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Trans-dimensional matched-field geoacoustic inversion with
hierarchical error models and interacting Markov chains

Jan Dettmera) and Stan E. Dosso
School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8W 3P6, Canada

(Received 4 April 2012; revised 20 July 2012; accepted 23 July 2012)

This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, includ-

ing interacting Markov chains to improve efficiency and an autoregressive model to account for

correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion

without assuming any particular parametrization by relaxing model specification to a range of plau-

sible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter).

Data errors are addressed by sampling statistical error-distribution parameters, including correlated

errors (covariance), by applying a hierarchical autoregressive error model. The well-known diffi-

culty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov

chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the

hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in

substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In

particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty

due to prior model choice (layering and data error statistics). The approach is applied to data

measured on a vertical array in the Mediterranean Sea. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4746016]

PACS number(s): 43.30.Pc, 43.30.Ma, 43.60.Pt [AIT] Pages: 2239–2250

I. INTRODUCTION

Matched-field inversion (MFI) can provide information

about seabed parameters that is valuable for sonar applica-

tions and predicting sound propagation in shallow-water

environments. The inversion method has been applied

widely to acoustic-field data recorded on vertical- and

horizontal-line arrays to obtain seabed parameter estimates

(e.g., Refs. 1–3). In recent years, MFI has been addressed

with probabilistic inference methods,4,5 which sample the

posterior probability density (PPD), providing the ability to

quantify parameter uncertainty and interrelationships.6–8

Quantifying uncertainty is of fundamental importance for in-

ference problems because parameter variability (spatial and/

or temporal heterogeneity) must be resolved in the presence

of uncertainty due to incomplete and uncertain data

observations.

Any probabilistic parameter inference requires the

assumption of a model, which is defined here in the general

sense to include a physics theory describing signal-system

interaction, an appropriate parametrization, and a statistical

representation for the data errors. It has been shown that

MFI requires careful examination of the data errors, which

can be strongly dependent (correlated).9,10 Correlated errors

are generally due to both measurement and theory errors,

which are inseparable. Measurement errors are typically ran-

domly distributed and due to various instrument and noise

sources. In many inference problems, theory error is due to

the intrinsic inability of specifying a model that fully cap-

tures the complexity of the system-signal interaction. Theory

errors can cause significant error dependence (correlation)

and are often due to insufficient model complexity (the

model does not allow data predictions that sufficiently cap-

ture the structure of the signal).

Estimating parameter values and uncertainties that

meaningfully describe the seabed based on incomplete, noisy

acoustic-field data is challenging and strongly tied to model

selection: The choice of physics theory (describing signal-

sediment interaction) may not be obvious, the sediment para-

metrization (e.g., layering) consistent with the data resolving

power is generally unknown and cannot be constrained to a

single prior choice, and an appropriate statistical description

of data errors is unknown. Traditional inversion approaches

make subjective model assumptions, and the consequences

of these assumptions are rarely investigated. However,

model choice can profoundly affect the solution and, in par-

ticular, uncertainty estimates. Hence model choice should be

considered as part of the inverse problem. This approach

quantifies the data support for competing models and is

referred to as model selection. One of the goals of model

selection is to identify the simplest parametrization consist-

ent with the data, and Bayes’ theorem intrinsically provides

such natural parsimony.5 Model selection has been applied

to MFI with regard to choosing a single optimal parametriza-

tion using Bayesian evidence7 and the Bayesian information

criterion.11

Trans-dimensional (trans-D) inference generalizes

model selection12,13 by relaxing the requirement of specify-

ing a single preferred or optimal model to specifying groups

of appropriate models. Hence the PPD quantifies the state of

parameter knowledge for groups of models, accounting for

the inability of incomplete and uncertain data to clearly dis-

criminate between models. This results in more rigorous
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seabed parameter uncertainty estimates because the uncer-

tainty of the model is included in the parameter uncertainty

estimates. Trans-D inference has been applied to several

geophysical inverse problems14–18 as well as seabed reflec-

tion inversion19,20 among other applications.

This paper develops a trans-D inference method for MFI

that samples over the seabed layering (i.e., does not assume

a fixed number of layers) and, in addition, applies a hierarch-

ical autoregressive error model18 to sample data-error pro-

cess parameters that account for error dependence. This

rigorous approach is found to substantially improve the fit to

data and results in more meaningful uncertainty estimation

by significantly reducing theory error. In addition, fewer

prior choices and less algorithm tuning is required, resulting

in a more automated inversion algorithm.

The trans-D PPD is sampled here by simulating a Mar-

kov chain on the trans-D state space using the reversible-

jump Markov-chain Monte Carlo algorithm (rjMCMC)13,19

which is based on a generalization of the Metropolis–Hast-

ings (MH) algorithm.21,22 The trans-D state space is consid-

ered to be the union of the state spaces for each model

considered in the inversion, and transitions (jumps) between

sub-spaces are implemented with a birth-death scheme.23,24

A significant challenge of rjMCMC inversions is very low

acceptance rates of jumps proposed between sub-spaces25,26

(poor chain mixing). Several strategies have been proposed

to improve dimension mixing, including delayed rejection,25

more efficient proposal distributions,26 and interacting Mar-

kov chains.27 Interacting Markov chains are a generalization

of replica Monte Carlo and parallel tempering.28,29 Interact-

ing Markov chains are applied here to improve cross-

dimension mixing as well as mixing within dimensions. Sev-

eral chains are run in parallel and distributed according to an

annealing schedule. Parameter-vector exchange between

trans-D chains is governed by the MH criterion for multiple

chains.30 In addition, delayed rejection is applied for param-

eter updates resulting in an adaptive proposal distribution

within sub-spaces.

The trans-D MFI algorithm is applied here to acoustic-

field data collected near Elba Island in the Mediterranean

Sea. Parameter inference is carried out in terms of profile

marginal distributions for sound velocity, density, and

attenuation. In addition, ensemble residual-error analysis is

carried out to examine the hierarchical error model and error

dependence.

II. BAYESIAN INFERENCE

A. Bayes’ rule for hierarchical trans-D models

This section reviews trans-D inference12,13 used here to

address seabed layering in MFI. The inversion assumes that

the number of unknowns in the problem is itself an unknown

parameter. This parameter is a model index for a group of

models chosen a priori and is integrated over in a hierarchi-

cal Bayesian sense. The resulting posterior density spans

multiple subspaces of different dimensions. A key advantage

of this formulation is that the posterior includes the uncer-

tainty due to the limited ability to identify a single model for

the analysis.

Let d be a random variable of N observed data contain-

ing information about a physical system. Further, let I k

denote a group of models specifying particular choices of

physics theory, model parametrizations, and error statistics

to explain that system, where k 2 K and K is a countable set.

Let mk 2 R
Mk be a random variable of the Mk free parame-

ters representing a realization of model IK . Green
12 shows

that Bayes’ rule can be written for a Bayesian hierarchical

model to include parameter k,

Pðk;mkjdÞ¼
PðkÞPðdjk;mkÞPðmkjkÞ

X

k02K

ð

M

Pðk0ÞPðdjk0;m0
k0ÞPðm

0
k0 jk

0Þdm0
k0

; (1)

where k indexes choices of appropriate models resulting in a

single hierarchical model that spans several multi-

dimensional subspaces. In Eq. (1), P(k) is the prior over the

K models considered. The state variables of the trans-D

inversion are given by (k, mk) and are of dimension Mk. The

state space is trans-D and given by the union of all fixed-

dimensional spaces in K, i.e., [k2Kðfkg � RMkÞ. A Markov

chain that samples this state space can be defined that con-

verges to the trans-D joint posterior P(k, mk|d).

The seabed is parametrized with a partition model,24

where layers are described in terms of interfaces in a parti-

tion extending from the water-sediment interface to a maxi-

mum depth of interest. Interface positions and geoacoustic

parameters (e.g., sound velocity, density, attenuation) are

sampled with the MH algorithm by accepting/rejecting per-

turbations to those parameters according to the MH crite-

rion.22 Such partition models constitute a general approach

to layer parametrization that allows structure in the model

where needed with the ability to capture parameter gradients

as well as abrupt discontinuities in the same model without

requiring explicit assumptions.16

Creation and deletion of interfaces are implemented with

a birth-death scheme based on the rjMCMC algorithm. Such a

Markov-chain simulation [which samples the trans-D poste-

rior in Eq. (1)] must be able to undergo dimension changes

(jumps) in the state space (i.e., transition between subspaces

for different models) while not violating the requirement for

detailed balance (i.e., unbiased PPD sampling).19

Without dimension jumps, the MH algorithm is imple-

mented using the MH acceptance for a step from the current

model (k, mk) to a proposed model (k0, m0
k0 ):

a1 ¼ min 1;
Pðm0

k0Þ

PðmkÞ

Pðdjm0
k0Þ

PðdjmkÞ

� �b
Qðmkjm

0
k0Þ

Qðm0
k0 jmkÞ

" #

; (2)

where b is an annealing parameter (see Ref. 19 for details)

that can be considered unity here, and Q is the proposal dis-

tribution used to propose new states. For the trans-D case, a

rjMCMC algorithm can be implemented12,13 similar to the

MH algorithm by generalizing the acceptance rule to allow

transitions between state spaces for the multiple models that

are considered simultaneously. According to this rule, a step

from the current model (k, mk) to a proposed model (k0, m0
k0 )

is accepted or rejected according to
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a¼min 1;
Pðk0;m0

k0Þ

Pðk;mkÞ

Pðdjk0;m0
k0Þ

Pðdjk;mkÞ

� �b
Qðk;mkjk

0;m0
k0Þ

Qðk0;m0
k0 jk;mkÞ

jJj

" #

;

(3)

where |J| is the determinant of the Jacobian for the diffeo-

morphism from (k, mk) to (k0, m0
k0). The most commonly

used form of rjMCMC is the birth-death scheme,23,24 which

is applied here. A new layer is created by uniformly sam-

pling a depth and proposing an interface at that depth. This

interface splits an existing layer into two layers, one of

which is randomly selected and its parameters perturbed.

Such birth steps are accepted/rejected according to Eq. (3).

Similarly, for a death step, an interface is selected at random

and deleted. The parameters for the new (thicker) layer are

randomly chosen to be the parameters of one of the two orig-

inal layers, and the step is again accepted/rejected according

to Eq. (3). A Gaussian proposal distribution for parameters

during a birth step is applied here and the algorithm as

implemented here ensures jJj ¼ 1.24

The proposal distributions Q in Eqs. (2) and (3) cannot

be arbitrarily adapted during a Markov-chain simulation.

However, some adaptive scaling of Q is possible by intro-

ducing delayed rejection31 steps in the chain. Delayed rejec-

tion updates adapt the step size to local features in the state

space by allowing additional steps to be used upon rejection

as illustrated in Fig. 1. The proposal distributions Q2 for

delayed rejection steps can depend on the original proposal

(standard deviations are typically chosen to be smaller) and

on the rejected parameter vector. If Q2 is independent of the

rejected vector, the MH acceptance a2 for delayed rejection

in fixed dimension k is

a2¼min 1;
Pðm00

k Þ

PðmkÞ

Pðdjm00
kÞ

PðdjmkÞ

Q1ðm
0
kjm

00
k Þ

Q1ðm0
k0 jmkÞ

1�a1ðm
0
kjm

00
k Þ

1�a1ðm0
kjmkÞ

� �

;

(4)

where a1 is the MH acceptance criterion for the initial step

[Eq. (2)], mk the current parameter vector, m0
k the rejected

vector, and m00
k the vector proposed using Q2. Equation (4) is

applied here to allow some adaptability of the proposal

distribution.

III. LIKELIHOOD FUNCTION AND AUTOREGRESSIVE
ERROR MODEL

The conditional probability P(djk, mk) in Eq. (1)

describes the data-error statistics. An important concept in

Bayesian inference is that once data have been observed,

P(djk, mk) is interpreted as the likelihood function L(k, mk)

of the model parameter vector. Because data errors include

both measurement and theory errors (which cannot generally

be separated), the specific form of this distribution is often

unknown. For quantitative application of the likelihood func-

tion, the form of the error distribution must be assumed and

its parameters specified. Multivariate Gaussian distributions

are commonly used, but the validity of this assumption

should be examined a posteriori.9,32

To formulate the MFI problem, complex acoustic pres-

sure fields measured at a linear array of H hydrophones and

F frequencies (N¼FH) are given by d¼ {df, f¼ 1, F}. Here

data errors are assumed to be independent between frequen-

cies but can be spatially correlated between hydrophones.

The assumption of independence between frequencies is jus-

tified for reasonably spaced frequencies.33 For complex,

circular-symmetric Gaussian-distributed data errors, the like-

lihood function is given by

Lðk;mkÞ ¼
Y

F

f¼1

1

pHjCf j
expf�½df � df ðk;mkÞ�

†

� C�1
f ½df � df ðk;mkÞ�g; (5)

where † is the conjugate transpose, df(k, mk) are the pre-

dicted acoustic data for (k, mk) at frequency f, and Cf are the

data covariance matrices. For independent identical data

errors at each frequency, Eq. (5) simplifies to

Lðk;mkÞ ¼
1

Q

F

f¼1

ðpr2f Þ
H

� exp

�

�
X

F

f¼1

jdf � df ðk;mkÞj
2=r2f

�

; (6)

where rf are the standard deviations at each frequency.

Because source amplitude and phase information is often

unavailable in MFI, predicted data are expressed

df ðk;mkÞ ¼ Af expðihf Þpf ðk;mkÞ; (7)

where pf(k, mk) are predicted acoustic pressure data for a

source with zero phase and unit amplitude computed here

with the normal-mode propagation model ORCA,34 and Af

and hf represent the unknown amplitude and phase at the fth

frequency. A maximum likelihood estimate for Af exp(ihf) is

obtained from Eq. (5) and given by11

Af expðihf Þ ¼
p

†

f ðk;mkÞC
�1
f df

p
†

f ðk;mkÞC
�1
f pf ðk;mkÞ

: (8)

The residual error r0f ðk;mkÞ ¼ df � df ðk;mkÞ is then given

by

r0f ðk;mkÞ ¼ df � Af expðihf Þpf ðk;mkÞ: (9)

The covariance matrices Cf in Eq. (5) are often unknown due

to poor understanding of error sources, in particular, theory

errors. In some cases, Cf can be estimated using multiple

data measurements to obtain ensemble averages; however,

FIG. 1. Principle of delayed rejection. Original vector mk is perturbed using

proposal distribution Q1 to obtain vector m0
k , which is rejected via the MH

creiterion, Eq. (2). A second perturbed vector m00
k is then proposed using mk

and Q2, which is evaluated according to Eq. (4).
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care is required to appropriately sample over all error proc-

esses affecting the data. Therefore it can be advantageous to

estimate error distribution parameters from residual error

analysis by non-parametric approaches. Non-parametric

approaches9 use an optimal (maximum-likelihood) estimate

of the parameter vector to provide residual errors that pro-

vide estimates of variances and covariances (under the

assumption of ergodicity). However, non-parametric esti-

mates are problematic for trans-D problems because a spe-

cific model is assumed to evaluate the estimate. Which

model to choose for point-estimate residual errors may not

be clear a priori, and the approach may be inappropriate

when significant posterior probability is found for more than

one model. In addition, non-parametric approaches may

require windowing, smoothing, or damping to ensure non-

singular matrices, which relies on ad-hoc tuning parameters

requiring trial and error techniques.32

This paper uses a hierarchical autoregressive (AR) error

model to account for error dependence.18 Such models can

capture general covariance structure with a small number of

parameters and quantify the effect of uncertainties in data

error statistics on parameter uncertainty estimates. Autore-

gressive models35 are given by

d̂ t ¼
X

p

i¼1

aidt�1 þ �t; (10)

where t indexes the data, p is the order of the AR model, ai
are the AR parameters, and �t is an uncorrelated Gaussian

noise term. The model is abbreviated as AR(p). In the case

of the AR(1) model, a closed form expression for the autoco-

variance is given by

Al ¼
r2

1� a21
a
jlj
1 ; (11)

where l is the lag and r the standard deviation of �t. Hence,
the data errors for an AR(1) process are Gaussian distributed

with a Toeplitz covariance matrix in which off-diagonal

terms fall off exponentially. In inversion of complex data,

two AR(p) processes are applied (for real and imaginary

parts) using one ap parameter for both parts. The ap are

sampled with MH updates; this accounts for uncertainty in

the AR estimate in the environmental model.

The complete hierarchical error model at frequency f is

given by rf¼ (r, a)f, where af¼ {aif, i¼ 1, p} and r is the

standard deviation. After applying the AR model, the likeli-

hood function is given by

Lðk;mkÞ ¼
1

Q

F

f¼1

ðpr2f Þ
H

� exp �
X

F

f¼1

jdf � Af expðihf Þpf ðk;mkÞ

(

�d̂ðaf Þj
2=r2f

o

: (12)

The AR predictions d̂ðaf Þ are obtained by applying Eq. (10)

to the residual error [Eq. (9)] The total data residuals are

given by rf ¼ df � df ðk;mkÞ � d̂ðaf Þ and are assumed to

be uncorrelated Gaussian distributed with standard devia-

tions rf. The assumptions about the residuals can be exam-

ined by applying statistical tests to the total residual sample

from a large number of models drawn randomly from the

posterior (residual samples are saved along with model pa-

rameters during the inversion). In practice, Eq. (12) means

that the observed data are fit with the predicted data df(k,

mk) due to a physics process (e.g., acoustic-seabed interac-

tion) and with an additional predicted AR process d̂ðaf Þ to
account for serial correlations of the data errors. Autoregres-

sive parameters af and standard deviation rf are unknowns in

the inversion. This formulation has the advantage of provid-

ing a general sampling scheme that can include complex

error models with no requirements to invert a covariance ma-

trix or compute its determinant at each step of the inversion.

Hierarchical-error models are particularly useful in trans-D

inverse problems where point estimates (limited to one

fixed-dimensional subspace of the trans-D state space) may

not be representative of all subspaces.

Here maximum-likelihood estimates of rf are used to

implicitly sample36 the error standard deviations, in which

case the likelihood function is given by

Lðk;mkÞ ¼ �H
X

F

f¼1

logejrf ðk;mk; af Þj
2: (13)

Estimating error statistics from the data has the intrinsic

challenge that resolving physical model structure is traded

off with estimating error-distribution parameters. However,

the scale of data features giving rise to interpretation of

seabed structure is generally large compared to features of

error processes. Reasonable parametrizations of physics

models typically only predict a limited range of data fea-

tures, while AR processes can fit general features. Hence

observations for many inverse problems exhibit dominant

features that are most straightforwardly fit by the physics

model. This allows the AR process to fit error-process fea-

tures not explained by typical geoacoustic models. In prac-

tice, the AR model should have the lowest order that

sufficiently removes correlations, and the magnitude of AR

predictions can be constrained appropriately by prior infor-

mation. To ensure that the AR process does not remove

meaningful geoacoustic structure from the PPD, inversions

should be carried out and compared with and without hier-

archical AR models.

IV. INTERACTING MARKOV CHAINS

Markov-chain Monte Carlo (MCMC) is based on the

simulation of a Markov chain (“sampling”) that is guaran-

teed to converge to the PPD (the target distribution) in the

limit of infinitely long chain simulations. In practice, the

simulation is carried out for a limited number of MCMC

steps until the chain has converged sufficiently to the target

distribution. Testing convergence is difficult, and no defini-

tive method to establish convergence exists.37 To examine

chain convergence, the sampling is typically run for large

numbers of steps, and results are monitored continuously
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until moments of the PPD cease to change significantly.

However, such tests can be misleading, and it is advisable

to continue sampling for some time after apparent

convergence.

The rate of convergence depends critically on how effi-

ciently the chain can sample the high-probability regions of

the state space. The efficiency is governed by the proposal

distribution in Eq. (3), which must be specified a priori and

cannot be adapted during sampling. Defining efficient pro-

posal distributions is an important but potentially difficult as-

pect of applying MCMC sampling to Bayesian inference

problems. The sampling is particularly challenging when

multiple modes exist in the target distribution that are sepa-

rated by regions of low probability, and the chain is required

to jump freely back and forth (“mix”) between modes to con-

verge in reasonable time. One approach to increasing effi-

ciency for multi-modal problems are annealed or tempered

methods,29,38 which relax the target distribution by raising

the likelihood function to the power of an annealing parame-

ter b [referred to as the inverse “temperature,” also see Eq.

(3)]. Such approaches typically require increased computa-

tional effort that is balanced by a much more rapid rate of

convergence. More generally, these methods can be

described as population-based or interacting MCMC.27,30,39

Formally, interacting MCMC is based on the concept that to

sample from the target distribution p¼P(m|d), a new target

p* is defined

p� ¼
Y

N

i¼1

pi; (14)

where at least one pi � p. The additional distributions are

defined such that they are simpler to sample and are intro-

duced to aid in the sampling of P(mjd). The sequence of pi
can be chosen in any meaningful way and often includes an

annealed sequence fpi ¼ pbi ; bi 2 ½0; 1�g. Each distribution

in the sequence is then targeted by corresponding MCMC

chains that are simulated in parallel. Such annealed sequen-

ces allow large, efficient jumps (rapid mixing) of the chains

in the parameter space for low b values while the PPD target

is given when bi¼ 1. To take advantage of the rapid mixing

of the chains that target low-b pi, chains can exchange infor-

mation by way of exchange updates. Exchange updates are

based on randomly selecting pairs of chains from the

sequence and proposing to swap the parameter vectors of the

chains. For two chains n and q with parameter vectors mn

and mq, respectively, updates are accepted/rejected based on

the MH criterion for exchange updates given by

â ¼ min 1;
pnðmqÞpqðmnÞ

pnðmnÞpqðmqÞ

� �

: (15)

Note that the proposal distribution is symmetric if chains are

randomly selected from the population, resulting in a unit

proposal ratio.

For trans-D problems, jumps between subspaces for dif-

ferent parametrizations and dimensions pose a substantial

challenge for inter-model mixing. Improving trans-D mixing

has been the focus of considerable research.25–27,40 Here, an

annealed sequence of interacting trans-D Markov chains is

simulated in parallel to improve dimension mixing. The

sequence is used to target p¼P(k, mjd), and exchange

updates are proposed periodically throughout the chain simu-

lation. The b sequence is chosen to accept exchange updates

�50% of the time. Each chain is updated according to

the MH criterion in Eq. (3). Hence some chains explore

the trans-D parameter space much more freely than others

and can exchange information according to Eq. (15), and

annealed chains show significantly increased dimension mix-

ing. Because the pi are trans-D, exchange moves are also

trans-D and allow parameter vectors of different dimension

to be exchanged, improving dimension mixing of individual

chains. In addition to improved dimension mixing, chain

mixing within dimensions is also addressed by the popula-

tion of chains.

V. APPLICATION TO MEDITERRANEAN-SEA DATA

A. Experiment and data

The PROSIM’97 shallow-water geoacoustic experiment

was carried out by the SACLANT (now NATO) Undersea

Research Centre in the Mediterranean Sea off the west coast

of Italy near Elba Island. The experiment and data have been

considered previously11,41 and are described only briefly

here. The experiment consisted of recording acoustic signals

from a transducer towed at approximately 12-m depth over a

track with nearly range-independent bathymetry (water

depth �132m). The source emitted a linear frequency-

modulated chirp signal that swept over the frequency band

400-800 Hz in 0.5 s. The signals were received at a bottom-

moored vertical line array (VLA) of 48 hydrophones that

spanned from 26- to 120-m depth with a 2-m spacing. The

acoustic pressure at each hydrophone was sampled at 3 kHz,

transmitted to the ship, and recorded. The ocean sound-

velocity profile (SVP) was measured during the experiment

and consisted of a weakly downward-refracting gradient that

decreased from about 1520 to 1510m/s over the water col-

umn. The data analyzed here were recorded for a source-

receiver range of approximately 3.85 km.

The experiment and the environmental and geometric pa-

rameters included in the modelm are illustrated in Fig. 2. The

FIG. 2. Experiment geometry and parametrization of matched field

experiment.
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acoustic source is at depth z and range r from the VLA in

water of depth D. The SVP is represented by four unknown

sound velocities v1–v4 at depths of 0, 10, 50, and D m. For the

purposes of extracting seabed information, the SVP and geo-

metric unknowns represent nuisance parameters that are not

themselves of interest but are included in the model to

account for the effect of their uncertainties on the estimated

geoacoustic parameters. The seabed is parametrized in terms

of a partition model over the sub-bottom depths of interest

with k interfaces, where intervals between interfaces are

homogeneous layers represented by sound velocity c, density

q, and attenuation coefficient a. Prior distributions for sound

velocity and density are constrained by uniform joint prior

distributions that are based on empirical data.42,43 For a given

density q, lower (clow) and upper (cup) values for velocity are

constrained by the empirical expressions (Fig. 3)FIG. 3. Prior bounds for density-velocity relationship.

FIG. 4. (Color online) Measured data (dashed lines) in terms of normalized pressure as a function of hydrophone number and frequency [(a) real, (b) imaginary

parts]. The shading indicates the density of the data predictions from an ensemble of models (a random subset of the PPD).
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clow ¼ ð1:54� 0:907qþ 0:3659q1:88Þ1500:4;

cup ¼ ð1:60� 0:907qþ 0:3695q2:01Þ1501:4: (16)

These joint prior bounds allow a wide range of physically

meaningful c-q combinations to be considered, while

excluding physically unreasonable combinations.

Bounds for SVP and geometric parameters (vi, D, r, z)

are chosen to be relatively small, representing measurement

uncertainty (e.g., instrument calibration) and possible effects

of lateral and/or temporal variability. Unless otherwise men-

tioned, prior bounds are represented by the plot bounds in

the figures that follow. The goal of MFI is to estimate model

parameters that predict data that match measured acoustic

FIG. 5. Marginal probability distributions of AR(1) parameters for each frequency.

FIG. 6. (Color online) Total data residual errors [(a) real, (b) imaginary part] for the inversion results with an AR(1) error model.
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fields. The measured data indicate11 that the acoustic sensors

at depths of 32, 58, and 76m had gain problems, and these

data were excluded from the analysis. The data considered

for the inversions in this paper consist of acoustic fields at

nine frequencies at 50-Hz intervals from 400 to 800Hz.

B. Posterior parameter inference

Figure 4 shows the measured acoustic-field data (real and

imaginary parts) and the range of data predictions (excluding

AR predictions) from the inversion, which represents an en-

semble inference constituting the density of predicted fields

for a random sub-sample of the PPD. The predicted-field den-

sity is considered here as a more rigorous approach to exam-

ine data fit compared to considering only the prediction for a

single best-fit model vector. Figure 4 shows that the model fits

the data well. In fact, the fit in this figure is significantly better

than in previous inversions of the same data.11 This likely

indicates that previous inversions did not consider an amount

of seabed structure consistent with data information (models

were under-parametrized).

In addition to the hierarchical partition model for seabed

layers, an AR(1) model was included in the inversions to

address error dependence. The data errors at each frequency

were modeled by one AR parameter, which was applied to

both the real and imaginary parts. The marginal probability

distributions for the AR(1) parameters are shown in Fig. 5

and indicate that the data show significant correlation at sev-

eral frequencies. Low frequencies generally require higher

AR(1) parameter values than high frequencies. In particular,

data at 700 and 750Hz, which show the least amount of cor-

relation in Fig. 4, also have marginal distributions in Fig. 5

that are close to zero. The mean values of the distributions

are generally consistent with the degree of error dependence

seen in Fig. 4. The t-test44 can be applied to examine the sig-

nificance of including an AR parameter in the error model:

tamax
¼ âmax=stderrðamaxÞ& 2; (17)

where amax is the highest-order coefficient included in the

analysis and stderr represents standard error. The t-test

results are given for each frequency in Fig. 5 and indicate

that at eight of the nine frequencies, the a1 coefficients are

significant. Only data at 750Hz show an insignificant t-test

value of 0.5. The inversion was also carried out for an AR(2)

model, and the results (not shown here) indicate that a

second-order (amax¼ a2) AR model is not justified at any

frequency. Therefore the AR(1) model is taken to be neces-

sary and sufficient for the error correlations in this inversion.

The difference between observed and predicted data are

referred to as residual errors and are considered here in terms

of ensemble-density distributions (Fig. 6) for real and imagi-

nary parts. Figure 6 shows the total residual error, including

the AR(1) model, which should be an uncorrelated random

process. The residuals at most frequencies appear largely

uncorrelated and increasingly so with increasing frequency.

To quantify these results, runs tests44 were applied to the full

ensemble of models from the PPD with the results shown in

Fig. 7. In particular, Fig. 7 compares the runs-test results of

the inversion both including and not including the AR(1)

model. Generally, including the AR(1) model improves the

runs-test results with a larger percentage of the models in the

PPD passing the test at the 0.05 significance level. Hence

inclusion of the AR(1) model in the inversion reduces the

error dependence. However, some dependence is still appa-

rent in the residuals at low to mid frequencies.

FIG. 7. (Color online) Runs-test results for real (solid) and imaginary (dashed)

data for the inversion with an AR(1) error model and for real (dashed-dotted)

and imaginary (dotted) data for the inversion without an AR model.

FIG. 8. (Color online) Trans-D mar-

ginal profile distributions for sound

velocity, density, attenuation, and

interface marginal probability as a

function of depth.
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The main inversion result for the PROSIM data is

shown in Fig. 8 in terms of profile marginal distributions for

interface probability, velocity, density, and attenuation. Note

that the marginal profile distributions are normalized at each

depth individually for display purposes. The results show

that the MFI inversion is largely sensitive to velocity and

resolves structure consistent with other previous work.11 The

uncertainties of the velocity distribution are generally larger

for thin layers than for thicker layers. In particular, over the

depths from �10 to 30m, velocity uncertainty is very small,

which was previously observed. Density appears to be

largely unconstrained, which is common for MFI. Attenua-

tion values are mostly low, which is consistent with the rela-

tively large depth to which the data appear to resolve

layering (�40m). Figure 8 also shows interface probability

as a function of depth, which indicates approximately six

major interfaces with the uncertainty of interface positions

generally increasing with depth. The water-column and geo-

metric parameters are shown in Fig. 9. The prior bounds for

all parameters in Fig. 9 are given by the plot boundaries. It

can be seen that several parameters are constrained by the

prior bounds that are chosen based on experiment values.

The peaking of these distributions at the boundaries implies

that the parameters are not resolved well. Allowing wide

bounds could potentially bias other parameter results.

Figure 10 shows a comparison of the marginal distribu-

tion of the number of interfaces supported by the data for the

two inversions. The distribution for the inversion including

the AR(1) model shows significantly fewer layers (peak at 7)

than the inversion ignoring correlated errors (peak at 11

layers). Including the AR model effectively reduces the

FIG. 9. One-dimensional marginal probability distributions for water-

column and geometric parameters.

FIG. 10. Marginal probability distribution of the number of interfaces in the

sediment stack: (a) including the AR(1) model and (b) no error model.

FIG. 11. (Color online) Comparison

of interface probability and velocity

marginal profile plots for (a) inver-

sion including an AR error model

and (b) ignoring correlated errors.
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amount of seabed structure supported by the data by

accounting for correlated errors. This is an important result

because in some cases, data features that actually represent

error processes can be fit by additional seabed layers (given

the model); this may lead to unjustified structure. The AR

model appears to balance the tendency of including unrea-

sonable structure by allowing error dependence.

Figure 11 compares velocity and interface probability

marginal profiles for both inversions. Similar to Fig. 10,

unconstrained structure is evident for the inversion that

ignores correlated data errors. This is particularly prominent

for the interface probabilities, where neglecting error de-

pendence leads to many additional interfaces with small ve-

locity contrasts. In addition, the velocity-profile distribution

indicates unconstrained structure with velocities jumping

back and forth from layer to layer. Further, the maximum

partition depth in the inversion was set to 60m, and strong

interfaces appear to this depth, indicating unconstrained

structure. Finally, Fig. 11(b) shows a bimodal distribution

for the basement velocity that is not observed in Fig. 11(a).

To illustrate the significance of a well-formulated

geoacoustic inversion to acoustic propagation modeling and

sonar performance prediction applications, Fig. 12 compares

transmission loss (TL) predictions for both inversions with

20-m source depth and 50-m receiver depth out to 10-km

range. The lower (400Hz) and upper (800Hz) ends of the

frequency band used in the inversion are considered. For both

frequencies, TL predictions are significantly different for the

two inversion results, which illustrates the impact of model

complexity on TL predictions. The more complex seabed

model that exhibits unjustified layering structure causes

significantly more structure in the TL predictions in Fig. 12.

C. Interacting chains and chain mixing

All inversions reported in this paper were carried out

with a population of seven chains with logarithmically

spaced b¼ [1., 1., 0.87, 0.756, 0.658, 0.571, 0.497]. Note

that two chains are simulated for bi¼ 1, resulting in the

seven chains yielding PPD samples at 3.5 times the computa-

tional effort compared to running a single bi¼ 1 chain. This

section considers the mixing of the chain targeting p¼pb1 to

illustrate the increase in across-model mixing and parameter

mixing within a model. Figure 13 compares across-model

mixing for inversions with and without interacting chains.

During 400 algorithm steps, interacting chains change model

dimension 116 times, while dimension changes only 5 times

without interacting chains. In addition, note that model

jumps for interacting chains can change k by more than 1.

Figure 14 shows a mixing comparison for the velocity

parameter of the first layer. Both chains and chain-

autocorrelation functions are shown and indicate a substantial

increase in mixing. In particular, the autocorrelation-function

peak for interacting chains is much narrower; this indicates

less sample-to-sample dependence. Similar analysis for other

parameters gives similar results (not shown). This illustrates

how interacting chains can significantly improve mixing for

high-dimensional trans-D inverse problems while only moder-

ately increasing computational effort (3.5 times).

FIG. 12. (Color online) Impact of including the

AR error model in MFI on TL predictions for

400 and 800Hz: 95% highest probability den-

sity credibility intervals for inversion including

AR model (solid) and ignoring correlated errors

(transparent).

FIG. 13. Model-index mixing for inversions using (a) interacting chains and

(b) a single chain. A small subset of 400 rjMCMC steps is shown.
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VI. SUMMARYAND DISCUSSION

A trans-D inversion with a hierarchical data-error model

was developed and applied here to matched field inversion.

The trans-D algorithm was implemented using interacting

Markov chains that significantly improve performance of the

algorithm. In particular, jumping between models was sub-

stantially improved by using interacting chains; this

addresses an important difficulty in trans-D inversion.

The algorithm was applied to the PROSIM data

recorded in the Mediterranean Sea. Results are largely sensi-

tive to seabed velocities and resolve more detailed structure

than previous inversions. The trans-D seabed model allows

simultaneous consideration of many seabed parametrizations

in the inversion and effectively addresses model selection

with respect to layering as part of the inverse problem. The

PPD estimate resulting from this inversion jointly quantifies

the state of knowledge about seabed parameters given data

and prior information for all models included in the inver-

sion. Hence trans-D geoacoustic uncertainties include the

uncertainty due to the intrinsically limited ability to specify

a single model for the unknown seabed. Therefore prior

assumptions with regard to model choice are relaxed to a

group of models, resulting in more realistic results.

Error dependence has been shown to be an issue for

MFI and is addressed here by a hierarchical error model

using AR processes to model error dependence. The AR

model was shown to result in more reasonable structure,

while ignoring correlations resulted in an unconstrained ve-

locity profile. Hierarchical error models further relax the

requirement of specifying aspects of the model a priori.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of

Office of Naval Research Grant No. 322AO. The computa-

tional work was carried out on a parallel high-performance

computing cluster operated by the authors at the University

of Victoria funded by the Natural Sciences and Engineering

Research Council of Canada and the Office of Naval

Research. The authors thank the NATO Undersea Research

Centre and Dr. Peter Nielsen for at-sea data collection and

two anonymous reviewers for valuable comments that

improved the quality of the manuscript.

1M. D. Collins, W. A. Kuperman, and H. Schmidt, “Nonlinear inversion for

ocean-bottom properties,” J. Acoust. Soc. Am. 93, 2770–2783 (1992).
2S. E. Dosso, M. L. Yeremy, J. M. Ozard, and N. R. Chapman, “Estimation

of ocean-bottom properties by matched-field inversion of acoustic field

data,” IEEE J. Ocean. Eng. 18, 232–239 (1993).
3P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms

and a posteriori probability distributions,” J. Acoust. Soc. Am. 95, 770–

782 (1994).
4J. S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, New

York, 2001), pp. 1–343.
5D. J. C. MacKay, in Information Theory, Inference, and Learning

Algorithms (Cambridge University Press, Cambridge, UK, 2003), pp.

343–386.
6S. E. Dosso, “Quantifying uncertainty in geoacoustic inversion. I. A fast

Gibbs sampler approach,” J. Acoust. Soc. Am. 111, 129–142 (2002).
7D. J. Battle, P. Gerstoft, W. S. Hodgkiss, W. A. Kuperman, and P. L. Niel-

sen, “Bayesian model selection applied to self-noise geoacoustic inver-

sion,” J. Acoust. Soc. Am. 116, 2043–2056 (2004).
8Y. Jiang, N. R. Chapman, and H. A. DeFerrari, “Geoacoustic inversion of

broadband data by matched beam processing,” J. Acoust. Soc. Am. 119,

3707–3716 (2006).
9S. E. Dosso, P. L. Nielsen, and M. J. Wilmut, “Data error covariance in

matched-field geoacoustic inversion,” J. Acoust. Soc. Am. 119, 208–219

(2006).
10C.-F. Huang, P. Gerstoft, and W. S. Hodgkiss, “On the effect of error cor-

relation on matched-field geoacoustic inversion,” J. Acoust. Soc. Am. 121,

EL64–EL69 (2007).
11S. Dosso and J. Dettmer, “Bayesian matched-field geoacoustic inversion,”

Inverse Probl. 27, 055009 (2011).
12P. J. Green, “Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination,” Biometrika 82, 711–732 (1995).
13P. J. Green, “Trans-dimensional Markov chain Monte Carlo” in Highly

Structured Stochastic Systems, Oxford Statistical Science Series (Oxford

University Press, Oxford, UK, 2003), pp. 179–198.
14A. Malinverno, “Parsimonious Bayesian Markov chain Monte Carlo inver-

sion in a non-linear geophysical problem,” Geophys. J. Int. 151, 675–688

(2002).
15M. Sambridge, K. Gallagher, A. Jackson, and P. Rickwood, “Trans-dimen-

sional inverse problems, model comparison and the evidence,” Geophys.

J. Int. 167, 528–542 (2006).
16T. Bodin and M. Sambridge, “Seismic tomography with the reversible

jump algorithm,” Geophys. J. Int. 178, 1411–1436 (2009).
17N. P. Agostinetti and A. Malinverno, “Receiver function inversion by

trans-dimensional Monte Carlo sampling,” Geophys. J. Int. 181, 858–872

(2010).
18J. Dettmer, S. Molnar, G. A. M. W. Steininger, S. E. Dosso, and J. F. Cas-

sidy, “Transdimensional inversion of microtremor array dispersion data

with hierarchical autoregressive error models,” Geophys. J. Int. 188, 719–

734 (2012).
19J. Dettmer, S. E. Dosso, and C. W. Holland, “Trans-dimensional geoa-

coustic inversion,” J. Acoust. Soc. Am. 128, 3393–3405 (2010).
20J. Dettmer, S. E. Dosso, and C. W. Holland, “Sequential trans-dimensional

Monte Carlo for range-dependent geoacoustic inversion,” J. Acoust. Soc.

Am. 129, 1794–1806 (2011).

FIG. 14. Mixing of the velocity pa-

rameter of the first layer and the

associated autocorrelation functions

for (a) interacting chains and (b) sin-

gle chain. A small subset of 400

rjMCMC steps is shown.

J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012 J. Dettmer and S. E. Dosso: Trans-dimensional matched-field inversion 2249

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  150.203.9.110 On: Tue, 15 Jul 2014 04:46:00



21N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. T. A. E. Teller,

“Equations of state calculations by fast computing machines,” J. Chem.

Phys. 21, 1087–1092 (1953).
22W. K. Hastings, “Monte Carlo sampling methods using Markov chains

and their applications,” Biometrika 57, 97–109 (1970).
23C. Geyer and J. Moller, “Simulation procedures and likelihood inference

for spatial point processes,” Scand. J. Stat. 21, 359–373 (1994).
24D. G. T. Denison, C. C. Holmes, B. K. Mallick, and A. F. M. Smith,

Bayesian Methods for Nonlinear Classification and Regression (Wiley,

New York, 2002), pp. 1–227.
25P. J. Green and A. Mira, “Delayed rejection in reversible jump Metropolis–

Hastings,” Biometrika 88, 1035–1053 (2001).
26S. P. Brooks and G. O. R. P. Giudici, “Efficient construction of reversible

jump Markov chain Monte Carlo proposal distributions,” J. R. Stat. Soc.

65, 3–39 (2003).
27A. Jasra, D. A. Stephens, and C. C. Holmes, “Population-based reversible

jump Markov chain Monte Carlo,” Biometrika 94, 787–807 (2007).
28R. H. Swendsen and J. S. Wang, “Replica Monte Carlo simulation of spin-

glasses,” Phys. Rev. Lett. 57, 2607–2609 (1986).
29C. J. Geyer, “Markov chain Monte Carlo maximum likelihood,” in Com-

puting Science and Statistics: Proceedings of the 23rd Symposium on the

Interface (Interface Foundation, Fairfax Station, VA, 1991), pp. 156–163.
30A. Jasra, D. A. Stephens, and C. C. Holmes, “On population-based simula-

tion for static inference,” Stat. Comp. 17, 263–279 (2007).
31L. Tierney and A. Mira, “Some adaptive Monte Carlo methods for Bayes-

ian inference,” Stat. Med. 18, 2507–2515 (1999).
32C. W. Holland, J. Dettmer, and S. E. Dosso, “Remote sensing of sediment

density and velocity gradients in the transition layer,” J. Acoust. Soc. Am.

118, 163–177 (2005).

33S. E. Dosso and P. Nielsen, “Quantifying uncertainty in geoacoustic inver-

sion. II. Application to broadband, shallow-water data,” J. Acoust. Soc.

Am. 111, 143–159 (2002).
34E. K. Westwood, C. T. Tindle, and N. R. Chapman, “A normal mode

model for acoustoelastic ocean environments,” J. Acoust. Soc. Am. 100,

3631–3645 (1996).
35R. Shumway and D. Stoffer, in Time Series Analysis and Its Applications

(Springer, New York, 2000), pp. 89–212.
36S. E. Dosso and M. J. Wilmut, “Data uncertainty estimation in

matched-field geoacoustic inversion,” IEEE J. Ocean. Eng. 31, 470–

479 (2006).
37C. J. Geyer, “Introduction to Markov chain Monte Carlo” in Handbook of

Markov Chain Monte Carlo (Springer, New York, 2011), pp. 3–47.
38R. M. Neal, “Annealed importance sampling,” Stat. Comp. 11, 125–139

(2001).
39P. D. Moral, A. Doucet, and A. Jasra, “Sequential Monte Carlo samplers,”

J. R. Stat. Soc. 68, 411–436 (2006).
40A. Jasra, A. Doucet, D. A. Stephens, and C. C. Holmes, “Interacting se-

quential Monte Carlo samplers for trans-dimensional inference,” Comput.

Stat. Data Anal. 52, 1765–1791 (2008).
41M. R. Fallat and S. E. Dosso, “Geoacoustic inversion via local, global, and

hybrid algorithms,” J. Acoust. Soc. Am. 105, 3219–3230 (1999).
42D. R. Jackson and M. D. Richardson, “Geoacoustic properties” in High-

Frequency Seafloor Acoustics (Springer, New York, 2007), pp. 123–170.
43J. E. Quijano, S. E. Dosso, J. Dettmer, L. M. Zurk, M. Siderius, and C.

Harrison, “Bayesian geoacoustic inversion using wind-driven ambient

noise,” J. Acoust. Soc. Am. 131, 2658–2667 (2012).
44D. C. Montgomery and E. A. Peck, in Introduction to Linear Regression

Analysis (Wiley, New York, 1992), pp. 115–136.

2250 J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012 J. Dettmer and S. E. Dosso: Trans-dimensional matched-field inversion

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  150.203.9.110 On: Tue, 15 Jul 2014 04:46:00




