq. (7)] is then given

simply by the ratio of the likelihood values. The value of the

likelihood function generally increases (for nested models)

with additional parameters and will therefore favor models

with large numbers of parameters. In the trans-dimensional

formulation [Eq. (8)] this property of the likelihood ratio is

opposed by the other factors (proposal and prior ratios) when

a jump is proposed to higher dimension, since the volume

of the state space increases. This behavior is an intrinsic

property of trans-dimensional Bayesian inversions, which

provides natural parsimony and constitutes a general and

powerful approach for treating data inference. In addition,

sampling over dimensions effectively integrates over the

(subjective) choices of models and quantifies the lack of

knowledge about the parametrization as parameter uncer-

tainty, resulting in more realistic uncertainty estimates. Fur-

ther, the different dimensions are sampled proportional to

this support by the observed data, resulting in an efficient

approach to sampling a trans-dimensional space. Hence,

trans-dimensional sampling can be more efficient than sam-

pling a sequence of individual state spaces. Green14 also sug-

gests that trans-dimensional chains can result in better mix-

ing of the chain for some cases. A disadvantage is that

rjMCMC has no memory of the various state spaces it has

visited which can negatively affect the performance of jump-

ing dimensions.

E. Birth–death rjMCMC

A potential challenge in implementing Eq. (8) is

computing the Jacobian of the diffeomorphism. However, by

choosing the proposal distributions for dimension jumps

appropriately, analytic expressions for jJj can be found (e.g.,

Refs. 14, 32). The most commonly applied form of rjMCMC

is the birth–death scheme,15 in which case the determinant

of the Jacobian is unity. The scheme must be carefully

implemented to ensure unbiased sampling and equal proba-

bility of birth and death moves to maintain detailed balance.

In this scheme, a birth move is defined to be the introduction

of new parameters. For example, in a partition model a new

layer can be created by introducing a new interface at a ran-

dom position in the seabed model, increasing the model

indexing parameter k by 1. Alternatively, a death move ran-

domly picks and deletes an interface, reducing k by 1. This

paper implements the birth–death approach as follows. The

geoacoustic model is represented as (k, mk) 5 (k, z, c, r),

where k is the number of interfaces in the partition and the

partition is the interval of the sediment that is of interest,

extending from z ¼ Z0 ¼ 0 to z ¼ zmax. The sediment interval

partitioning is denoted z and contains the depths of the k

sediment interfaces, while c contains the geoacoustic proper-

ties of all partitions. Here, c ¼ (c, q, a), where c is a vector

of sound velocities, q a vector of densities, and a a vector of

attenuations. The data-error model is denoted r. The dimen-

sion of a sub-state space for model index k isMk¼ 4kþ 3þ Nr,

where k is the number of interfaces and Nr is the dimension

of the data-error model (when sampling over the data-error

model). The birth–death rjMCMC algorithm is implemented

such that birth, death, and perturbation moves are proposed

with probabilities that ensure equal probability of birth and

death acceptance so that parameter k is determined by the

data and not biased toward too many or too few interfaces. In

detail, the moves are as follows:

(1) Birth: Parameter k0 ¼ k þ 1 and a new interface position is

drawn from a uniform prior over [z0, zmax]. The new inter-

face is inserted into the model under the constraint of a

minimum required layer thickness. The c values that go

with the layer that was divided by the new interface are

copied into both new layers, and one of the two new layers

is randomly picked and the c parameters of that layer are

randomly perturbed with a Gaussian proposal distribution.

(2) Death: Parameter k0 ¼ k � 1 and an interface is randomly

chosen from the current interfaces and deleted from the

partition. The c parameters of the new layer are the average

of the two layers that were combined by the death move.

(3) Perturb: k0 ¼ k and an interface is randomly picked and

perturbed using a Gaussian proposal distribution.

All three move types are assigned a probability of 1/6.

In addition, moves that leave the partition invariant are

applied with probability of 1/2 (so that all move-type proba-

bilities sum to unity). The choice of these probabilities is ar-

bitrary and can be adjusted according to the problem. In

addition, other moves are possible and can be advantageous

to improve chain mixing for certain problems. Since k is an

integer variable bounded by kmin and kmax, care must be
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taken to sample uniformly over k. While kmin < k < kmax,

equal probabilities between the three move types above

assures this. However, the probability needs to be changed to

preclude deaths when k ¼ kmin (e.g., 1/4 for perturb and 1/4

for birth). Likewise, the probability must preclude births

when k ¼ kmax (e.g., 1/4 for perturb and 1/4 for death). Dur-

ing these moves, only c and the data-error model parameters

r are perturbed using one-dimensional Gaussian proposal

distributions. Each move perturbs all parameters, one at a

time, in random sequence. Once a model is proposed, accep-

tance is computed according to Eq. (8). If the proposed

model is accepted, the algorithm moves to the new state, oth-

erwise it stays at the current point. Care must be taken when

computing the acceptance rates as discussed in Sec. II G.

This approach effectively separates the partition model from

the acoustic parameters (c) in the sediment layers which

is useful in computing the correct acceptance probability

a((k, mk), (k
0, m0

k0)) (see Sec. II G).

F. Prior information

The prior information used in this paper consists of

bounded uniform distributions with the range of parameter

values chosen to represent physically reasonable values and

set wide enough that the data predominantly determine the

posterior. Since (k, mk) ¼ (k, z, c, r), the prior probability

P(k)P(mkjk) ¼ P(k)P(zjk)P(cjk)P(rjk). In particular, the

prior distribution for the model index parameter is given by

(assuming equal preference for all models)

PðkÞ ¼
ðkmax � kminÞ�1

if kmin � k � kmax

0 else:

�

(10)

The prior distribution for c is given by

PðcjkÞ

¼

Q3ðkþ1Þ
i¼1 ðcmax

i � cmin
i Þ�1

if cmin
i � ci � cmax

i ;

0 else;

(

(11)

and the prior distribution for the data-error model is given by

PðrjkÞ

¼

QNr

i¼1 ðr
max
i � rmin

i Þ�1
if rmin

i � ri � rmax
i ;

0 else;

(

(12)

where superscripts min and max indicate the lower and

upper bounds applied. To derive the prior probability of the

partitioning, it is convenient to temporarily assume an under-

lying grid of K grid points (that will later cancel out) on

which the different combinations of k interfaces can be

arranged and assigned equal probability.19,24 The prior distri-

bution for z is then

PðzjkÞ ¼
K!

k!ðK � kÞ!

� ��1

: (13)

G. Prior and proposal ratios for birth and death

To compute the rjMCMC acceptance [Eq. (8)], the pro-

posal distributions for all move types must be defined in

addition to the prior information (Sec. II F) and the likeli-

hood function [Eq. (2)]. The proposal distributions for moves

that do not jump between dimensions are chosen to be Gaus-

sian distributions (which are symmetric proposals) and hence

do not affect acceptance. Therefore, the proposal ratio needs

to be computed only for birth and death moves. Further, the

proposal for z is considered uniform over zmin to zmax and

birth and death moves have the same probability. The pro-

posal ratio can be separated into several components19

Qðk;mkjk
0;m0

k0Þ

Qðk0;m0
k0 jk;mkÞ

¼
Qðkjk0;m0

k0Þ

Qðk0jk;mkÞ

Qðzjk0;m0
k0Þ

Qðz0jk;mkÞ

Qðcjk0;m0
k0Þ

Qðc0jk;mkÞ

Qðrjk0;m0
k0Þ

Qðr0jk;mkÞ
: (14)

To obtain simplified proposal ratios for the birth and death

moves consider the probabilities of each move and their

reverse. For a birth move, the probabilities associated with

creating a new interface are

Qðz0jk;mkÞ ¼
1

K � k
;

Qðc0jk;mkÞ ¼
1

ð2pÞ3jĈj
h i1=2

� exp �
1

2
ðĉ0 � ĉÞ>Ĉ

�1
ðĉ0 � ĉÞ

� �

; (15)

where Ĉ is the 3 � 3 covariance matrix of the Gaussian pro-

posal (the dimension is due to c containing three acoustic pa-

rameters for each layer). In Eq. (15), ĉ is a 1 � 3 vector with

the acoustic parameters of the layer that is split by the birth,

and ĉ0 is a 1 � 3 vector with the proposed values. The proba-

bilities of the reverse move are

Qðzjk0;m0
k0Þ ¼

1

k þ 1
;

Qðcjk0;mkÞ ¼ 1: (16)

Substituting Eqs. (15) and (16) in the proposal ratio gives the

proposal ratio for a birth move

Qðk;mkjk
0;m0

k0Þ

Qðk0;m0
k0 jk;mkÞ

� �

birth

¼
K � k

kþ 1
½ð2pÞ3jĈj�1=2exp

1

2
ðĉ0 � ĉÞ>Ĉ

�1
ðĉ0 � ĉÞ

� �

: (17)

Similarly, the proposal ratio for a death move becomes

Qðk;mkjk
0;m0

k0Þ

Qðk0;m0
k0 jk;mkÞ

� �

death

¼
k

K � k þ 1
½ð2pÞ3jĈj��1=2

� exp �
1

2
ðĉ0 � ĉÞ>Ĉ

�1
ðĉ0 � ĉÞ

� �

:

(18)
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The prior ratios for birth and death moves follow from Eqs.

(10) to (13),

Pðk0;m0
k0Þ

Pðk;mkÞ

� �

birth

¼
k þ 1

K � k

Y

3

i¼1

Dĉi

 !�1

;

Pðk0;m0
k0Þ

Pðk;mkÞ

� �

death

¼
K � k þ 1

k

Y

3

i¼1

Dĉi; (19)

where Dĉi is the width of the prior distribution for parame-

ter ĉi.

With expressions for prior and proposal ratios for the

birth and death moves, the acceptance for these moves can

now be computed as

abirth ¼ min 1;

 

Y

3

i¼1

Dĉi

" !�1

½ð2pÞ3jĈj�1=2

� exp
1

2
ðĉ0 � ĉÞ>Ĉ

�1
ðĉ0 � ĉÞ

� �

Lðk0;m0
k0Þ

Lðk;mkÞ

#

;

adeath ¼ min 1;

 

Y

3

i¼1

Dĉi

" !�1

½ð2pÞ3jĈj��1=2

� exp �
1

2
ðĉ0 � ĉÞ>Ĉ

�1
ðĉ0 � ĉÞ

� �

Lðk0;m0
k0Þ

Lðk;mkÞ

#

:

(20)

Note that K (hypothetical grid dimension) has canceled out

of these equations. The determinant of the Jacobian of the

diffeomorphism is unity in this case and therefore does not

appear in the acceptance expressions.

III. INVERSION EXAMPLES

This section illustrates how the trans-dimensional

approach can be applied to practical geoacoustic inverse

problems, using the particular example of seabed reflection-

coefficient inversion. The forward model for the inversion is

a plane wave reflection-coefficient computation33 based on

homogeneous sediment layers using a fluid (no shear)

approximation. Trans-dimensional inversions were carried

out allowing 1–25 interfaces (kmin ¼ 1 and kmax ¼ 25) to

allow for a large range of possible partition models. The

range of k corresponds to allowing models with more than

100 free parameters; however, the highest number of parame-

ters sampled in these examples was 48. Bounds for the uni-

form prior distributions were set to 1450–1700 m/s for sound

velocity, 1.2–2.0 g/cm3 for density, and 0.001–1.0 dB/m/kHz

for attenuation. The partition reached from 0 to 4.0 m below

the seafloor which equals the extent of the time windowing

for the seabed response for a sound velocity of 1600 m/s. A

constraint for minimum layer thickness was applied, allowing

layers >0.05-m thick (avoiding layers <1/20 of the shortest

wavelengths for efficiency). An auto load-balancing algo-

rithm34 was implemented for parallel computers to allow

large numbers of independent chains, providing a thorough

search of the state space while speeding up convergence. In

all case, 168 chains were run in parallel until >1000 models

were collected in each chain. To avoid highly dependent sam-

ples in the PPD, chain thinning35 was applied and the length

of the chain between thinning steps was randomly chosen

between 500 and 1000. Hence, the length of each chain was

of the order of �750 k moves and the final PPD is based on

>108 moves. To ensure independence from the starting

points, the first 1/3 of each chain was discarded as burn-in.

This ensured sampling from a stationary chain, which was

confirmed by examining the likelihood values of the sampled

models (see Fig. 2), which is randomly distributed after the

burn-in with no systematic change. The acceptance rate of

the chains was around 20%–30% for both simulation and

measured data inversions, suggesting that the proposal distri-

butions were scaled reasonably well for this problem.22

A. Simulation

To examine the algorithm and gain insight as to how

complex seabed environments are handled, a simulation

based on core data is considered first. A simulated layered-

FIG. 2. Log-likelihood as a function of

rjMCMC move step and as a histogram for

the measured data inversion. For display

purposes only every 100th move is plotted

in the left panel.
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seabed environment was constructed from three cores that

were taken close to the experiment site (see Sec. III B).

Since the density measurements were not as closely spaced

as the velocity measurements on some of the cores, densities

were interpolated onto the same depth spacing as velocities.

Attenuation, which was not measured in the cores, was

assumed to be constant at 0.1 dB/m/kHz over the entire

depth. The simulated seabed consisted of 120 layers of vary-

ing thickness to a maximum depth of 3.8 m. The environ-

ment was chosen to be complex with many layers so that the

trans-dimensional inversion is unable to resolve all layers

but must approximate the underlying environment with a

simpler model. Simulated reflection-coefficient data were

obtained (Fig. 3) by computing the reflection-coefficient as a

function of angle and frequency over the same ranges used

for the measured data (31 angles from 20� to 83� and eight

frequency bands from 300 to 1600 Hz with 1/15 fractional

bandwidth and Gaussian averaging). Finally, random Gaussian-

distributed data errors with a standard deviation of 0.015 were

added to the simulated data.

The algorithm was initiated at a random point in the

trans-dimensional state space and a burn-in phase was carried

out where models were discarded until the chain appeared to

be stationary. Convergence of the algorithm was judged by

the convergence of the mean ensemble-profiles as well as by

the running histogram of the model index parameter k. While

convergence cannot be guaranteed, once both indicators do

not change significantly over a large number of rjMCMC

moves, the algorithm can be considered to have converged

with reasonable confidence.

Figure 4 shows the model index parameter histogram

and indicates that the naturally parsimonious inversion

approximates the true environment (120 layers) by integrat-

ing over models with five to ten interfaces. The highest prob-

ability is for models with seven layers. Figure 5 shows the

marginal profile distributions12 for the simulation, which are

an ensemble estimate of the seabed structure based on the

trans-dimensional PPD and constitute the main result of the

Bayesian inference carried out in this paper. The panels

show the velocity, density, and attenuation marginal profiles

over depth as well as the probability of positions of layer

interfaces in the partition. The profile marginal distributions

are individually normalized at each depth for display pur-

poses. The probability distribution of sediment interfaces is

a useful measure of where the data support structure in the

environmental model. The figure also shows the “true”

underlying seabed. Several interesting observations can be

made by comparing the complex, 120-layer underlying

seabed model and the probability distribution recovered by

the inversion. The inversion results capture the seabed struc-

ture by a combination of sharp discontinuities as well as

gradients which are smoothly approximated through the en-

semble of many partition models in the PPD. Hence, the

inversion is effectively self-regularized by the data, a feature

intrinsic to the trans-dimensional partition model.

FIG. 3. Simulated reflection-coefficient data (crosses), mean fit (solid line;

computed from PPD), and 95% highest probability density (HPD) intervals

(dashed), at frequencies indicated. FIG. 4. Number of interfaces k in the partition model.
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Figure 3 also shows the 95% HPD credibility intervals

for the data misfit that are calculated from the data predicted

for all models in the PPD (the predicted-data sample).

Figure 5 shows that attenuation (not a primary focus of

this work) is largely unresolved in this example. This is likely

due to the limited frequency bandwidth chosen for this exam-

ple, since sensitivity of the reflection-coefficient data to

attenuation would be expected to increase within a given

layer as the ratio of layer thickness to wavelength increases.

Overall, this simulation illustrates the advantages of the trans-

dimensional inversion in capturing a wide range of environ-

mental structures (gradients and discontinuities in different

parts of the same environmental model) in a general way.

B. Experiment and data

Seismo-acoustic reflection data were collected April 22,

1998, during the SCARAB98 experiment at 36�30’39”N,

14�32’59”E on the Malta Plateau, Mediterranean Sea. The

acoustic data were generated with an electro-mechanical im-

pulsive source (EG&G model 265 Uniboom) with a short

pulse length (< 1 ms) and a broad bandwidth (0.2–10 kHz).

The data were recorded at a single receiver of a vertical line

array of 16 Benthos AQ-4 hydrophones. The source depth

was 0.35 m, the hydrophone depth was 112 m, and the water

depth was 153 m. These data have been previously consid-

ered in Ref. 6, where a more detailed account of the experi-

ment can be found.

Reflection-coefficient data as a function of grazing angle

and frequency are computed from time-windowed direct and

bottom-reflected arrivals using the method of Holland36 and

are shown in Fig. 6. In this case, the bottom response is time

windowed to approximately 3.75-m depth below the sea-

floor. The data are averaged into eight frequency bands from

300 to 1600 Hz using a Gaussian frequency average37,38

with a fractional bandwidth of 1/15 (this bandwidth was

found to retain structure in the reflection-coefficient data

while reducing noise). The data are interpolated onto a uni-

form spacing in angle; points with a signal to noise ratio of

less than 6 dB were excluded. Further, interpolated data that

fall into recording gaps (due to experiment design) are

excluded from the inversion. This results in approximately

30 data at each frequency. Previous studies have shown that

spherical wave-front effects are negligible and that plane-

wave modeling is sufficient for this experiment geometry

and sub-bottom depth.38

C. Posterior parameter inference

The MCMC sampling convergence was judged in the

same way as in the simulation. Figure 7 shows a histogram of

the model indexing parameter which indicates that five inter-

faces have the highest probability. However, significant prob-

ability exists for layering structure from three to seven layers.

This uncertainty in the number of interfaces supported by the

data translates into an uncertainty for geoacoustic parameters

and the position of interfaces that cannot be assessed in a

fixed-dimensional approach. However, the trans-dimensional

approach intrinsically accounts for this source of uncertainty,

resulting in more realistic uncertainty estimates based on the

information content of the data. In combination with a parti-

tioning of the seabed, this result is a general approach that

can be recognized as regularizing by the data.

Figure 8 shows the maximum a posteriori (MAP) model

(the model that maximizes the posterior) from the trans-

dimensional PPD and compares it to three cores taken at the

experiment site. The MAP model shows seven interfaces in

the partition and indicates several strong discontinuities that

FIG. 5. (Color online) Trans-dimensional profile marginal distributions for simulation. Plot boundaries correspond to prior bounds. Solid lines indicate the

simulated seabed model.
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do not appear to be physically reasonable. This type of struc-

ture is commonly observed in over-parametrized models,

where too much structure is introduced to fit (or over-fit) the

data, resulting in under-constrained solutions. In linear or

linearized inverse theory, these problems are often addressed

by regularizing with some subjective, global regularization

term that constrains the form of the solution (e.g., the

smoothest model that fits the data to within a pre-determined

limit). The global nature of regularizations can cause prob-

lems when some parts of the model are required to be

smooth while other parts should allow discontinuities. This

is commonly solved by breaking the regularization at some

location chosen by the user. Subjective regularization terms

are problematic with regard to parameter uncertainty esti-

mates, since the parameter uncertainties are strongly influ-

enced by the regularization and may not be representative of

the environment or the data information content. It is evident

that MAP models are of limited value in trans-dimensional

inversions and posterior inference should rather be based on

ensembles and marginalization.

Figure 9 shows profile marginal distributions for the

measured data. In this case, there are four dominant peaks for

layer interfaces, indicating four significant reflectors. How-

ever, other areas of increased probability exist that do not

show strong reflectors in the profile marginals. These areas

exhibit velocity and density gradients that are captured

through the ensemble and regularization qualities of the trans-

dimensional partition model. Velocity and density profile mar-

ginals are compared to measurements from three cores which

were taken at the experiment site. High quality 1.3 m gravity

cores were collected using a thin-walled core barrel (to mini-

mize sediment disturbance) with a sphincter device designed

to minimize end effects caused by typical core closing mecha-

nisms. The cores were maintained in a vertical position until

density (gamma-ray attenuation) and sound speed (time of

flight at 200 kHz) were measured using a Geotek Multi-Sen-

sor Core Logger (MSCL). The system was calibrated and the

error bars shown in Fig. 9 represent the errors from the mea-

surement system only. Core-sampling errors (compression or

extension of sediments from core-barrel impact, removal, and

handling) are not included. There is some evidence that the

core-sampling uncertainties are of the same order or smaller

than the measurement errors for fine-grained materials that

likely dominated the upper 1.5 m at this site.

In order to sample deeper than 1.5 m, a 4-m piston corer

(with thicker barrel walls and conventional core catcher) was

employed. While the uncertainties for the these data are much

larger than those associated with the 1.3 m gravity cores, the

plot shows the same uncertainties which should be viewed as

an extreme lower bound. These uncertainties represent a

lower bound because the measurement errors are higher (the

time of flight measurements were conducted by hand rather

than with the MSCL and density was measured using dried

weight) and mostly because the sampling errors are believed

to be much higher. The sampling errors include effects of the

thicker walls and effects of the piston on compression/exten-

sion of the sediments, but almost certainly the largest factor

was the placement and storage of the core in a horizontal

FIG. 7. The number of interfaces k in the partition model.

FIG. 6. Observed reflection-coefficient data (crosses), mean fit (solid line;

computed from PPD), and 95% HPD intervals (dashed) at indicated

frequencies.
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position before measurements. The effect of turning the core

on its side would tend to have the largest effects on granular

(as opposed to cohesive) sediments, tending to fluidize the

sediment matrix and almost certainly reducing the bulk modu-

lus (hence sound speed). Since cohesive sediment dominated

the upper 1.7 m, the largest bias errors would be expected to

occur in the sediments below 1.7 m. Core-density measure-

ments introduced two further sampling uncertainties: First

splitting the entire core lengthwise and then scooping out by

hand small samples for weighing. The magnitude of errors

introduced by these two procedures is not known, but both

would tend to reduce porosity and increase density.

The agreement between core and inversion results is re-

markable over the first 1.7 m. The inversion results match

core values in both velocity and density and capture the shape

of the profiles indicated by the cores. This is an indication of

FIG. 9. (Color online) Trans-dimensional profile marginal distributions. Plot boundaries correspond to prior bounds. The solid lines indicate three cores taken

at the experiment site with error estimates due to measurement errors.

FIG. 8. (Color online) MAP model (dashed) of the trans-dimensional PPD and three cores taken at the site (solid lines).
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the data regularization intrinsic to the method and suggests

that the trans-dimensional approach can successfully approxi-

mate gradients by homogeneous layers where needed without

over-fitting the data. To extract this information, it is crucial

to rely on ensemble properties of the trans-dimensional PPD

rather than point estimates such as the MAP model.

The inversion results show a strong velocity discontinu-

ity at 1.7-m depth and a weak gradient preceding this discon-

tinuity. This feature is also supported by the piston core

which extends to this depth; however, the core estimates a

velocity approximately 40 m/s lower than what the inversion

results suggest. A likely explanation for the difference

between the core and inversion sound velocity is that the

core measurements are biased low. This conclusion is sup-

ported because the reflection coefficient is very sensitive to

the velocity structure and the simulation (Fig. 5) indicates

that the inversion estimates sound velocities well. In addi-

tion, the velocities below 1.7-m depth suggest sediment with

a significant silt or sand component, which would tend to

bias the velocities low in the core measurements as discussed

above. Hence, although no conclusive statement can be

made about the actual sediment velocities from 1.7 to 4 m, a

likely explanation is that the core measurements are biased

low. An additional discontinuity is evident at �3.35 m.

Here, the inversion results indicate a rather smooth transition

from high velocities (�1590 m/s) to velocities �25 m/s

lower. The transition is evident from 2.8 to 3.5 m, matching

the pattern of transition in the core very well.

Densities appear to be well resolved in the uppermost

1.5 m of the sediment, closely matching core estimates.

Below 2.5-m depth, the data appear to be less sensitive to

changes in density, although reasonable density values are

recovered even at depth.

Overall, it is evident that this approach provides a useful

method to capture both smooth spatial changes as well as

sharp discontinuities in the environment, providing the capa-

bility of describing a large variety of environments without

explicit specification. In addition, no artificial/subjective reg-

ularization terms need to be introduced that can potentially

contaminate the parameter uncertainty estimates.

Data errors are addressed by including a data-error

model in the inversion. In this case, the error model consists

of one parameter, the standard deviation of the data, which is

assumed to be independent of frequency. Figure 10 shows

the marginal distribution of the standard deviation from the

trans-dimensional PPD. Data errors are closely tied to the

environmental parametrization and a poor choice of environ-

mental parametrization can result in complicated and strongly

correlated data errors. In practice, independent knowledge of

data errors are often not readily available, since the effects

due to parametrization, random processes in the environment,

and other potential error sources cannot be separated. In such

cases, data residuals (difference between observed and pre-

dicted data) are used to estimate the data errors. For an appro-

priate choice of environmental parametrization, data residuals

should be largely uncorrelated (assuming no other source of

correlated errors such as modal noise) and Gaussian distrib-

uted (as supported by the central limit theorem), since any

significant structure/correlations in the residuals would indi-

cate that something is missing in the computation of the pre-

dicted data. Hence, it is important to examine the data resid-

uals a posteriori and validate that the assumption of a

random Gaussian error distribution is reasonably fulfilled.

Posterior error validation can be carried out by applying

quantitative and qualitative tests11,12 to the residuals resulting

from the MAP model. However, whether an individual model

can be considered representative of the PPD is questionable for

nonlinear inverse problems (where multiple modes and other

complicated PPD structure commonly exist). This is particu-

larly true in trans-dimensional approaches where the interpreta-

tion is best based on ensemble properties of the PPD.15,24,39

Hence, data residuals are examined here based on ensembles.

In particular, a large random subset of the PPD is used to com-

pute a large sample of data residual sets (the residual sample),

which are then used to examine the assumptions about data

errors. Figure 6 shows the mean fit of data predicted for the

PPD ensemble to the observed data. In addition, 95% HPD

credibility intervals are shown. The figure shows that the PPD

predictions fit the observed data well and that the 95% HPD

bounds include most data points, indicating a good fit.

Figure 11 shows the mean autocorrelation function of

the residual sample with 95% HPD bounds for the various

frequencies. A narrow center peak of the autocorrelation

function indicates residuals with short correlation lengths

and supports the assumption of random errors. Figure 11

shows that, although data at 635 and 800 Hz have center

FIG. 10. Data-error standard deviation.
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peaks a few points wide, all other frequencies do not show

obvious strong correlation structure, indicating the assump-

tion of uncorrelated errors appears reasonably supported.

Figure 12 shows that histograms for the ensemble average

of the residual sample compare favorably to analytic Gaussian

distributions at most frequencies. Note that these histograms

account for the error residuals for all models in the PPD. Histo-

grams at some frequencies are more peaked near zero; how-

ever, this is not considered problematic since the predominant

issue for violating the assumption of Gaussian data errors is

large outliers, which are not present. These results support the

structure and uncertainty estimates in Fig. 9 as reasonable rep-

resentations of the seabed environment and raise confidence in

the trans-dimensional inversion applied here.

IV. SUMMARYAND DISCUSSION

This paper developed a trans-dimensional partition

modeling methodology for geoacoustic inverse problems

where the number of unknown parameters is itself unknown

and shows that under this approach simple environmental

parametrizations can capture general seabed structure. This

methodology results in an intrinsically parsimonious data

self-regularization allowing for smooth transitions as well as

sharp discontinuities in the inversion result. The approach is

implemented using a reversible-jump MCMC sampler that

applies changes in the dimension of the state-space using a

birth–death scheme while maintaining detailed balance of

the Markov chain, resulting in an unbiased trans-dimensional

PPD estimate. The environment was parametrized with a

partition model, treating the sediment as a partition over the

depth interval of interest with sediment interface positions

determined by the data. Data errors were addressed by intro-

ducing a simple error model, assuming the data errors to be

independent of frequency and uncorrelated within each fre-

quency band. Hence, the data-error model is included in the

inversion using the standard deviation as an unknown.

Analysis of the inversion results was based on ensem-

bles and marginalization obtained from the trans-dimen-

sional PPD. In particular, marginal profile distributions were

used to estimate the uncertainty of environmental properties

such as the velocity- and density-depth profiles. The inver-

sion methodology was applied to both simulated and meas-

ured seabed reflection-coefficient data. The simulation was

based on an environment generated from three cores taken at

an experiment site in the Straits of Sicily. The complicated

FIG. 11. Mean data residual autocorrelation function (solid line) and 95%

highest probability bounds (dashed lines) from PPD.

FIG. 12. Histograms of mean data residuals (solid) compared to Gaussian

distributions.
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structure of the simulated environment (120 layers of vary-

ing thickness) was successfully approximated by the trans-

dimensional inversion with an environmental model of 5–10

layers. The partition model resulted in the inversion placing

interfaces over a range of depths in certain regions that

allowed for resolving smooth transitions from ensemble in-

ference applied to the PPD. In addition, sharp discontinuities

were resolved in regions where required by the data.

The inversion results for measured data exhibit the par-

simonious data self-regularization that is an intrinsic quality

of the trans-dimensional partition-modeling methodology, in

which the data information content determines the amount

and type of structure in the posterior. This feature allows a

wide variety of profile shapes to be described with a small

number of parameters and without the need to explicitly par-

ametrize in terms of smooth transitions (gradients) or apply

subjective global regularization terms. Arbitrary transitions

between parameter values, including gradients and sharp dis-

continuities, are inferred from the data.

Posterior examinations of data residuals based on en-

semble properties of the PPD were carried out to ensure that

assumptions about data-error statistics were met reasonably

well. The results from these examinations increased the con-

fidence in the inversion results.
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