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Abstract

Background: Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads

to deficient intellectual and immune function are not well understood.

Results: Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum

of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes

with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while

others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the

DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating

early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain

and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially

affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving

altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications

mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple

chromosome 21 genes contribute to the downstream epigenetic effects.

Conclusions: These data point to novel biological mechanisms in DS and have general implications for trans

effects of chromosomal duplications and aneuploidies on epigenetic patterning.

Background

It has been more than 50 years since Down syndrome

(DS) was shown to result from trisomy 21 (Ts21) but we

are still far from understanding how this chromosomal

aneuploidy leads to the spectrum of phenotypes in this

syndrome. A recent hypothesis invokes epigenetics —

the extra chromosome 21 could act in trans to produce

network perturbations within cells leading to epigenetic

alterations, including changes in DNA methylation,

which would propagate to daughter cells in developing

tissues. To test this idea, we previously performed

microarray-based DNA methylation profiling in blood

leukocytes from individuals with DS and age-matched

controls and found that gains and losses of DNA methy-

lation, affecting about 100 genes, are a stereotypical (i.e.,

highly recurrent among cases) epigenetic response to

Ts21 in these cells [1]. Within this group of genes with

DS-specific differential methylation (DS-DM; distin-

guishing it from cell type-dependent differential methy-

lation and developmental stage-dependent methylation)

we noted examples encoding key signal transducing

proteins and transcription factors (TFs) necessary for

lymphocyte development and function, which likely play

a role in the mild immunodeficiency and strongly in-

creased susceptibility to autoimmune disorders in DS.

* Correspondence: cd2695@columbia.edu; bt12@columbia.edu

Maite Mendioroz and Catherine Do are co-first authors.
1Taub Institute for Research on Alzheimer’s Disease and the Aging Brain and

Institute for Cancer Genetics, Columbia University Medical Center, New York,

NY 10032, USA

Full list of author information is available at the end of the article

© 2015 Mendioroz et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mendioroz et al. Genome Biology  (2015) 16:263 

DOI 10.1186/s13059-015-0827-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-015-0827-6&domain=pdf
mailto:cd2695@columbia.edu
mailto:bt12@columbia.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


However, that study did not include methylation profil-

ing in purified T cells, leaving as an open question the

full repertoire of genes affected by altered methylation in

that key cell type. Also, since epigenetic patterning is a

cell type-specific phenomenon, data from blood cells will

not necessarily generalize to cells in other organs. In

fact, Jin et al. reported a group of genes with DS-DM in

placentas with Ts21 compared with control placentas

that overlapped partially, but not extensively, with those

that we had found with DS-DM in blood cells [2].

For understanding the deficits associated with DS, the

brain is the organ of greatest interest — intellectual dis-

ability is the most consistent feature of the syndrome

and Alzheimer’s disease (AD) has an accelerated onset

in adults with DS [3]. Since the brain is composed of

multiple cell types, steps to separate neurons from non-

neuronal cells are expected to improve the yield and

accuracy of molecular profiling. Here we show that a

gene-specific and tissue-specific epigenetic response to

Ts21, recurrent across multiple affected individuals, oc-

curs in neurons and glial cells in DS brains, and in circu-

lating CD3-positive T lymphocytes, and we highlight

features of the affected genes and their differentially

methylated sequences that point to biological pathways

relevant to brain and lymphocyte development and func-

tion. Our bioinformatics enrichment analyses support a

role for altered TF binding site (TFBS) occupancies in

shaping the abnormal methylation patterns. Lastly, as

groundwork for future studies, we apply whole genome

bisulfite sequencing (WGBS) to DNA from mice engi-

neered to carry sub-chromosomal duplications mimick-

ing human Ts21 and show that the epigenetic signature

of human DS brain cells is partly recapitulated in these

mouse models.

Results

Gene-specific and tissue-specific alterations of CpG

methylation in DS brain cells and T lymphocytes

Our overall approach for epigenetic profiling and ana-

lysis is diagramed in Figure S1a, b in Additional file 1.

As the first step we profiled DNA methylation genome-

wide in 14 DS and 8 control frontal cortex (FC) grey

matter samples and in 13 DS and 10 control cerebellar

folial grey matter samples from age-matched adult aut-

opsy brains (Table S1 in Additional file 2) using Illumina

450K Methylation BeadChips. We additionally profiled

CD3-positive T cells purified from peripheral blood of

11 adults with DS and 10 age-matched controls (Table

S1 in Additional file 2). We tested for the quality of the

samples and reliability of the BeadChip data by reprodu-

cibility of the fractional methylation (AVG_Beta) values,

which were highly correlated in technical replicates

(r > 0.99). We also assessed DNA copy number, using

the normalized hybridization intensity values from the

methylation arrays, which confirmed full Ts21 in all

of the DS cases (examples in Figure S2 in Additional

file 1).

Since the brain contains multiple cells types, we

used fluorescence-activated cell sorting (FACS) of cell

nuclei labeled with anti-Neu-N monoclonal antibody

to obtain neuronal (Neu-N-positive) and non-neuronal

(Neu-N-negative, hereafter referred to as glial but under-

stood to include the smaller populations of vascular cells

and microglia) enriched fractions (Table S1 in Additional

file 2; Figure S2 in Additional file 1). Using these prepara-

tions in the 450K methylation assays we compared nine

individuals with DS with 11 non-DS individuals without

significant neuropathology, as well as three cases of non-

DS late-onset AD (LOAD). Non-supervised correlation

clustering and principal component analysis (PCA) of the

450K data showed that the methylation data for each cell

and tissue type clustered separately, consistent with the

expected tissue-specificity of DNA methylation patterns

(Figure S2 in Additional file 1). We compared AVG_Beta

(fractional methylation) values between normal glia and

neurons to identify cell type-specific methylation patterns

and found 73,216 probes with p values < 0.001 (false dis-

covery rate (FDR) < 0.002) and a fractional change in

mean methylation ≥ 0.15, 4170 of which had a change in

methylation ≥ 0.5, confirming the previously shown epi-

genetic divergence between these two cell types [4, 5] and

validating our decision to separate them.

Unlike the very strong epigenome-wide differences

between neurons and glia and between brain cells and T

lymphocytes, within a given cell type or tissue type

non-supervised analysis by correlation heatmap and

PCA generally showed only a weak clustering of the

AVG_Beta values by DS versus control status, an ex-

ception being the DS versus control cerebellar cortex

samples, which were well separated by these approaches

(Figure S2 in Additional file 1). Further, there were only

small differences in global CpG methylation between DS

and controls, as indicated by mean AVG_Beta values

across all 450K probes (Table S2 in Additional file 2).

However, supervised analysis of the 450K data comparing

DS versus control samples showed that recurrent CpG

methylation abnormalities are indeed present, both in the

whole FC grey matter and in the purified neuronal and

glial cell nuclei from DS cases, as well as in the DS T cells,

compared with the matched controls (Fig. 1). Each tissue

and cell type showed a particular DS-DM signature (Fig. 1;

Tables S3–S7 in Additional file 2). With stringent un-

adjusted p < 0.001 and delta AVG_Beta > 0.15, we identi-

fied 279 genes (578 CpGs) differentially methylated in glia

and 272 genes (552 CpGs) differentially methylated in

neurons in DS versus controls. In the T cells we found 492

genes (1046 CpGs) with DS-DM at this stringent cutoff.

In both glia and neurons our statistical cutoff proved to be
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Fig. 1 (See legend on next page.)
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robust to multiple testing (unadjusted p < 0.001 corre-

sponded to a Benjamini-Hochberg FDR < 0.024 for

glia and FDR < 0.028 for neurons; Tables S5 and S6 in

Additional file 2; Figure S3 in Additional file 1). In

addition, using multivariate analysis, the large major-

ity of DS-DM loci (90–99.5 %) remained significant

after adjustment for sex (adjusted p value < 0.001)

(Tables S5 and S6 in Additional file 2). The findings

in cerebellar grey matter and T cells were similarly

robust (Tables S4 and S7 in Additional file 2). Very

importantly, the reduction in cell type heterogeneity

in the purified neuronal and glial nuclear preparations

unmasked much larger sets of differentially methyl-

ated loci compared with unfractionated FC (Tables

S3, S5, and S6 in Additional file 2). Literature and

database searches revealed multiple genes with known

or suspected roles in brain development and/or func-

tion among the DS-DM loci in the neural cells and

multiple genes involved in hematopoietic cell differen-

tiation among the T-cell DS-DM loci (Tables S3–S7

in Additional file 2; examples in Fig. 1d).

As shown in Fig. 1 and Tables S3–S6 in Additional

file 2, the majority of loci with DS-DM are hypermethy-

lated in DS versus control FC brain tissues and brain cells.

In contrast, in the CD3-positive T lymphocytes we found

approximately equal numbers of hyper- and hypo-

methylated CpGs (Fig. 1; Table S7 in Additional file 2), a

result consistent with our previous findings in whole

blood leukocytes [1]. Supporting the validity of the 450K

data, many of the DS-DM loci that we identified in that

earlier lower resolution study of unfractionated peripheral

blood leukocytes, including SH3BP2, TMEM131 and

CPT1B, were confirmed in this T-cell DS-DM gene set

and, as expected, additional DS-DM loci were identified in

the new high resolution data from the purified cells

(Table S7 in Additional file 2). The DS-DM loci in

each of the tissues and cell types (Tables S3–S7 in

Additional file 2) were distributed across most of the

human autosomes, with no statistically significant en-

richment for genes on chromosome 21, a result that

is consistent with our previous findings for loci with

DS-DM in unfractionated leukocytes [1].

As highlighted by the Venn diagram in Fig. 1c, DS-DM

is a cell type-specific and gene-specific phenomenon, not

reflecting a global perturbation of methylation patterns.

Supporting this conclusion, while the bias toward

hypermethylation in DS brain cells was obvious when

examining specific DS-DM genes, assessment of the

mean fractional methylation (AVG_Beta) values across

all probe sets (non-polymorphic autosomal CpGs

queried by the 450K arrays) for DS compared with

control samples revealed only a very small (~1 %),

though nonetheless statistically significant, genome-

wide relative hypermethylation in DS FC and cerebellum

compared with controls and no difference in mean methy-

lation in DS versus control T cells (Table S2 in Additional

file 2).

We next asked which general classes of DNA sequences

are affected by the DS-DM. In FC, the majority of the

hypermethylated CpG sites are in CpG islands (CGIs;

73.6 %), with a significant twofold enrichment compared

with random expectation based on all CpGs queried by

the arrays (p = 2 × 10−12), and a more modest 1.3 enrich-

ment in gene bodies (including 3′ and 5′ untranslated re-

gions, 66 % versus 51.6 %, p = 0.047). A substantial set of

promoter regions (1 kb upstream and downstream of the

transcriptional start site) showed hypermethylation in DS

FC, but there was no selectivity for gains of methylation in

such regions compared with non-promoter CG-rich re-

gions. In the neuron preparations we found no enrich-

ment for DS-DM in CGIs, but a modest enrichment in

gene bodies (1.4-fold, p = 10−11), and under-representation

in promoter regions (1.7-fold, p = 8 × 10−16). In glia we

found a 1.6-fold enrichment in CGIs (p = 7.4 × 10−22), a

slight enrichment in gene bodies (1.2-fold, p = 0.001),

and under-representation in promoter regions (1.17-fold,

p = 0.004), and in the cerebellum, we observed no enrich-

ment for gene bodies and modest under-representations

of both CGIs and promoters (1.25-fold, p = 2.8 × 10−13,

and 1.5-fold, p = 5.5 × 10−46, respectively) (Tables S3–S6 in

Additional file 2). In the T cells we found a 1.2-fold enrich-

ment in gene bodies (p = 3.652 × 10−08), no enrichment in

CGIs, and a 1.3-fold under-representation in promoters

(p = 2.547 × 10−10) (Table S7 in Additional file 2).

(See figure on previous page.)

Fig. 1 Gene-specific alterations in DNA methylation in DS frontal cortex neuronal and glial cells, cerebellar folial cortex, and T lymphocytes. a, b

Supervised hierarchical clustering of the 450K methylation BeadChip data (fractional methylation values; AVG_Beta) for probes that passed ANOVA

at p≤ 0.001 and absolute difference in methylation≥ 0.15 in DS versus control adult whole frontal cortex, glia, and neurons. Biological samples

are on the x-axis and differentially methylated loci are on the y-axis, with relative hypermethylation and hypomethylation indicated by the color

scale. For generating the heatmaps, the fractional methylation values for each CpG were renormalized using the default settings in dChip to have

mean 0 and standard deviation 1. The red color represents a methylation level above the mean methylation of the CpG across all samples, the

white color represents mean methylation and the blue color represents methylation lower than the mean. c Venn diagram emphasizing that many

of the DS-DM genes are unique to either neurons or glia, with smaller sets of pan-cell-type DS-DM loci. d Partial lists of DS-DM genes,

highlighting examples with relevant biological functions. The complete lists of DS-DM CpGs and genes are in Tables S3–S7 in Additional

file 2. STDEV standard deviation

Mendioroz et al. Genome Biology  (2015) 16:263 Page 4 of 26



As an important technical point, although adults with

DS are strongly predisposed to developing early onset

AD, the DS-DM that we describe here is due to the pri-

mary effects of Ts21, not secondary changes from AD.

Indeed, supervised hierarchical clustering of fractional

methylation values for the DS-DM CpGs showed no evi-

dence of a pattern similar to DS in non-DS LOAD neu-

rons (Fig. 1a), and a direct comparison of DS neurons

with non-DS LOAD neurons re-identified a large major-

ity (87.5 %) of the DS-DM loci (FDR < 0.05 and delta

AVG_Beta > 0.15) that were found in the comparison of

DS with control (neuropathological normal) neurons.

This conclusion is further supported by the lack of over-

lap with the very few genes in AD that were reported by

Bakulski et al. as differentially methylated based on 27K

BeadChip data [6], and by recent findings in a similar

study of AD by Lashley et al. [7], as well as by our ana-

lysis showing that the DS-DM loci identified here are

not accounted for by accelerated aging (see below).

Validation and additional mapping of DS-DM in brain

cells and T lymphocytes

Since the BeadChip assays query only a small percentage

of the CpGs in each CG-rich region, and since single nu-

cleotide polymorphisms (SNPs) in the probe binding

sites and overlap of a subset of probes with repetitive se-

quences can complicate the interpretation, it is essential

to validate the data using bisulfite sequencing (bis-seq),

which reveals the pattern of methylation across multiple

contiguous CpGs near the “index CpGs” queried by the

arrays. We chose 13 genes with DS-DM for such valida-

tions in brain and three genes with DS-DM loci for vali-

dations in T cells, which we performed in the same

samples that had been run on the methylation arrays,

examining at least two DS and two control samples per

gene region. The regions selected for validations were in

or near genes relevant to brain or T-cell development or

function. Importantly, we did not seek to only validate

the strongest DS-DM loci in the 450K data; rather, we

included examples spanning a range of high to low dif-

ferences in methylation and strong to weaker statistical

significance.

Bis-seq validation of DS-DM in the 5′ end of the

NLGN2 gene, encoding an adhesion protein (neuroligin-

2) required for synapse formation, confirmed hyperme-

thylation in DS neurons, and showed that the DS-DM

affects multiple CpGs (Fig. 2). There was little or no

hypermethylation of this gene in glia and we found an

intermediate extent of DS-DM in whole FC grey matter,

confirming the conclusion from the array data that

hypermethylation of NLGN2 is neuron-specific. We con-

firmed gains of methylation in CpGs in a CGI at the 3′

end of the MZF1 gene in whole FC, neurons, and glia

from DS cases by bis-seq (Fig. 2). We also confirmed a

gain of methylation in the 5′ promoter region of STK19,

encoding a Ser-Thr kinase, in the DS neurons and whole

FC (Fig. 2). The results of bis-seq also validated hyper-

methylation in a glia-specific DS-DM region at the 3′

end of the PDE11A phosphodiesterase gene, and bis-seq

of DNA from glial cells confirmed a differentially meth-

ylated region in intron 1 of HOXA3, encoding a homeo-

box TF that is essential for embryonic development [8]

and neuronal specification [9] (Figure S4 in Additional

file 1). Our bis-seq data also validated and extended the

BeadChip findings of gains of methylation in a CGI over-

lapping intron 1 of the CPT1B gene, and showed the

presence of DS-DM at multiple CpGs in a regulatory re-

gion of the LRRC14/LRRC24 leucine-rich repeat gene

pair (Figure S4 in Additional file 1).

While there was no enrichment for chromosome

21-linked genes in the DS-DM gene sets, a few exam-

ples were found. C21orf56 (a.k.a. SPATC1L) showed

hypermethylation in DS whole FC, as well as in puri-

fied neurons and glia, and bis-seq confirmed gains in

methylation at the 5′ end of this gene, overlapping

the promoter region (Figure S5 in Additional file 1).

The RUNX1 gene, also located on chromosome 21,

encodes a TF that plays a role in neuronal specifica-

tion as well as in the maturation of microglial cells

and peripheral blood leukocytes. This gene appeared

among the DS-DM loci both in whole FC and in

purified glial cell nuclei, which by our FACS protocol

would include some (NeuN-negative) microglial cell

nuclei, but it did not show DS-DM in the purified

neurons. By bis-seq the promoter region of RUNX1

showed modest gains of CpG methylation in whole

FC from the DS brains (Figure S6 in Additional file 1).

These gains were seen in only a minority of the bis-seq

clones, so these may reflect DM restricted to a minor

population of cells, possibly the hematopoietic-derived

microglial cells [10]. This interpretation is supported by

our finding of much stronger DS-DM for this gene in T

lymphocytes (Table S7 in Additional file 2; Figure S7 in

Additional file 1). Bis-seq also confirmed a modest

increase in CpG methylation in the ESR1 gene, encoding

estrogen receptor-alpha (Figure S6 in Additional file 1).

Here too the gain of methylation was seen in a minority of

the clones, suggesting that it may be restricted to a sub-

population of NeuN-negative cells.

Next we used bis-seq to validate the DS-DM in three

genes in the cerebellar cortex. AMH, showing strong

DS-DM in this tissue and also in the FC, encodes anti-

Mullerian hormone. Bis-seq confirmed a strong gain of

methylation localized to its CGI (Fig. 3). Another gene

with DS-DM in cerebellum, ZMAT3, is a p53 target that

is expressed in brain cells. Our bis-seq data confirmed

DS-DM in an upstream regulatory region of this gene,

but unlike many of the other DS-DM loci, ZMAT3
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Fig. 2 (See legend on next page.)
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showed hypomethylation in the DS samples. Interest-

ingly, the DS-DM in this gene was limited to two con-

tiguous CpGs (Fig. 3), one of which is in a binding motif

for GABP-alpha (a.k.a. NRF2), a TF that is encoded by a

gene on chromosome 21 and shows methylation-

sensitive DNA binding [11]. Bis-seq also confirmed an

intragenic gain of methylation in the hedgehog signaling

pathway gene GLI2 in the DS cerebellar cortex samples

(Figure S8 in Additional file 1). Another GLI-family

gene, GLI4, also appeared in the DM gene set in

cerebellum, as well as in FC glia (Tables S4 and S5 in

Additional file 2). Lastly, the three DS-DM loci that

we selected for bis-seq in DS versus control T cells were

RUNX1, encoding a cell fate TF in hematopoietic lineages

[10, 12, 13]; ZDHHC14, encoding a protein palmitoyl

transferase that may impact protein kinase signaling [14];

and LRNN3, encoding a leucine-rich protein that is also

involved in cell signaling and is expressed in T cells [15].

Bis-seq confirmed the array data, and indicated involve-

ment of multiple contiguous CpGs in the DS-DM for each

of these genes (Figure S7 in Additional file 1). Compre-

hensive maps of the 450K methylation data for several of

the above featured genes in brain and T cells, showing the

locations of the DS-DM CpGs with respect to high-, inter-

mediate- and low-methylated CGIs, are in Figures S8–S10

in Additional file 1.

One group of DS-DM loci reflects additive contributions

of 5mC plus 5hmC while another group has differences

mostly in 5hmC

Since standard bis-seq does not distinguish between

5mC and its hydroxylated derivative 5hmC, we used a

modified bis-seq protocol (BS/OXBS; see "Materials and

methods") to determine the relative contributions of

5mC and 5hmC to the DS-DM in four genes: STK19

and MZF1 in the cerebrum and ZMAT3 and GLI2 in the

cerebellum. As shown in Figures S11 and S12 in

Additional file 1, both types of modified base contrib-

uted to the DS-DM. Of these four loci the strongest

component of 5hmC was seen in the ZMAT3 upstream

region in the cerebellum (Figrues S11 and S12 in

Additional file 1). These results fit with the fact that

among human organs the brain has one of the highest

levels of 5hmC, with cerebellum having even greater

5hmC content than cerebrum [5, 16].

To extend this analysis we used BS/OXBS as the first

step in probe preparation for 450K BeadChips. We ana-

lyzed the resulting data in two ways: first examining the

BS/OXBS data specifically for the DS-DM CpGs that we

had identified in the larger series of DS cases and con-

trols using the standard Illumina 450K protocol, and

second, using probe sets obtained by applying t-test and

absolute difference criteria directly to the BS/OXBS data

from this smaller group of cases and controls. The re-

sults from the first approach are summarized in Figure

S12 in Additional file 1, which highlights groups of

CpGs in which both 5mC and 5hmC contribute to the

net DS-DM to differing extents. Strikingly, for nearly all

of these CpGs (>90 %) the direction of the difference in

fractional methylation is seen to be the same for 5mC

and 5hmC (Figure S12 in Additional file 1; Table S8a–c

in Additional file 2). This result supports previous sug-

gestions that these two modifications act coordinately as

stable chromatin marks in brain cells [17, 18]. Our sec-

ond approach, analysis of the data from the BS/OXBS

experiment not restricted to the prior DS-DM probe

sets, revealed three groups of differentially methylated

sequences: one essentially the same as that discussed

above in which 5mC and 5hmC contribute additively to

the DS-DM, and two other groups, in which the sole or

major contribution to the DM is from one of these two

marks and not the other (Table S8b, c in Additional file 2).

Interestingly, the “5hmC-only” DS-DM loci (uncor-

rected p value < 0.05 and difference in fractional

methylation > 0.15; 959 DS-DM CpGs) showed frequent

hypomethylation in DS compared with controls; a trend

opposite to that seen with the 5mC + 5hmC and 5mC-

only DS-DM regions, which are more frequently hyper-

methylated in DS. Many of the “5hmC-only” DS-DM

CpGs are in genes that play known or suspected roles in

(See figure on previous page.)

Fig. 2 Validation and extension of the results for DS-DM in the NLGN2, MZF1 and STK19 genes by bis-seq. a CpG hypermethylation is localized to

the promoter region of the NLGN2 gene in DS neurons. The bis-seq shows that the DM affects multiple CpGs in the promoter region. As shown

by the DM track (Δ Methyl; mean difference in AVG_Beta in DS compared with control samples, showing all peaks with a p value < 0.001) aligned

to ENCODE and Zhu et al. [100] data (GSE17312 and GSM733758, respectively) covering 50 kb of this gene-rich region, strong signals for DM are

localized to the downstream edge of the NLGN2 promoter (marked by the activating H3K4me3 histone modification in H9-derived neurons) and

one downstream region, with weaker signals at several other locations. The asterisk indicates the position of the bis-seq amplicon. b Validation of

CpG hypermethylation at the 3′ end of the MZF1 gene in DNA from purified neuronal and glial cell nuclei. The bis-seq amplicon (asterisk) spans a

CGI at the 3′ end of the gene that appears to be the promoter for an antisense transcript, LOC100131691, which our RT-PCR results show

is expressed in fetal brain but not in adult FC (data not shown). Strong DM is restricted to this region, which carries the H3K27m3 poised

chromatin mark in human embryonic stem cells (hESC). c Validation of CpG hypermethylation in the promoter region of the STK19 gene

in DNA from neurons and whole FC. The bis-seq amplicon (asterisk) covers the promoter region, which is marked by H3K4m3 in H9-derived neuronal

cells. This promoter region also gives rise to an opposite-strand transcript (DOM3Z). As is true for the other examples above, the strong DM is tightly

localized to this single region
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Fig. 3 Validation and extension of the results for DS-DM in the AMH and ZMAT3 genes by bis-seq. a CpG hypermethylation is localized to a large

intragenic CGI of the AMH gene in DS whole cerebellar cortex. The array data and the results of bis-seq both show that the DM affects

multiple CpGs. As shown by the DM track (Δ Methyl; mean difference in AVG_Beta in DS compared with control samples, showing all

peaks with a p value < 0.001) aligned to ENCODE and Zhu et al. [100] data (GSE17312 and GSM733758, respectively), strong signals for

gain of methylation are localized to this region (marked by a peak of H3K27me3 in h1-ESC) and there is loss of methylation at two

positions upstream of the CGI. The asterisk indicates the position of the bis-seq amplicon. b CpG hypomethylation localized to the ZMAT3

promoter region in DS cerebellar cortex is confirmed by bis-seq. One of the two affected CpGs is in a binding site for the GABPA TF (Figure S9 in

Additional file 1). The asterisk indicates the position of the bis-seq amplicon. hESC human embryonic stem cell

Mendioroz et al. Genome Biology  (2015) 16:263 Page 8 of 26



brain development and function, examples being PTPRN2,

SLIT1, EFNA2, CBFA2T3, and the neurotransmitter

receptor genes GABRB3 and GABRA5 (Table S8a, b in

Additional file 2).

Altered DNA methylation in DS brains begins early in

development and preferentially affects developmentally

regulated genes

Since intellectual disability in DS is due to abnormal

neurodevelopment, we next asked whether the DS-DM

in DS brain cells might have its onset at the fetal stage.

We used 450K BeadChips to compare eight mid-gestation

(13–18 weeks) DS fetal whole cerebrum brain samples

with six gestational age-matched control samples. After

applying t-test and percentage change criteria as in our

adult brain analyses, we found a set of DS-DM loci in the

DS versus control fetal brains, again showing predomin-

antly hypermethylation in the DS cases (Figure S13 in

Additional file 1; Table S9 in Additional file 2). Using a

cutoff of p < 0.005 and delta AVG_Beta > 0.15 for DS-DM

in each gene set, 18 of 65 genes (28 %) that showed DS-

DM in both neurons and glia at the adult stage already

showed DS-DM at the fetal stage and 21 of 56 genes

(38 %) with DS-DM in unfractionated adult FC already

showed DS-DM at the fetal stage. Thus, a substantial

component of the epigenetic response to Ts21 in DS brain

cells has its onset early in brain development. This epigen-

etic response to Ts21 in neurogenic precursor cells affects

multiple genes with roles in brain development. Examples

include AMIGO3, encoding a transmembrane protein that

is essential for correct axon tract development [19],

CELSR3 and PCDHGA2, encoding a protocadherin in-

volved in neuronal connectivity [20–23], CYTH2, coding

for cytohesin-2, with a role in neurite extension [24], and

GLI4 (Figure S13 in Additional file 1), which is expressed

in the brain [25] and, by analogy to the other GLI family

members, is predicted to control cell differentiation.

To test statistically whether the altered methylation in

fetal and adult DS brains preferentially affects develop-

mentally regulated genes, we utilized data from an array-

based study of mRNA expression comparing normal

fetal and adult human brains [26]. Expression data were

available for 15,298 of the genes that were queried by

the 450K arrays, including 236 of the genes with

DS-DM in glia and 202 in neurons (gene list cutoffs

at p < 0.001). Differential expression in this dataset

was assessed by t-tests across technical replicates, re-

quiring p < 0.05; expression was higher in fetal com-

pared with adult brain for 3769 genes, higher in

adult brain for 4341 genes, and similar in adult and

fetal for 7188 genes. As shown in Table S10 in Additional

file 2, enrichment for genes with higher expression in fetal

brain was observed among the DM genes in neurons (fold

enrichment = 1.3; p = 0.002). In contrast, we found no

enrichment for genes with stage-specific mRNA expres-

sion in the glia DS-DM gene set. To follow up this finding

we asked whether the genes with DS-DM in DS versus

normal brain cells might be enriched in examples

with brain-specific expression or brain-specific repres-

sion. Expression data across various human tissues

were downloaded from the Allen Brain Atlas database

(http://www.brain-map.org/) and bioGPS. When we

classified these genes based on their expression across

the multiple tissues we found a modest but significant

enrichment in genes with brain-specific expression in

neurons (36 % of the DS-DM genes versus 28 % of

the BeadChip gene content, p = 3.7 × 10−5; Figure S14

in Additional file 1). No such enrichment was observed in

a parallel analysis of the glia DS-DM gene set.

DNA methylation patterns show early maturation in DS

Since some forms of intellectual disability have been

associated with differences in brain maturation, we next

investigated the gestational age dependence of epigenetic

changes in DS compared with control fetal brains. We

found 5657 CpGs with significant methylation changes

across control fetal brain development (univariate analysis,

methylation changes > 0.1 per 10 weeks, R squared ≥ 0.8

and uncorrected p value < 0.05), including 2147 with

progressive hypermethylation and 3510 with progressive

hypomethylation. We performed multivariate linear re-

gressions for each of these gestational age-dependent

CpGs, with disease status, developmental stage, and the

interaction term between disease status and developmen-

tal stage as explanatory covariates. In this model, the inter-

action term reflects the longitudinal effect of the disease

(across age or developmental stage), while the disease sta-

tus term reflects the difference at baseline (Table S11a in

Additional file 2). The results suggested an early matur-

ation of the methylation patterns in the DS fetal brains

compared with the control fetal brains, as summarized by

the graph of the mean fractional methylation of the 54

CpGs with gestational age effects in controls (univariate

analysis) and for which age and DS versus control status

explained more than 80 % of the variance (adjusted

age p value < 0.05 and adjusted R squared form multi-

variate analysis ≥ 0.8) (Figures S13 and S15 in Additional

file 1). We observed a significant interaction between DS

versus control status and gestational age, which reflects a

differential maturation between DS and controls (differen-

tial effect in gestational age dependent hypomethylation

CpGs = 0.2 per 10 weeks, p = 2.6 × 10−5, and differential

effect in gestational age dependent hypermethylation

CpGs = 0.13 per 10 weeks, p = 7 × 10−4; Figures S13 and

S15 in Additional file 1). In both probe sets, the dif-

ferential effect is explained by a smaller and negligible

gestational age effect in DS compared with controls

(−0.05 versus −0.27 per 10 weeks and 0.09 versus
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0.22, respectively). When we tested for a more complex

differential aging effect by looking for interactions be-

tween DS versus control status and age, without requiring

age effects in the normal samples, we identified 30 add-

itional CpGs with a significant though mild differential

aging effect (adjusted R squared > 0.8, adjusted age effect

p < 0.05, age effect > 0.1 per 10 weeks, p value of the inter-

action term < 0.05 and difference of the age effect between

DS and normal > 0.1 per 10 weeks; Table S11a in

Additional file 2). These data confirmed early matur-

ation of CpG methylation patterns in DS. When we

performed linear regression of the methylation aver-

age across the 1 % of CpGs with the most significant

changes in methylation in the fetal compared with

adult brains we found no evidence of hypermatura-

tion of methylation patterns in the adult DS brains.

Thus, while our data suggest early maturation in DS

fetal brains, the endpoint is not hypermaturation.

Importantly, we found that early maturation of methy-

lation patterns in DS is not restricted to brain cells; in T

cells, where our sample set is larger than for the fetal

brains, we found that 168 CpGs show a significant dif-

ferential age effect (adjusted R squared > 0.8, adjusted

age effect p value < 0.05, and p value of the interaction

term <0.05; Table S11d in Additional file 2). When the

methylation of these CpGs is graphed versus age, exam-

ination of the slopes and Y intercepts of the DS and

control lines leads to conclusions that parallel those in

the fetal brains. While we did not study T cells from

children the simplest interpretation of the slopes and Y

intercepts of the adult T-cell data is that there is early

maturation of methylation patterns in DS T cells,

without subsequent accelerated aging of these pat-

terns (Figure S16 in Additional file 1).

DS-DM in brain cells and T lymphocytes is not accounted

for by age effects

We next asked whether any of the DS-DM loci identi-

fied from our case–control analysis (151 CpGs defined

by p < 0.001; delta AVG_Beta > 0.15) were gestational

age-dependent, and we found only two DS-DM CpGs

overlapping with the age-dependent set (Table S11a in

Additional file 2; Figure S13 in Additional file 1). Thus,

the strong DS-DM CpGs that we report here in fetal

brains are due to Ts21 status per se and are not second-

ary to differential brain maturation rates. Likewise, we

asked whether age effects might account for a compo-

nent of the strong DS-DM in the adult DS brains and T

cells. Although 39 CpGs in the total 450K BeadChip

content showed an age effect on their methylation levels

in control adult unfractionated FC after univariate linear

regression (R squared ≥ 0.8, p value ≤ 0.05), these showed

very small fractional methylation changes over time

(average = 0.004 per 10 years) and graphs of the mean

values for these loci showed no evidence of accelerated

methylation aging in the adult DS brains (Figure S16 in

Additional file 1). Consistent with this fact, we found no

overlap of the strong DS-DM CpGs from adult FC (sets

defined by p < 0.001; delta AVG_Beta > 0.15) with these

age-dependent CpGs (Table S11b in Additional file 2;

Figure S16 in Additional file 1). These results were con-

firmed in the purified neuron samples, with only two

CpGs showing age dependent methylation, and no dif-

ferential aging effects between DS and controls for the

DS-DM CpGs (Figure S17 in Additional file 1). Similar

negative results were obtained when assessing the 348

age-dependent CpGs and the 2719 DS-DM CpGs in

cerebellum (Table S11c in Additional file 2). In the

T cells, 1022 CpGs showed a significant age effect

in control samples after univariate analysis, with

once again only small methylation changes per

10 years (average = 0.02 per 10 years; Table S11d in

Additional file 2). We found no overlap between

the set of CpGs with strong DS-DM (1046 CpGs;

set defined by p < 0.001; delta AVG_Beta > 0.15) and

this age-dependent CpG set (Figure S16 in Additional

file 1; Table S11d in Additional file 2).

To be even more complete, using multivariate linear

regressions, we looked for CpGs with a significant differ-

ential aging effect between age and DS versus control

status, regardless of whether they were identified as age-

dependent in the control samples. In FC, cerebellum

and T cells, we identified 3, 46, and 168 CpGs, respect-

ively, with a differential age effect between DS and con-

trols (adjusted R squared > 0.8, adjusted age effect p value

< 0.05, and p value of the interaction term < 0.05) with

most of the CpGs showing aging effects in control

samples but not in DS (Table S11b–d in Additional

file 2). Once again, among the 2719 strong (p < 0.001;

ΔAVG_Beta > 0.15) DS-DM CpGs in cerebellar cortex,

only six showed a difference in the age-dependence of

methylation in DS versus controls, while in T lym-

phocytes among the 1046 CpGs with strong DS-DM

(p < 0.001; ΔAVG_beta > 0.15), only 24 showed a dif-

ference in the age-dependence of methylation in DS

versus controls (Table S11b–d in Additional file 2). In

FC, we found no overlap of DS-DM CpGs with the small

set of CpGs that showed age-dependent methylation.

Some but not all of the DS-DM genes have altered mRNA

expression in DS brains

While the main emphasis of this study is DNA methyla-

tion, gene expression is obviously also of interest. We

carried out quantitative PCR (Q-PCR) for mRNAs of

eight genes with DS-DM, asking whether the DS-DM

was associated with differences in expression in DS-

compared with control brains. The mRNA expression

showed high intra-group variability in the DS and control
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samples, likely due to factors including different agonal

conditions among the autopsy brains, but we nonetheless

found significant inter-group differences in expression of

some, though not all, of these genes. STK19 showed ro-

bust mRNA expression in the adult brain samples, and

the DNA hypermethylation in DS, affecting the promoter

region of this gene, was associated with decreased mRNA

expression (Figure S18 in Additional file 1). In addition,

we found that expression of STK19 mRNA in normal hu-

man astrocytes was increased by exposure of these cells in

culture to the demethylating drug 5aza-deoxycytidine

(5aza-dC; Figure S18 in Additional file 1). In contrast to

STK19, Q-PCR for NLGN2 mRNA revealed increased

mRNA expression in the DS brains (Figure S18 in

Additional file 1). The DS-DM in this gene is also local-

ized to the promoter, but there is some prior evidence that

promoter methylation may normally activate transcription

of NLGN2: MeCP2, a methylated CpG-binding protein

that can either activate or repress genes and associates

with the transcriptional activator CREB1 [27], can bind

one of the Nlgn2 promoters in mice, and activate tran-

scription in reporter assays [28]. We also analyzed expres-

sion of an interesting DS-DM gene from the fetal brain

data, GLI4. The hypermethylation of this gene was found

both in the adult DS glial cells and in the fetal DS whole

FC samples and the DM was localized to the 3′ region,

not the promoter. Q-PCR revealed that GLI4 mRNA is

over-expressed on average in DS fetal brains (Figure S18

in Additional file 1), suggesting that the downstream

element may have a negative regulatory function. While

these examples gave positive results, for two other genes

with strong and recurrent DS-DM that we assayed by

Q-PCR, namely CPT1B and MZF1, we found a wide

range of expression in both DS and controls, with no dif-

ference in mean expression between the two groups (data

not shown). For CPT1B, this negative result might be

accounted for by the fact that the DS-DM region, an intra-

genic CGI, has promoter activity only in mesenchymal

cells, as suggested by ENCODE data.

We also used Q-PCR to assess expression of three in-

teresting genes, EFNA3, DUSP1 and CYBA, that showed

DS-DM in cerebellar cortex. Of these genes, EFNA3, en-

coding the neural signaling receptor Ephrin-A3, showed

a clear difference in mRNA levels between DS and con-

trol cerebellar cortex samples, with higher mRNA ex-

pression and promoter hypomethylation (as well as

relative hypermethylation in the gene body) in DS

(Figure S18 in Additional file 1). However, despite having

DS-DM in regulatory sequences, the DUSP1 and CYBA

genes did not show a significant difference in mRNA ex-

pression in DS versus control cerebellar cortex (data not

shown). In summary, some but not all of the brain DS-

DM genes (four of the eight genes tested) showed

differential expression between DS and controls in the

samples available for our analysis. Possible explanations

for lack of correlations between expression and methyla-

tion at some loci include variable acute changes in ex-

pression due to different agonal states prior to death and

fundamental biological factors such as a role for the DS-

DM at earlier stages of brain development that were not

available for our analysis. Nonetheless, each of the genes

for which a correlation between methylation and expres-

sion was found (GLI4, EFNA3, STK19 and NLGN2) have

known or predicted roles in brain development and/or

neural function.

Enrichment analyses link DS-DM to brain and T-cell

development and indicate a mechanism involving altered

TFBS occupancies, including RUNX1 sites in T cells

To gain mechanistic insights, we used bioinformatic en-

richment analysis, comparing the sets of DS-DM loci

with the entire 450K gene and CpG content, to test for

over-representation in the DS-DM loci of: (i) genes and

CpGs with cell type-specific methylation, (ii) CpGs with

developmental stage-specific methylation, and (iii) CpGs

in regions with specific histone modifications. Details

are in the "Materials and methods", and the lists of p

values are in Figures S19 and S20 in Additional file 1

and Tables S12 and S13 in Additional file 2. We found

that the sets of loci with DS-DM in adult DS versus con-

trol FC neurons and glia, and cerebellar cortex, are all

enriched in genes whose methylation is dynamically regu-

lated during cell type specification in brain development,

and that methylation differences in DS compared with

control brain cells preferentially affect genes whose CpG

methylation increases between the fetal and adult stages.

We also observed, by overlapping the DS-DM CpG sets

with ENCODE tracks and by performing gene set enrich-

ment analysis (GSEA; http://software.broadinstitute.org/

gsea/index.jsp), that a group of genes that are normally re-

pressed by the polycomb repressive complex 2 (PRC2) in

embryonic stem cells and then activated (derepressed)

during normal glial differentiation are preferentially sub-

ject to DS-DM (specifically hypermethylation) in DS glia

and in the whole brain samples (that contain numerous

glial cells), with a weaker enrichment for this type of mark

in the purified neuron and T-cell DS-DM sets (Table S12

in Additional file 2).

As these findings suggested a mechanism in which

perturbed transcriptional networks during cell differenti-

ation might underlie the DS-DM, we next asked whether

altered methylation occurred more often near tissue-

specific TFBSs. We used two complementary approaches

(Figure S21 in Additional file 1). First, we looked for de

novo predicted motifs overlapping the DS-DM CpGs,

using the HOMER tool. This approach can identify

known TFBS motifs and also novel motifs, which the

program predicts based on the input data. Using our
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data from brain cells, alignment of the positions of the

HOMER-predicted motifs to ENCODE data showed

only sparse overlap with ChIP-Seq-validated TFBSs,

leaving the biological meaning of many of the de novo

predicted motifs uncertain. Therefore, to test whether

these sequences might be elements that bind nuclear

factors that do not have a known consensus binding se-

quence, we identified the strongest enriched ChIP-Seq

peaks at the genomic positions of the HOMER de novo

motifs. Consistent with our GSEA and poised chromatin

enrichment analysis, two of the HOMER-predicted mo-

tifs were enriched within EZH2, and to a lesser extent

within KDM5B peaks in ENCODE (p = 4.2 × 10−14 and

p = 6.1 × 10−3, respectively). EZH2 belongs to PRC2 and

KDM5B is a H3K4 demethylase that has also been asso-

ciated with PRC2 [29]. In humans, specific sequence

motifs that recruit PRC2 have not been identified, but

accumulating evidence supports a role for cis-regulatory

sequences in the recruitment of polycomb complexes

[30–32]. In our T-cell data the set of hypomethylated

DS-DM CpGs analyzed by HOMER showed strong en-

richment in de novo motifs aligning with RUNX1 and

AP1 (JUN/FOS) motifs (Tables 1 and 2; Table S13a in

Additional file 2). Confirming the biological relevance of

this result, the HOMER-predicted motif instances were

also strongly enriched within bona fide RUNX1 and

FOS ChIP-Seq peaks (Tables 1 and 2; Table S13b in

Additional file 2).

Second, we tested for enrichment in validated TF

motif instances in 200-bp windows around each DS-DM

CpG, using data in ENCODE TF tracks. By this ap-

proach the enrichment in RUNX1 and AP1 motifs was

again the strongest result for the T cell hypomethylated

DS-DM CpGs (Tables 1 and 2; Table S13b in Additional

file 2). RUNX1 is a generally repressive TF that is

encoded on chromosome 21 and over-expressed in DS

[33]. Since prior studies have shown that TFBS occu-

pancy can lead to active or passive demethylation of

DNA [34–36], RUNX1 overexpression and increased

RUNX1 binding site occupancy might account for a sub-

stantial component of the locus-specific hypomethyla-

tion observed in DS T cells, as well as contributing to

the immune abnormalities in DS. The observed gains of

methylation in a portion of the promoter of the RUNX1

gene itself might therefore reflect an ineffective or par-

tially effective attempt at autoregulation. Likewise, c-Fos

has clear roles in T-cell function [37], and Jun-Fos has

been suggested to bind CpG-methylated AP-1 sites with

increased affinity, mediating transcriptional activation

[38]. These observations suggest that hypomethylation

observed in T cells at AP1 sites might be paradoxically

repressive and might also contribute to altered immune

function in DS. In the T-cell hypomethylated DS-DM set

we also found enrichment in TFBSs for NFKB1, PU1,

POU2F2 (OCT2), and MEF2 (FDR < 0.05; Table S13b in

Additional file 2), which are involved in development

and function of T lymphocytes [39–42]. With regard to

T-cell and brain hypermethylated CpGs, the enrichment

for validated TF binding sites was more modest and

accounted for fewer DS-DM CpGs (Table S13b in

Additional file 2). Nonetheless, among the TFs with

enriched motifs, SOX2 and MEF2 family members are

involved in neuronal function and cell differentiation

[43–45].

Differentially methylated regions showing tissue-invariant

DS-DM are enriched in CTCF and MEF2 sites

While the majority of DS-DM loci are cell type-specific,

there is some overlap between the DS-DM gene sets for T

lymphocytes and brain cells. The lists of these “overlap

genes”, including examples such as BRCA1, CPT1B, and

STK19 that have very strong DS-DM, are in Table S14 in

Additional file 2. The differentially methylated regions for

this group of tissue-invariant DS-DM genes are enriched

in CTCF and MEF2 binding motifs (Tables 1 and 2; Table

S13b in Additional file 2). CTCF mediates transcriptional

insulation and plays a role in brain and lymphocyte devel-

opment [46–49]. It binds preferentially to unmethylated

sequences and is implicated, along with other DNA bind-

ing proteins, in the maintenance and formation of low

methylated regions, suggesting that reduced CTCF occu-

pancy might account, at least in part, for these tissue-

invariant hypermethylated DS-DM loci [34, 50–52]. As

the number of tissue-invariant DS-DM CpGs is small, this

finding cannot reflect a genome-wide deficit in CTCF or

MEF2; rather, it seems likely that the local sequence

Table 1 TFBS enrichment analysis points to altered TFBS occupancy as a mechanism underlying some examples of tissue specific

and tissue-invariant DS-DM

Cell type Best match HOMER alignment
score

Percentage of
DS-DM CpGs
(n = 419)

Percentage of
background CpGs
(n = 437,650)

P value Enriched TF peaks among HOMER
motif instances in ENCODE ChipSeq
data (p< 0.05 and OR≥ 1.5)

T cell hypomethylated RUNX 0.79 25.3 11.0 1.00E-15 RUNX

T cell hypomethylated BATF::JUN (FOS) 0.948 21.0 7.9 1.00E-16 FOS/JUN

Top ranked TFBSs from HOMER de novo motif searches, showing a strong enrichment among T-cell hypomethylated loci in DNA sequences with a high alignment

to RUNX and JUN/FOS consensus motifs, validated by a finding of enrichment in RUNX and JUN/FOS binding peaks in ChIPSeq data from ENCODE. The full de

novo motif search results for all DS-DM sets are in Table S14a in Additional file 2. OR odds ratio
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context of each CTCF or MEF2 site plays a role in produ-

cing these DS-DM loci, probably through combinatorial

interactions with other DNA binding proteins.

The epigenetic signature of human DS brain cells is

partly recapitulated in brains from Dp(10)1Yey and

Dp(16)1Yey mice

Although the above analyses point to altered TFBS occu-

pancy and subsequent altered CpG methylation patterns

as a mechanism underlying DS-DM, manipulative exper-

iments to test this and other mechanisms will require

animal models. Such models have been constructed in

mice by chromosome engineering [53]. Two of these

lines, Dp(10)1Yey and Dp(16)1Yey, contain duplications

of the regions of mouse chromosomes 10 and 16 that

have conserved synteny with human chromosome 21.

Using genomic DNAs from newborn whole cerebral

hemispheres from mice with each of the murine sub-

chromosomal duplications and from a littermate wild-

type (wt) mouse, we carried out WGBS to ≥28-fold

mean depth. To confirm trisomy in the regions span-

ning chr10:76207226–78464948 in Dp(10)1Yey and

chr16:75540514–97962621 in Dp(16)1Yey in the se-

quenced DNA samples, we computed the ratio of the

coverage between each of the two partial trisomy

mice and their wt littermate, after normalization by

the total number of reads mapping to these chromo-

somes. As shown in Figure S22 in Additional file 1,

this procedure revealed the expected gains of DNA

copy number mapping precisely to the engineered

duplicated regions. In contrast, the ratios of CpG

methylation showed no obvious differences across the

duplicated genomic regions, suggesting the absence

of dosage compensation-like effects (Figure S22 in

Additional file 1). This result was confirmed when

comparing methylation between the duplicated and

not duplicated genomic regions of chromosome 10

and 16 in each mouse (Figure S23 in Additional file 1).

Examining all chromosomes, Dp(10) mouse cere-

brum shows a mild global hypermethylation com-

pared with the control mouse cerebrum (∆fractional

methylation = +0.0017), while Dp(16) shows a mild

global hypomethylation (∆fractional methylation = −0.01)

(Figure S24 in Additional file 1).

Next, we searched for strong gene-specific differences

in CpG methylation patterns between the Dp(10)1Yey,

Dp(16)1Yey and wt brains, asking whether alterations in

these patterns might partly mimic the findings in human

DS brains. Paralleling the human findings, ... hyper-

methylated CpGs in Dp(10) and Dp(16) compared with

control mouse were slightly enriched in CGIs, CGI

shores and gene bodies but under-represented in pro-

moter regions. Hypomethylated CpGs in Dp(10) and

Dp(16) were modestly enriched in CGI shores and gene

bodies but under-represented in CGIs and promoter re-

gions (Figure S24 in Additional file 1). We next com-

pared the mouse WGBS data with DS-DM in our

human array-based data, only considering CpGs in gen-

omic windows corresponding to the regions covered by

the Illumina 450K BeadChips. Of 299,267 such CpGs

that could be mapped to the mouse genome, 25,333

and 25,960 were found in 1-kb windows with at least

one DM CpG, including 55 % and 61 % CpGs with gains

of methylation in Dp(16)1Yey and Dp(10)1Yey brains, re-

spectively, compared with the wt control brain. When

considering only methylation changes with the same dir-

ection in human and mouse, these windows encompassed

53 % of all human DS-DM genes identified in neurons or

glia (absolute methylation changes > 0.15 and p value <

0.005), which reflected a 1.9-fold enrichment of

Dp(10)1Yey and Dp(16)1Yey DM genes in human

DS-DM genes (p = 2.5 × 10−28 and 1.5 × 10−24, respect-

ively; Table S15 in Additional file 2). For human DS-

DM genes present in both neurons and glia, the enrich-

ment in mouse DM genes was even stronger (2.5-fold en-

richment, p = 2 × 10−6 for dp10 and 2.3-fold enrichment,

Table 2 TFBS enrichment analysis points to altered TFBS occupancy as a mechanism underlying some examples of tissue-specific

and tissue-invariant DS-DM

Loci with DS-DM shared across
multiple tissues

Encode
motifs

Odds ratio
(enrichment)

P value FDR Count in
DS-DM CpGs

Count in
background

Percentage of
DS-DM CpGs

Percentage of
background CpGs

54 DS_DM CpGs shared by all
brain tissues and cell types:
hypermethylated set
(diff. > 0.15, p > 0.005)

CTCF_ext 8.03 1.09E-09 6.65E-08 10 6989 14.29 2.04

MEF2 22.33 1.75E-09 6.65E-08 4 933 5.71 0.27

CTCF 2.34 0.0015 0.039 19 47,093 27.14 13.72

USF 2.66 0.035 0.67 5 9661 7.14 2.81

47 DS-DM CpGs shared by all
tissues and cell types (including
T cells): hypermethylated set
(diff. > 0.15, p < 0.005)

CTCF_ext 9.09 1.57E-10 1.20E-08 10 6989 15.87 2.04

MEF2 24.98 5.10E-10 1.94E-08 4 933 6.35 0.27

CTCF 2.32 0.0030 0.075 17 47,093 26.98 13.72

USF 2.98 0.019 0.37 5 9661 7.94 2.81

TFBS enrichment among loci with DS-DM shared across multiple tissues, showing a strong enrichment in CTCF binding motif instances (as identified in ENCODE)

in 200-bp windows containing the DS-DM CpGs. For the full TFBS enrichment results in all DS-DM sets see Table S14b in Additional file 2
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p = 4 × 10−5 for dp16; Table S15 in Additional file 2) with

63 % of these DM genes concordantly affected in either

Dp(10)1Yey or Dp(16)1Yey.

Importantly, as we increased the stringency for calling

DM in the mouse data, either by ranking each gene for

the strength of DM using a composite confidence score

based on the geometric mean of the median of differen-

tial methylation (DM) across all significant DM CpGs,

and the number of DM CpGs in the window (data not

shown), or by requiring progressively more stringent

Fisher exact test p values for DM at each CpG (Fig. 4;

Figure S25 in Additional file 1) we observed a progres-

sive and highly significant enrichment in human DS-DM

genes among the mouse DM genes. Again, while the

DM gene sets in Dp(10)1Yey and Dp(16)1Yey were only

partly overlapping, a significant enrichment for human

DS-DM genes was found in both sets (Fig. 4; Figure S25

in Additional file 1), suggesting that genes in both of the

duplicated regions participate in bringing about the net

downstream epigenetic response. A second parallel be-

tween the human and mouse data is in Fig. 4c, which

shows using the stringent approach that the brains from

both mouse models have more gains than losses of

methylation in the genomic windows corresponding to

the human 450K arrays, with this bias toward gains be-

ing strongest in Dp(10)1Yey.

Given that the profiling methods utilized were differ-

ent (WGBS for mouse and 450K BeadChips for human),

and that neither of the two partial trisomy models recap-

itulate the entire human chromosome 21, these results

in Dp(10)1Yey, Dp(16)1Yey and human DS are impres-

sively concordant. Moreover, additional parallels were

seen by “zooming in” on specific DS-DM loci and com-

paring the maps of DM between the mouse models and

the human brain cells and tissues. As shown by the two

examples in Fig. 5 and the five additional examples in

Figures S26–S28 in Additional file 1, some of these loci

(STK19, MZF1, FAM83H, LRRC24, PCDHGA2) showed

methylation changes paralleling the human data in

both Dp(10)1Yey and Dp(16)1Yey brains while other

loci ( CPT1B, CELSR3) showed changes at some posi-

tions within the gene that parallel the human data in

only one of the two mouse lines. Comprehensive

maps of the WGBS data for several of the above featured

genes, showing the locations of the DM CpGs with re-

spect to high-, intermediate- and low-methylated CGIs,

are in Figures S29–S31 in Additional file 1.

Discussion
The etiology of DS, namely the extra copy of chromo-

some 21, is well established, but the pathogenesis of the

major phenotypes in this syndrome is still not fully

understood. Findings in mouse models have implicated

increased dosage of several chromosome 21-linked

genes, including DYRK1A, RCAN1, and SYNJ1, in the

neurocognitive phenotype (reviewed in [54, 55]), but

mechanisms beyond simple gene dosage likely also come

into play. Candidates include gene–gene interactions

leading to perturbations of transcriptional networks, and

epigenetic changes including altered DNA methylation

that might contribute to, or alternatively partly compen-

sate for, these network perturbations.

We previously showed that Ts21 leads to changes in

CpG methylation in a set of about 100 genes in periph-

eral blood cells of adults with DS [1]. More recently a

similar phenomenon of epigenetic alterations, affecting a

different set of genes with a few overlaps, was found in

placentas from DS [2]. Here we have taken this approach

in a series of brains from adults (cerebrum and cerebel-

lum) and fetuses (cerebrum) with and without Ts21,

supplemented by data from DS and control T lympho-

cytes. Our results show that there is indeed a recurrent

epigenetic response to Ts21 both in neurons and in non-

neuronal (mostly glial) brain cells, with predominantly

gains of CpG methylation in discrete sets of genes on

various chromosomes. Our approach of separating neur-

onal from non-neuronal cell nuclei turned out to be cru-

cial for identifying neuron-specific DS-DM loci, and

different anatomical regions of the brain showed only

partly overlapping sets of DS-DM genes. Based on our

data from the fetal brains, many of the epigenetic

changes are initiated early in brain development and

affect developmentally regulated genes.

Among the genes with DS-DM in DS neural cells is

a high percentage with roles in brain development or

function, while many of the DS-DM genes in T cells

have important roles in lymphocytes. Members of the

neuroligin protein family are essential for synapse for-

mation, with NLGN2 being expressed at GABAergic

synapses in the hippocampus. In mice this gene is

implicated in behavior [55], and it and other neuroli-

gin genes are implicated in human psychiatric disor-

ders and intellectual disability [56–59]. PCDHGA2

encodes a protocadherin family member, with a possible

role in dendrite development [23, 60] and CELSR3 en-

codes a protocadherin-related protein necessary for cor-

rect neuronal connectivity [20–22]. Additional genes with

DS-DM in brain cells include BRCA1, which has been

shown to be genetically essential for brain development

[61, 62], and SYNJ2, encoding a lipid phosphatase that

modulates vesicle trafficking and is associated with cogni-

tive abilities in humans [63]. The HTR2A gene codes for a

serotonin receptor and is associated with behavioral traits,

schizophrenia and depression [64], KCNAB3 encodes a

subunit of a voltage-sensitive potassium channel, and

SPNS1 codes for the Spinster-1 protein implicated in

apoptosis in the Drosophila central nervous system

[65, 66]. Among the genes with DS-DM in fetal DS
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brains are several of the above, plus AMIGO3, encod-

ing a membrane protein essential for correct axon

tract development [19], BRSK2, encoding the SAD1B

kinase that plays a role in polarization of cortical neurons

[67, 68], CYTH2, coding for an Arf6 guanine-nucleotide

exchange factor, cytohesin-2, with a role in neurite exten-

sion [24], and GLI4, which is known to be expressed in

the brain based on microarray data [25] and, by analogy to

the other GLI family members, is predicted to control cell

differentiation.

The STK19 gene encodes a widely expressed nuclear

serine/threonine kinase involved in cell signaling and

regulation of cell proliferation [69]. The MZF1 gene

encodes a zinc finger TF (myeloid zinc finger 1) that

regulates granulopoiesis [70]. However, MZF1 is also

expressed in the brain and there is some evidence sug-

gesting a role in AD [71–73]. Membrane proteins

encoded by genes in the leucine-rich repeat family, rep-

resented in the DS-DM genes by LRRC24 and LRRC14,

have roles in synaptic function, and both are expressed

in the brain [74]. Regarding the AMH gene, with DS-DM

in cerebral and cerebellar cortex, circulating anti-

Mullerian hormone levels correlate to performance on

social aptitude tests among individuals with autism

spectrum disorder [75], and sex-dependent cognitive

phenotypes have been demonstrated in DS [76]. AMH

may also regulate the number of Purkinje cells in the

cerebellum [77]. The GLI2 gene, encoding a TF in the

sonic hedgehog pathway, is likewise biologically rele-

vant, as Shh is vital for specification of the cerebel-

lum early in development, and post-natal treatment

with an Shh agonist ameliorated the aberrant cerebel-

lar morphology observed is Ts65dn mice [78]. Lastly,

three members of the ephrin-A gene family, EFNA2,

EFNA3 and EFNA5, which code for neural signaling

receptors, showed strong DS-DM in DS versus con-

trol cerebellar cortex.

DNA methylation patterns change rapidly in fetal de-

velopment [79] and can also change as mature tissues

age [80]. Moreover, DS has been associated with some

aspects of premature aging in adults [81, 82]. Our data

here point to early maturation of CpG methylation pat-

terns in DS brains, as well as in T lymphocytes, without

hypermaturation of these patterns and without accelerated

methylation aging. Our conclusions in this regard differ

from Horvath et al. [83], who used 450K BeadChips to

compare CpG methylation patterns in unfractionated

cerebral cortex samples from four DS versus 17 control

brains and concluded that DS is associated with acceler-

ated epigenetic aging. A discussion of possible reasons for

this difference is in Additional file 3. The early maturation

that we have described here differs from that seen in aut-

ism and other forms of intellectual disability, where brain

hypermaturation has been raised as a hypothesis [84–87],

but it suggests that future studies might productively

search for differences in the rate of maturation of neur-

onal axons, dendrites and synapses in DS brains.

In a broad perspective, our data begin to shed light on

mechanisms leading to epigenetic changes downstream

of chromosomal aneuploidies or duplications. In terms

of timing, we have shown that the DS-DM begins early,

already being partly established in fetal DS brains at

mid-gestation. With regard to the cis- or trans-acting

signals that might account for the observed patterns of

DS-DM, while a genome-wide analysis of patterns of

histone modifications in cells with Ts21 demonstrated

low-level perturbations over large sub-chromosomal do-

mains [88], the altered CpG methylation that we have

described here is localized to specific regulatory se-

quences. Consistent with this finding of highly localized

epigenetic changes, our results both in T cells and in

brain cells suggest a role for altered transcriptional net-

works and altered TFBS occupancy downstream of Ts21

in shaping the patterns of DS-DM. In fetal brains the

(See figure on previous page.)

Fig. 4 Parallels between DS-DM in humans and DM in chromosome-engineered mouse models of DS. a In the mouse WGBS data each

1-kb genomic window corresponding to all evaluable regions queried by the human 450K arrays was evaluated for DM using stringent

criteria employing Fisher exact tests at the individual CpG level (see "Materials and methods"). Using these sets of DM loci, we asked

whether the human DS-DM genes identified in our comparisons between DS and control human brain cells (neurons and/or glia) were

statistically enriched among the mouse DM genes. Although the number of DM genes decreases with increasing stringency, there is a

progressive relative enrichment for human DS-DM gene orthologues in the mouse DM gene sets as the stringency requirements for DM

in the mouse data are increased. The p values for enrichment using the combined Dp(10)1Yey and Dp(16)1Yey data at the indicated

stringency levels are from hypergeometric tests. Highly significant enrichment for human DS-DM genes was also seen separately in both

the Dp(10) and Dp(16) DM gene sets (respectively, p = 1.5 × 10−27 and 2.5 × 10−27 at 0.05 stringency level and p = 7.1 × 10−9 and p = 3.2 × 10−5 at the

0.005 stringency level). b The Venn diagram on the left shows that a substantial group of human DS-DM genes (31 %) show DM at orthologous

genomic locations in the mouse models, using a Fisher exact test p value of 0.05 as the criterion for DM of individual CpGs in the mouse data, and that

there is only partial overlap between the DM gene sets found in Dp(16) and Dp(10). The Venn diagram on the right shows the genes that overlap

when a more stringent p-value is applied to the WGBS data. c Stacked bar graphs showing the relative frequencies of gains (dark grey) and losses

(light grey) of methylation in the two mouse models, compared with wt, for CpGs corresponding to the regions covered by the human 450K arrays.

Paralleling the situation in human brains, both mouse models show preferential gains of methylation (above the dashed line), with this effect being

stronger in Dp(10) than in Dp(16)
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DS-DM occurs frequently in sequences that contain

binding motifs for TFs that are essential for brain devel-

opment, while in T cells the DS-DM loci show enrich-

ment for TF binding sites involved in blood cell

differentiation. Intriguingly, the highest enriched TFBS

for T-cell DS-DM, the RUNX1 motif, is a binding site

for the RUNX1 TF that is encoded on chromosome 21

and known to be over-expressed in DS. This situation

supports a working hypothesis in which Ts21 leads to al-

tered transcriptional networks that produce altered

TFBS occupancies, which in turn lead to DS-DM (Fig. 6).

Lastly, the DS-DM in glial cells occurs preferentially in

promoters and enhancer regions that start development

in a poised or “bivalent” chromatin state, as indicated by

polycomb repressive marks overlapping with activating

marks in embryonic stem cells, suggesting that the

mechanism for gains of methylation in DS glia may have

parallels with that in human gliomas [89, 90].

In addition to the altered TFBS occupancy model, a

competing but not mutually exclusive hypothesis is one

in which altered dosage of chromosome 21-linked epi-

genetic regulator genes, such as those encoding the

DNA methyltransferase binding partner DNMT3L and

folate pathway enzymes such as cystathionine beta-

synthase (CBS) and the folinic acid transporter

(SLC19A1), might play a role [91]. Over-expression of

these genes might underlie the early maturation of

methylation patterns that we have observed, and the

trend toward hypermethylation in brain tissues. In this

regard, a key finding in our study is that the epigenetic

signature of human DS brain cells is partly but signifi-

cantly recapitulated in brains from Dp(10)1Yey and

Dp(16)1Yey mice. Of 175 conserved genes on human

chromosome 21, a total of 41 are duplicated in

Dp(10)1Yey and 115 are duplicated in Dp(16)1Yey. We

have found here that the patterns of DM are not identi-

cal in these two mouse lines, but that both models show

statistically significant similarities with human DS-DM,

and that both show a trend toward hypermethylation of

the DM genes, which is stronger in Dp(10) than in

Dp(16). Dnmt3l and some of the Chr21-linked methyl

donor pathway genes map to the Dp(10) duplicated re-

gion. However, since numerous DM loci were also de-

tected in the Dp(16) brain, we conclude that multiple

genes on chromosome 21, mapping both to the Dp(10)

and to the Dp(16) syntenic regions, play a role in the

phenomenon (Fig. 6). The Dp(10)1Yey and Dp(16)1Yey

lines are elegant models in that they have precisely de-

fined sub-chromosomal duplications, and in future work

it should be possible to use combinations of these

duplications with single gene knockouts to dissect the

importance of specific chromosome 21-linked genes in

producing the downstream epigenetic response. Other

models, including mice with free chromosomal aneu-

ploidies, not internal duplications, will also need to be

examined.

Last but not least, although DS-DM is a consistent

(recurrent) phenomenon in tissues of people with DS,

there is intra-group variability among the DS cases (see

the heat maps in Fig. 1). Given the well-known case-to-

case variability in the severity of every DS-associated

clinical phenotype, this intra-group variability in DS-DM

is intriguing. Clinical correlations in large case–control

series and experiments in the genetically manipulable

mouse models will be needed to answer whether DS-DM

contributes to, or alternatively partly ameliorates, the ad-

verse effects of Ts21. Since we have shown here that the

epigenetic signature of human DS brain cells is partly re-

capitulated in mouse models, such studies should now be

feasible.

Conclusions

These data from extensively validated high resolution

profiling of differential CpG methylation in DS versus

control brain cells and tissues and T lymphocytes

include tissue-specificity of the DS-DM, onset of a

(See figure on previous page.)

Fig. 5 Gene maps showing parallels between DS-DM in humans and DM in the chromosome-engineered mouse models. a Maps of the STK19/Stk19

genes and their flanking genes in human and mouse. A cluster of CpGs between STK19 and DOM3Z is concordantly hypermethylated in

human brain cells and in both Dp(10)1Yey and Dp(16)1Yey (solid rectangles). At other locations some differences in methylation patterns

are seen between Dp(10)1Yey and Dp(16)1Yey (dashed rectangle). For the human data, the values for all CpGs with a significant difference

in methylation between DS and controls (C; uncorrected p < 0.05) are shown. For the mouse data, DM CpGs were defined as CpGs with > 15 %

difference in methylation and with at least two other DM CpGs with the same direction of methylation change, within 1-kb windows. Only CpGs in

1-kb genomic windows at positions orthologous to those queried by human 450K arrays are considered. The mouse maps span 975 CpGs with WGBS

depth > 20× in this chromosome region; of these, 22 showed DM by the above criteria. The (a) and (b) clusters of DM CpGs remain significant after

applying additional Wilcoxon p value criteria (p < 0.05) across the cluster. b Maps of the CELSR3/ Celsr3 genes and their flanking genes in human and

mouse. For the human data, the values for all CpGs with a significant difference in methylation between DS and controls (uncorrected p < 0.05) are

shown. A cluster of CpGs in the promoter region of CELSR3 is concordantly hypermethylated in human brain cells and both Dp(10)1Yey and

Dp(16)1Yey, as is a cluster in the Ip6k2 gene (solid rectangles). Additionally, in the first exon of Celsr3 concordant hypermethylation is observed for

Dp(16)1Yey, while hypomethylation is present in Dp(10)1Yey (dashed rectangle). The mouse maps span 2125 CpGs with WGBS coverage > 20× in this

chromosome region; of these, 34 showed DM. Each of the boxed clusters of DM CpGs remains significant after applying additional Wilcoxon p value

criteria (p < 0.05)
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component of DS-DM at the fetal stage, a contribution

from 5hmC, and altered mRNA expression (DS-DE) of a

subset of the DS-DM genes. Enrichment analysis shows

that CpGs in specific classes of transcription factor bind-

ing sites, and CTCF sites, are preferentially affected, im-

plicating altered binding site occupancy as a mechanism

shaping the tissue-specific patterns of differential methy-

lation. Whole genome bisulfite sequencing of brain

DNA from mouse models of DS reveals alterations in

CpG methylation patterns that partially but significantly

parallel those in human DS brains and implicate mul-

tiple causal genes. These findings point to novel bio-

logical mechanisms in DS and have general implications

for trans effects of chromosomal duplications and aneu-

ploidies on epigenetic patterning.

Materials and methods

Adult and fetal brain tissues, isolation of neuronal and

glial cell nuclei, and isolation of peripheral blood T cells

The tissue samples used in this study are listed in Table

S1 in Additional file 2. Cryopreserved FC grey matter

(Brodmann area BA9 or superior portion of BA10) from

autopsies of 15 adult DS cases (seven females and eight

males) and 12 controls (eight females and four males), as

well as 13 DS cerebellar cortex samples (five females and

eight males) and ten normal cerebellar cortex (five

females and five males) from the same autopsy brains,

were collected in the brain bank of the New York State

Institute for Basic Research in Developmental Disabilities

(NYSIBR). In addition, we utilized BA9 samples from

three LOAD cases (three males) from the New York Brain

Bank at Columbia University. From these brains, the sam-

ples used for each type of molecular analysis are in Table

S1 in Additional file 2. For the FC samples, the median

age was slightly higher in the control group (64 years in

non-AD controls versus 57 years in the DS cohort), but

the mean ages of the two groups were not significantly dif-

ferent (p = 0.15). The cerebellum cases and controls were

likewise well matched for age (Table S1 in Additional file

2). Fetal brain whole cerebrum from DS cases (four fe-

males and four males) and controls (three females and

three males) from mid-gestation terminations of

Fig. 6 Summary of the main findings in this study. The known methylation pathway genes on chromosome 21 are taken from Blehaut et al. [106]. The

small gap between the Dp(16) and Dp(10) regions represents the small part of human chromosome 21 that shows conserved synteny to mouse

chromosome 17
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pregnancy cryopreserved in the Biobank at the Institute of

Child Health, University College of London were well

matched for gestational age (median 15 weeks for DS and

14 weeks for controls; Table S1 in Additional file 2). In

addition, there was no statistical difference in sex distribu-

tion in DS and control groups (Chi2 p value > 0.5).

To obtain neuronal and glial cell nuclei from the adult

DS and control brain tissues, 0.25 to 0.5 g of frozen tis-

sue was homogenized on ice for 1 min. The tissue hom-

ogenate was then layered over a 60 % sucrose cushion

and centrifuged at 28,500 rpm for 2.5 h at 4 °C, as de-

scribed [92]. The pellet consisting of total cell nuclei was

recovered and incubated with anti-NeuN-Alexa 488 con-

jugated antibody (Millipore MAB377X) for 1 h at 4 °C

prior to FACS on a BD FACSAria cell sorter. Both neur-

onal enriched NeuN-positive and glial enriched NeuN-

negative samples were recovered. Enrichment of NeuN-

positive nuclei was confirmed (Fig. 1b) by using an ali-

quot post-FACS for cytospin preparations, which were

visualized by immunofluorescence, with nuclei counter-

stained by TO-PRO-3 (Invitrogen). High molecular

weight DNA was prepared from flow sorted nuclei by

standard SDS/proteinase-K lysis followed by precipita-

tion in 80 % isopropanol with glycogen as a carrier.

CD3-positive T lymphocytes were isolated from periph-

eral blood of 11 DS adults and ten age-matched control

adults, by antibody-based negative selection (RosetteSep

T cell kit, Sigma). The male/female ratio was close to

50:50 and was the same for DS cases and controls (Table

S1 in Additional file 2). Ts21 was confirmed by DNA copy

number analysis (Figure S2 in Additional file 1) for all

samples.

DNA methylation profiling (5mC and 5hmC) on Illumina

BeadChips

The amount and integrity of genomic DNA was assessed

by gel electrophoresis and by PicoGreen® double-stranded

DNA quantification assays (Life Technologies). DNA

(500 ng) was bisulfite converted and analyzed according

to the manufacturer’s instructions for Illumina 450K

BeadChips, with all assays performed at the Roswell

Park Cancer Institute Genomics Shared Resource. The

BeadChip-based methylation assays entail bisulfite

conversion of the genomic DNA followed by primer

extensions to query the percentage methylation at

each 485,000 (450 K) CpG dinucleotides, covering se-

quences in and around promoter-associated and non-

promoter-associated CGIs, as well as many non-island

promoter regions, associated with 99 % of RefSeq

genes. Data were processed using Genome Studio

software, which calculates the percentage methylation

(AVG_Beta) at each CpG queried by the array, after

background correction and normalization to internal

controls. All probes mapping on the X or Y

chromosome were removed along with those probes

querying CpGs that overlapped common SNPs (with

minor allele frequency ≥ 1 % in dbSNP build 138).

Poorly performing probes with missing values (AVG_-

Beta detection p value > 0.05) in more than one sam-

ple per subgroup were filtered out. We corrected for

batch effect in the filtered probe sets using the Com-

Bat R package [93, 94], separately by tissue and cell

type, including disease status in the adjustment model

as an explanatory covariate. Batch effects were small

overall and the batch correction had a modest effect

on the DM gene lists; in comparing the lists of DM

genes (FDR < 0.05 and absolute difference in mean

AVG_Beta > 0.15) obtained with and without batch

correction, ≥90 % of the genes detected as showing

DM without batch correction were also detected after

batch correction. The batch correction did, however,

increase the number of genes and CpGs passing our

statistical threshold by from 15–20 % in the several com-

parisons. To assess DNA copy number we used the inten-

sity values from the 450K arrays, after normalization and

model-based expression in dChip [95].

We further analyzed 12 DNA samples on the 450K

BeadChips using an adaptation of the Illumina probe

preparation protocol, in which the use of a modified bi-

sulfite conversion procedure (BS/OXBS; Cambridge Epi-

genetics, CEGX), starting with 4 μg of genomic DNA, as

the first step allows the relative contributions of 5mC

and 5hmC to net methylation to be determined. This kit

has not yet been fully optimized for compatibility with

the Illumina arrays, leading to weaker signals. Nonethe-

less, when we filtered the resulting data by requiring that

the probes pass a detection p value ≤ 0.005 in Genome

Studio, and removing probes on the X and Y chromo-

somes and probes querying polymorphic CpGs, 380K

useful probes remained.

Standard bis-seq for 5mC and modified bis-seq for 5mC

and 5hmC

Genomic DNA (500 ng) was bisulfite-converted using

the EpiTect Bisulfite Kit (Qiagen). Sequences spanning

the DM CpGs were amplified by PCR, using primers de-

signed in MethPrimer [96]. Due to constraints in primer

design, in one case the PCR amplicon used to validate

an array finding was immediately adjacent to the DM

probe (Illumina ID cg25468618); all other DM CpGs

from the BeadChip data were included within the bis-

seq amplicons. To evaluate the relative contributions of

5mC and 5hmC to DM at several loci, we used the True-

MethylTM6 kit (CEGX), according to the instructions of

the manufacturer, starting with 2 μg of DNA. This

chemical conversion-based approach uses bis-seq of

multiple clones to separately score 5mC-only and 5mC

+ 5hmC, so that the percentage contribution of 5hmC to
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net methylation at each CpG can be inferred from the

difference. The PCR products were cloned using the

TopoTA Cloning System (Invitrogen). For standard bis-

seq at least ten independent clones were sequenced for a

given amplicon and DNA sample, and for modified bis-

seq we sequenced at least 14 clones for each amplicon

and DNA sample under the 5mC-only and 5mC + 5hmC

conditions. Primer sequences, amplicon characteristics

and corresponding unconverted genomic sequences are

in Table S16 in Additional file 2.

Expression analysis of mRNA by Q-PCR

RNA was isolated using TRIZOL reagent (Invitrogen). In

contrast to the intact genomic DNA, based on BioAnaly-

zer profiles the brain RNA samples showed moderate to

severe degradation, with RNA integrity number (RIN)

values ranging from 6 to 3. Total RNA was reverse tran-

scribed with SuperScript® III First-Strand Synthesis

Reverse Transcriptase (Life Sciences), with priming using

a mixture of oligo-d(T) and random hexamers. Q-PCR

was performed in triplicate in 96-well optical plates and

repeated twice within independent cDNA sets. Each re-

action contained 1× Power SYBR Green PCR master

mix (Applied Biosystems) and 0.2 μM of each specific

primer pair, which were designed using online Real Time

PCR tool (IDT). Q-PCR was performed using a 7500

Fast Real-Time PCR System (Applied Biosystems), or a

StepOnePlus instrument (BioRad), with an initial

denaturation for 10 min at 95 °C, primer annealing at

50 °C for 2 min, followed by 40 cycles of 15 s at 95 °C

and 1 min at 60 °C. The relative expression of target

genes was calculated by the delta-CT method as de-

scribed [97], with normalization using the GAPDH

housekeeping gene, and these results were checked for

consistency using a second housekeeping gene, HPRT.

Despite the low RIN values, the average Ct values

were <30 for each of the assayed genes using tenfold

dilutions of the SuperScript-generated cDNA prepara-

tions, and the GAPDH and HPRT housekeeping gene

controls showed Ct values <22 and <29 respectively,

for all samples. Q-PCR primer sequences are in Table S17

in Additional file 2.

PCA, identification of DS-DM loci, and tests for association

of DS-DM with histone marks and DNA sequence motifs

Our strategy for bioinformatics is outlined in Figure S1a,

b in Additional file 1. After filtering and batch effect cor-

rection, unsupervised hierarchical clustering, correlation

heatmap, and PCA were performed on AVG_Beta

(fractional methylation) values. Loci with recurrent

DM were identified applying an absolute difference

and Student’s t-test p value criteria (absolute methyla-

tion difference ≥ 0.15, unadjusted p value ≤ 0.001 cor-

responding to a FDR < 0.008, 0.041, 0.023, 0.055, and

0.031 for adult cerebellum, FC, glia, neurons, and T

cells, respectively, and FDR < 0.27 for fetal FC; Tables

S3–S7 in Additional file 2). Supervised hierarchical

clustering using dChip [95], and subsequent enrichment

analyses, were carried out using these thresholds. Multi-

variate linear regression was used to control for sex effects

(Tables S3–S7 in Additional file 2). To ask whether the

DM CpG sites were preferentially associated with specific

types of histone modifications, we used data from EN-

CODE, as curated on the UCSC Genome Browser (http://

www.genome.ucsc.edu/) [98, 99] and data from Zhu et al.

[100] (GSM733758, GSE17312). Probes from the 450K

arrays which overlapped with H3K4me1, H3K4me3,

H3K27me3 and H3K27ac peaks in human embryonic

stem cells (H1-hESC), human astrocytes (NH-A), human

umbilical vein endothelial cells (HUVEC), and human

neurons derived from H9-hESC were identified by their

genomic positions. We categorized peaks as marking

active promoters (H3K4me3 peaks alone), poised or

“bivalent” promoters (overlapping H3K4me3 and

H3K27me3 peaks), active enhancers (overlapping H3K4me1

and H3K27ac peaks), intermediate enhancers (H3K4me1

peaks alone), and poised enhancers (overlapping H3K4me1

and H3K27me3 peaks) as described by Zentner et al.

[101]. Enrichment of each regulatory element in DM

loci compared with non-DM loci was assessed using

hypergeometric tests. All analyses were performed

using STATA v.12 software (StataCorp, LP). To deter-

mine whether the DM CpG sites were preferentially

associated with specific TFBS motifs, we used the

Hypergeometric Optimization of Motif Enrichment

(HOMER) motif discovery tool (http://biowhat.ucsd.edu/

homer/ngs/index.html) and performed de novo motif

searches with the default settings: background selec-

tion matched on percentage GC content, percentage

GC content normalization, oligo auto-normalization,

regions for motif finding set as 200-bp windows cen-

tered on CpG sites. The background was calculated

in 200-bp windows centered on all CpGs queried by

the 450K arrays, excluding CpGs on chromosome X

or Y and mapping common SNPs. Motif enrichment

(target versus background) was calculated using the

cumulative binomial distribution. Best match to JAS-

PAR TF motifs was kept only if the alignment score

was >0.6. When the same DS-DM loci accounted for

several de novo motifs, only the strongest motif was

kept. De novo motif instances were then overlapped

with TF ChIP seq peaks (data from the ENCODE

project) and logistic regression was used to deter-

mine the strongest enriched TF peak for each de

novo motif. To assess enrichment for known TF mo-

tifs among DS-DM, known TF motifs (ENCODE)

within a 200-bp window centered on each CpG were

identified and logistic regression was carried out.
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GSEA and gene-annotation enrichment analysis

GSEA was carried out using the Broad Institute

GseaPreRank tool [102]. DM genes were ranked by

t-test p values; for genes covered by multiple probes,

the lowest t-test was used. The GSEA procedure on

ranked gene lists [103] was used to compute normalized

enrichment score and FDR. We tested all sets from C2

(Curated) and C5 (Gene Ontology) collections of the Mo-

lecular Signature Database (MsigDB, v.4.0), excluding

gene sets smaller than 15 and larger than 1000. The

significance level of FDR q-values was set at 0.05. Gene

annotation enrichment was assessed by overlapping the

DM gene list with the Uniprot tissue annotation and

Gene Ontology (GOTERM_BP_FAT, GOTERM_CC_FAT,

GOTERM_MF_FAT) database using the Database for An-

notation, Visualization and Integrated Discovery (DAVID

v.6.7; http://david.abcc.ncifcrf.gov) functional annotation

tool [104]. Fisher exact tests were corrected for mul-

tiple tests using the Benjamini-Hochberg method [105].

Tests for rate of maturation of methylation patterns and

rate of methylation aging

Using univariate analysis, we first identified two sets of

loci with developmental stage or age-dependent methy-

lation in control brains and T cells, i.e., CpGs with sig-

nificant differences in methylation within the fetal stage

of development or within adult aging, respectively. A

significant effect was defined as age p value < 0.05,

methylation changes > 0.1 per 10 weeks, and adjusted R

squared > 0.8 in fetal tissues. In adult tissues, methylation

changes were more subtle and we defined significance as

age p value < 0.05, and adjusted R squared > 0.8. Using

these panels of CpGs as an indicator of epigenetic matur-

ation and aging in brain and T cells, we tested for an effect

of DS status. After averaging fractional methylation across

these age-dependent CpGs, we carried out multivariate

linear regressions including fractional methylation as re-

sponse variable and disease status, age, and the interaction

term between disease status and age as explanatory covar-

iates. We also performed multivariate linear regressions

on each CpG, modeling the same covariates. In these

models, the disease status term reflects the difference at

baseline while the interaction term reflects the longitu-

dinal effect of the disease across age or developmental

stage. To assess differential aging effects between DS and

controls, CpGs with a differential aging effect were

defined for fetal data by adjusted R squared > 0.8, age

p value < 0.05, interaction p value < 0.05, and differen-

tial aging effect > 0.1 per 10 weeks, and for adult data

by adjusted R squared > 0.8, age p value < 0.05, inter-

action p value < 0.05. Graphing and linear regression

estimating the overall differential aging effects was

carried out by averaging the fractional methylation

across these CpGs.

Tests for correlations of DS-DM with tissue-specific mRNA

expression

Expression data from human FC (superior frontal gyrus)

were downloaded from the Allen Brain Atlas and aver-

aged over six normal brains. A Z score (−μ/sd) was cal-

culated for each probe, and expression at the gene level

was calculated by the median of the probes mapping to

the same gene. To compare gene expression between

brain and other tissues, data from BioGPS [25] were used

after Z score transformation to allow comparison between

arrays. We classified expression into four patterns: (i)

genes with brain-specific expression (Z-score ≥ 0.5 in the

brain only or in less than two additional tissues), (ii) genes

with brain-specific repression (Z-score ≤ −0.5 in the brain

only or in less than two additional tissues), (iii) genes with

other tissue-specific expression or repression (Z-score ≥

0.5 or ≤ −0.5 in less than three tissues, and not in brain),

and (iv) genes with a multi-tissue or pan-tissue expression

pattern (Z-score ≥ 0.5 or ≤ −0.5 in three or more tissues).

The distribution of these patterns within the hypermethy-

lated gene sets from our 450K data was compared with

the expected distribution using a Fischer exact test. The

expected distribution was estimated from a set of 15,213

genes for which expression data could be obtained from

both Allen Brain Atlas and BioGPS. For analyzing enrich-

ment of the DS-DM genes with regard to developmental

stage-specific expression, data generated using the ABI

Human Genome array from three technical replicates of a

normal fetal brain and three technical replicates of a nor-

mal adult brain were downloaded from the National Cen-

ter for Biotechnology Information (NCBI; http://

www.ncbi.nlm.nih.gov) Gene Expression Omnibus (GEO)

database (dataset GDS3011_GSE7905). For genes queried

by several probes, the averaged values were used. Expres-

sion was considered higher in fetal or adult brain when

p ≤ 0.05 using the t-test. The proportion of genes with

higher expression in fetal brain in our glial and neuron

DM gene sets was compared with the expected values

using the hypergeometric test. The expected distribution

was estimated from a set of 14,496 genes for which both

expression and methylation data were available.

5aza-dC treatment of human astrocytes

Low-passage normal human astrocytes (Clonetics-Lonza)

were purchased and cultured as per the manufacturer’s in-

structions. Cells were treated with varying concentrations

of 5aza-dC, added at day 0 and day 3, for four days prior

to harvesting for RNA isolation.

WGBS for assessment of differential CpG methylation

patterns in chromosome-engineered mouse models of DS

Genomic DNA (500 ng) from two chromosome-engineered

lines that are models of DS, namely B6;129S7-Dp(16Lipi-

Zbtb21)1Yey (abbreviated as Dp(16)1Yey) and B6;129S7-

Mendioroz et al. Genome Biology  (2015) 16:263 Page 22 of 26

http://david.abcc.ncifcrf.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


Dp(10Prmt2-Pdxk)2Yey (abbreviated as Dp(10)1Yey), after

backcrossing to B6 for four generations, as well as a normal

(wt) littermate, was bisulfite-converted using the EpiTect

Bisulfite Kit (Qiagen) followed by Nextgen sequencing (Illu-

mina HiSEQ; 100-bp paired-end sequencing). After

trimming of adaptor sequences and filtering out low

quality score (<30) reads using TrimGalore, Methyl-

Seq reads were aligned against the mouse genome

(Mm10) using Bismark v.0.8.2. Duplicated reads were

removed using Samtools (Samtools-0.1.19), and

methylation calling was carried out using Bismark

methyl extractor. After filtering, there were ≥1005

million mapable reads from autosomes in each of

the three samples, corresponding to a median cover-

age ≥28×. CpGs with less than 20× coverage were

filtered out as suboptimal for assessing DM. To con-

firm trisomy in the regions spanning chr10:76207226–

78464948 in Dp(10)1Yey and chr16:75540514–97962621

in Dp(16)1Yey, we computed the ratio of the coverage be-

tween trisomic and wt littermate mice, after normalization

by the total number of reads mapping to chromosomes 10

and 16, respectively.

Methylation differences between Dp(10)1Yey and wt

mice, as well as Dp(16)1Yey and wt mice were calculated

at the CpG level. For comparing CpG methylation pat-

terns between human and mouse, we first defined gen-

omic windows of 1 kb around all positions in the mouse

genome that matched that of the human CpGs from the

450K arrays. For this purpose, Illumina queried CpGs

coordinates were converted to mouse genome (mm10)

using the LiftOver tool. Next, at low stringency we de-

fined DM in the mouse models as at least one CpG with

a >15 % difference in fractional methylation compared

with wt, and at least two other DM CpGs with the same

direction of methylation change in the same 1-kb win-

dow. As a higher stringency definition of DM in a given

window we additionally required at least one CpG in the

window to show a statistically significant difference in

methylation, compared with that CpG in wt, by Fisher’s

exact test. This statistical approach is sensitive not only

to the magnitude and consistency of the differences in

methylation in a given window, but also to the depth of

sequencing (number of reads), and hence the confidence,

at each CpG position. To assess the enrichment for hu-

man DS-DM gene orthologues in the mouse data, the

percentage of overlapping human and mouse genes with

same direction of methylation changes was calculated

for increasingly stringent sets of mouse DM genes.

Significance of the enrichment was determined using

hypergeometric tests.

Data availability

The human and mouse methylation data sets are available

at NCBI’s GEO database (human 450K methylation

[GEO:GSE74486], mouse WGBS [GEO:GSE74505], super-

series dataset for human and mouse [GEO:GSE74519]).
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