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Abstract

For many complex traits, genetic variants have been found associated. However, it is still mostly unclear through which
downstream mechanism these variants cause these phenotypes. Knowledge of these intermediate steps is crucial to
understand pathogenesis, while also providing leads for potential pharmacological intervention. Here we relied upon
natural human genetic variation to identify effects of these variants on trans-gene expression (expression quantitative trait
locus mapping, eQTL) in whole peripheral blood from 1,469 unrelated individuals. We looked at 1,167 published trait- or
disease-associated SNPs and observed trans-eQTL effects on 113 different genes, of which we replicated 46 in monocytes of
1,490 different individuals and 18 in a smaller dataset that comprised subcutaneous adipose, visceral adipose, liver tissue,
and muscle tissue. HLA single-nucleotide polymorphisms (SNPs) were 10-fold enriched for trans-eQTLs: 48% of the trans-
acting SNPs map within the HLA, including ulcerative colitis susceptibility variants that affect plausible candidate genes
AOAH and TRBV18 in trans. We identified 18 pairs of unlinked SNPs associated with the same phenotype and affecting
expression of the same trans-gene (21 times more than expected, P,10216). This was particularly pronounced for mean
platelet volume (MPV): Two independent SNPs significantly affect the well-known blood coagulation genes GP9 and F13A1
but also C19orf33, SAMD14, VCL, and GNG11. Several of these SNPs have a substantially higher effect on the downstream
trans-genes than on the eventual phenotypes, supporting the concept that the effects of these SNPs on expression seems
to be much less multifactorial. Therefore, these trans-eQTLs could well represent some of the intermediate genes that
connect genetic variants with their eventual complex phenotypic outcomes.
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Introduction

For many complex traits and diseases, numerous associated

single nucleotide polymorphisms (SNPs) have been identified

through genome-wide association studies (GWAS)through ge-

nome-wide association studies (GWAS) [1]. For many of these

identified variants it is still unclear through which mechanism the

association between the SNP and the trait or disease phenotype is

mediated. A complicating factor is that disease-associated variants

might not be the real causal variants, but are in linkage

disequilibrium (LD) with the true disease-causing variant, making

it difficult to accurately implicate the correct gene for a locus in

disease pathogenesis.

Within the major histocompatibility locus (MHC) on 6p, many

SNPs have been found to be associated with complex diseases such

as celiac disease, inflammatory bowel disease, psoriasis, rheuma-

toid arthritis, diabetes mellitus, schizophrenia, lung cancer and

follicular lymphoma [2–10]. An analysis of the Catalog of

Published Genome-Wide Association Studies [1] revealed that

out of 1,167 unique SNP associations with a reported p,561027,

82 (7.0%) were located within the MHC (Fisher’s Exact p,10230).

Except for celiac disease [11] it remains largely unclear how MHC

variants increase disease susceptibility.

However, common variants have been identified that might

exert their function by altering gene expression rather than by

altering protein structure [2,12–16] (expression quantitative trait

loci, eQTLs). Comprehensive eQTL mapping (or genetical

genomics [17]) will enable us to assess for every known disease-

associated variant if it significantly affects gene expression. Genetic

variants that affect expression of genes that map in their vicinity

(cis-eQTLs) can potentially pinpoint the true disease gene from an

associated locus. In addition, genetic variants may also affect

expression of genes that reside further away or are on different

chromosomes (trans-eQTLs) [18]. These trans-eQTLs are especially

interesting, since they allow us to identify downstream affected

disease genes which were not implicated by GWAS studies at all,

and thereby potentially having the ability to reveal previously

unknown (disease) pathways.

In this study we performed a comprehensive eQTL mapping to

explore the downstream effects of SNPs on gene expression by

analyzing genotype and expression data of 1,469 unrelated samples.

In addition to a genome-wide analysis, we also performed a focused

analysis for disease- and trait-associated SNPs and SNPs located

within the HLA. We replicated the identified trans-eQTLs in a

collection of monocyte expression data and expression data from

subcutaneous adipose, visceral adipose, muscle and liver tissue.

Principal component analysis (PCA) enabled us to remove non-

genetic expression variation [19,20], resulting in increased power to

detect eQTLs. A stringent probe-mapping strategy was used to filter

out false-positive cis-eQTLs due to primer-polymorphisms and

false-positive trans-eQTLs due to cross-hybridizations. Furthermore,

a permutation strategy was utilized that corrects for multiple-testing,

while preventing potential confounders such as non-even distribu-

tion of SNP markers and expression probe markers across the

genome, differences in minor allele frequency (MAF) between

SNPs, linkage disequilibrium (LD) within the genotype data, and

correlation between expression probes.

Results

Cis- and trans-eQTL mapping
Results of a genome-wide eQTL analysis on 289,044 common

SNPs, present on the Illumina HumanHap300 platform in

peripheral blood expression data of 1,469 unrelated individuals,

are provided in Table 1, Table S1, Table S2, Figure S1

(controlling false discovery rate (FDR) at 0.05 using a permutation

strategy).

As reported before [21–25] we also observed that eQTLs are

strongly enriched for trait-associated SNPs (SNPs associated with a

trait or disease phenotype, as reported in the Catalog of Published

Genome-Wide Association Studies [1]): We therefore concentrat-

ed on these variants and imputed (Impute v2.0 [26]) additional

genotype data permitting us to test 1,167 trait-associated SNPs.

After removing false-positive eQTLs due to primer-polymor-

phisms and cross-hybridization 472 (40.4%) of these SNPs were

cis-eQTLs, affecting the expression of 679 different transcripts,

representing 538 genes (Figure 1, Table 1, Figure S2, Table S3).

67 (5.7%) SNPs were trans-acting on 130 different transcripts,

representing 113 genes (Table S4). Results on the number of

detected eQTLs per complex trait are provided in Table S5 and

Figure S3. For nearly all significant trans-eQTLs the effect was

present in each of the seven individual patient and controls

cohorts, making up the total dataset (Table S6).

These trans-eQTLs provide valuable insight on previously

unknown functional downstream consequences trait-associated

SNPs have, e.g. rs2395185 is the strongest susceptibility variant for

ulcerative colitis [27] (UC) but also the strongest SNP, trans-acting

on Acyloxyacyl hydrolase (AOAH, p = 1.0610236), an enzyme that

modulates host inflammatory responses to gram-negative bacterial

invasion. It is known that deficiencies in response mechanisms

against bacterial products like lipopolysaccharide, present on

gram-negative bacterial cell walls, play an important role in UC

disease pathogenesis [28]. Within the peripheral blood we

observed that AOAH is significantly co-expressed with colony

stimulating factor 1 receptor (CSF1R, r = 0.21) and major

histocompatibility complex class II DR alpha (HLA-DRA,

r = 0.19). Hyperstimulation of CSF1R has been implicated in UC

[29], while HLA-DRA is one of the positional UC candidate genes

mapping in very close proximity to rs2395185. Another UC HLA

variant, rs9268877, was trans-acting on T cell receptor beta

variable 18 (TRBV18), part of the TCRß locus at 7q34. It is known

that TCRß mutant mice develop chronic colitis [30].

For type 1 diabetes (T1D) we observed that 59% (30/51) of the

known and tested T1D associated SNPs are cis-acting (on in total

Author Summary

Many genetic variants have been found associated with
diseases. However, for many of these genetic variants, it
remains unclear how they exert their effect on the
eventual phenotype. We investigated genetic variants that
are known to be associated with diseases and complex
phenotypes and assessed whether these variants were also
associated with gene expression levels in a set of 1,469
unrelated whole blood samples. For several diseases, such
as type 1 diabetes and ulcerative colitis, we observed that
genetic variants affect the expression of genes, not
implicated before. For complex traits, such as mean
platelet volume and mean corpuscular volume, we
observed that independent genetic variants on different
chromosomes influence the expression of exactly the same
genes. For mean platelet volume, these genes include
well-known blood coagulation genes but also genes with
still unknown functions. These results indicate that, by
systematically correlating genetic variation with gene
expression levels, it is possible to identify downstream
genes, which provide important avenues for further
research.

Convergence of Trans-eQTLS on Intermediate Genes
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Table 1. Detected eQTLs in 1,469 genetical genomics samples for 289,044 common SNPs and for 1,167 trait-associated SNPs.

eQTL analysis on 289,044 common SNPs

cis-eQTLs (FDR,0.05) trans-eQTLs (FDR,0.05)

Spearman’s correlation threshold P,1.7361023 P,3.661029

Number of tests performed 2,329,207 13,292,122,142

Number of unique eQTL probes 10,872 244

Number of unique eQTL genes 7,589 202

Number of unique eQTL SNPs 48,717 (16.9% of all tested SNPs) 467 (0.2% of all tested SNPs)

Number of unique MHC eQTL SNPs 1,586 (3.3% of cis-eQTL SNPs) 155 (33.2% of trans-eQTL SNPs)

eQTL analysis on 1,167 trait-associated SNPs

cis-eQTLs (FDR,0.05) trans-eQTLs (FDR,0.05) trans-eQTLs (FDR,0.50)

Spearman’s correlation threshold P,3.761023 P,2.061027 P,1.0261025

Number of tests performed 15,371 53,629,458 53,629,458

Number of unique eQTL probes 679 130 726

Number of unique eQTL genes 538 113 576

Number of unique eQTL SNPs 472 (40.4% of all tested SNPs) 67 (5.7% of all tested SNPs) 462 (39.6% of all tested SNPs)

Number of unique MHC eQTL SNPs 65 (13.8% of cis-eQTL SNPs) 32 (47.8% of trans-eQTL SNPs) 52 (11.3% of trans-eQTL SNPs)

For 289,044 SNPs, present on the commonly used Illumina HumanHap300 platform, the false discovery rate (FDR) was controlled at 0.05 for both cis- and trans-eQTLs.
For the analysis of 1,167 successfully imputed SNPs that have been found associated with a quantitative trait or disease the FDR was controlled at 0.05 for the cis- and
trans-eQTLs. We also performed a trans-eQTL analysis for these SNPs while controlling the FDR at 0.50 to generate more hypotheses. The number of unique genes was
determined using Ensembl 52 (NCBI 36.3 release).
doi:10.1371/journal.pgen.1002197.t001

Figure 1. Disease and trait-associated SNPs are enriched for both cis- and trans-eQTLs. 17% of SNPs, present on common SNP platforms,
affect gene expression levels in cis or trans (at FDR of 0.05). This is substantially different from 1,167 SNPs that have been found associated with traits
or disease: 40.4% affect gene expression in cis, while 5.7% of these SNPs affect gene expression in trans. These eQTL SNPs significantly more often
than expected map within the HLA (13.8% of cis-eQTLs, 47.8% of trans-eQTLs, extreme value distribution p,1.1610216).
doi:10.1371/journal.pgen.1002197.g001

Convergence of Trans-eQTLS on Intermediate Genes
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53 unique genes) and 17% (9/50) are trans-acting on 22 unique

genes (Figure 2). Potentially interesting trans-genes include CCL2,

CFB, CLN1, KRT19, OSR1 and RARRES1, all strongly co-

expressed with each other. CCL2 and CFB are known immune

response genes and have been implicated in T1D before [31–33].

For breast cancer we observed that rs3803662 [34] is trans-

acting on origin recognition complex subunit 6 (ORC6L). This

gene is involved in DNA replication and has been frequently used

as part of prognostic profiles for predicting the clinical outcome in

breast cancer [35,36].

We observed a marked enrichment for SNPs within the MHC

among the cis- and trans-acting trait-associated SNPs: 65 of 472 cis-

acting SNPs (13.8%, EVD p,1.0610216) and 32 of 67 trans-acting

SNPs (47.8%, EVD p,1.0610216) mapped within the MHC

(Figure 3). These SNPs all map to the Human Leukocyte Antigens

(HLA) locus: SNPs within the HLA class I region, class II region

and class III region affect 20, 7 and 2 different genes in trans,

respectively.

Biological convergence of cis- and trans-eQTLs
While multiple associated SNPs have been identified for many

complex diseases, it often remains unclear what the intermediate

effects of these variants are that eventually lead to disease. It is

reasonable to assume that for a particular phenotype the different

associated SNPs eventually converge on the same downstream

gene(s) or pathways.

We identified 7 unique pairs of unlinked SNPs that are associated

with the same phenotype and that also affect the same downstream

genes in trans or cis (at FDR 0.05, Table 2, Figure 4a). In order to

establish whether this was more than expected by chance, we

repeated this analysis, while using a set of trans-eQTLs, equal in size

to the set of real trans-eQTLs, most significant after having

permuted the expression sample identifiers. We performed this

procedure 100 times, and observed on average only 0.15 unique

pairs of unlinked SNPs (range [0, 3], Figure 4b) that showed this

convergence, which indicates that the observed number of

converging pairs of SNPs is 47 times more than expected (EVD

p,1.0610216) and implies a false-positive rate of 0.021.

Due to this highly significant enrichment of converging pairs of

SNPs and its low estimated false-positive rate, we also ran an

analysis where we had relaxed the FDR for trans-eQTLs to 0.50

(Table S7). Here we observed 18 pairs of SNPs that converge on

the same genes, whereas in the 100 subsequent permutations we

observed this only on average for 0.84 SNP-pairs (range [0, 5], 21

times more expected by chance, EVD p,1.0610216, implying a

false-positive rate of 0.047, Table 2, Figure 4b).

Many of these converging downstream genes make biological

sense: three independent loci, associated with hemoglobin protein

Figure 2. Type 1 diabetes associated SNPs both affect genes in cis and in trans.
doi:10.1371/journal.pgen.1002197.g002

Convergence of Trans-eQTLS on Intermediate Genes
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levels [37–39] and ß thalassemia susceptibility [40], significantly

affect hemoglobin gamma G (HBG2) gene expression levels (each

with p,1.0610223, Figure 5). For mean corpuscular volume

(MCV, Figure 5) two unlinked MCV SNPs [41,42] also affect

HBG2 gene expression levels in trans (at FDR 0.05), while other

pairs of MCV SNPs converge on ESPN, VWCE, PDZK1IP1 and

RAP1GAP.

For mean platelet volume (MPV) we observed that MPV SNPs

rs12485738 on 3p26 and rs11602954 on 11p15 affect several

transcripts in trans. These two SNPs converge on GP9, F13A1,

C19orf33, SAMD14, VCL and GNG11. As GP9 and F13A1 are

known blood coagulation genes, C19orf33 is a potential candidate

gene, involved in coagulation as well. This is substantiated by

strong co-expression between GP9 and C19orf33 within peripheral

blood (Pearson r = 0.45, p = 7.0610263) and the fact these SNPs

independently also affect various other blood coagulation genes in

trans (including CD151, GP1BB, ITGA2B, MMRN1, THBS1 and

VWF, Figure 4). Many of these are specific to megakaryocytes that

are platelet precursor cells [43]. As expected, the Gene Ontology

term ‘blood coagulation’ is strongly overrepresented among all

these trans-genes, Fisher’s exact p = 1.0610210.

We observed that MPV SNP rs12485738 (on 3p14.3) was also

trans-acting on tropomyosin 1 (TPM1, 15q22.2, p = 9.761029), a

gene that is also regulated in cis by another MPV variant

(rs11071720 on 15q22.2, p = 1.4610213). We observed this for two

different expression probes that map within different locations of

the TPM1 transcript (probes 5560246 and 610519), and note

strong co-expression for these two TPM1 probes with 46 MPV

trans-genes (Pearson r.0.19, p,1.0610211, including five known

coagulation genes). Although several genes reside within the

rs11071720 MPV locus, these observations strongly implicate

TPM1 as the causal MPV gene.

For both MPV and MCV we observed that the identified cis-

and trans-eQTL probes generally were more strongly co-expressed

in peripheral blood than expected (Figure S4, MPV co-expression

Wilcoxon P,102200, MCV co-expression Wilcoxon P = 0.009),

Figure 3. Human leukocyte antigen (HLA) trait-associated SNPs affect gene expression levels in trans. Thirty-two trait-associated SNPs
that map within the HLA are trans-acting on other genes. Trans-genes are indicated in red. Peripheral blood co-expression (Pearson correlation
coefficient r$0.19, p,10211) between genes is indicated in light grey. Several trans-genes are co-expressed with HLA genes.
doi:10.1371/journal.pgen.1002197.g003

Convergence of Trans-eQTLS on Intermediate Genes
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substantiating the likelihood these genes reflect coherent biological

sets. We repeated this co-expression analysis after we had

regressed out all cis- and trans-eQTL effects, and observed that

most of this co-expression was independent of the eQTL SNP-

effect on the expression of these genes, which further substantiates

that these genes are biologically related (MPV co-expression

Wilcoxon P,12200, MCV co-expression Wilcoxon P = 0.018).

Phenotypic buffering
Although the observed convergence provides insight into

downstream genes, it is not clear whether the MPV or MCV

phenotypes are eventually caused through these trans-genes, or

whether these trans-eQTLs emerged as a result of changes to the

volume of the platelets or the erythrocytes.

In order to gain insight into this, we analyzed the effect size of

these SNP variants on both the expression levels and the

phenotypes. While the effect sizes of these trait-associated SNPs

on eventual phenotypes were usually small, their intermediate

(molecular) effects was often substantially larger. This supports the

notion that the effect on e.g. MPV and MCV is through these

trans-genes, and suggests the presence of ‘phenotypic buffering’,

shown previously in plants [44], in humans (Table 2, Figure 4b):

the effects of the 18 converging pairs of SNPs on gene expression

levels were often substantially higher than the originally reported

effect sizes on the trait-phenotypes. For example, several MPV-

and MCV-associated SNPs explain between 1.41% and 10.99% of

trans-expression variation within the 1,469 unrelated samples,

whereas these SNPs only explain between 0.24% and 1.12% of the

MPV and MCV phenotype variation (and as such required over

13,000 samples [41,42] for identification, Figure 4b).

Replication of trans-eQTLs in monocytes and four
additional primary tissues

We analyzed peripheral blood which is a mixture of different

hematopoetic cell types. In addition, we also assessed whether the

identified trait-associated trans-eQTLs (detected at FDR 0.05)

could be replicated in a single cell-type dataset. This is an

important question, as it is potentially possible that the trans-acting

SNP are able to alter the amount, volume or ratio of certain blood

cell types, which might as a consequence result in an indirect net

effect on the measured gene expression levels within the mix of the

cells that comprise whole blood.

We therefore analyzed monocyte expression data from 1,490

independent samples [45] and did not find evidence that this was a

widespread phenomenon as we could replicate 46 out of the 130

different trans-eQTLs (each of these with a nominal p,1.061025

in the monocyte data, Table S8). These replicated eQTLs include

the genes AOAH, HBG2, GP9, F13A1, SAMD14, CD151, ITGA2B,

MMRN1, THBS1, VWF and TPM1 mentioned above. Surprisingly

we could also replicate the trans-eQTL effects on various blood-

coagulation genes for mean platelet volume SNP rs12485738: One

might argue that rs12485738 primarily increases platelet volume,

resulting in a relatively higher volume of platelet-RNA when

assessing total peripheral blood RNA. If this were to be the case, a

measurable trans-effect is expected for platelet-specific (blood

coagulation) genes in whole blood. Such an effect would then not

actually be an expression-QTL, but rather a ‘cellular-QTL’.

However, the trans-eQTLs for rs12485738 were also present in

single cell-type monocyte datasets, indicating that the above

concerns do not apply. Clearly, trans-eQTL effects can manifest

themselves outside the primary cell-type, in which they are

expected to operate.

We also replicated 18 trait-associated trans-eQTLs (including

AOAH, detected at FDR 0.05) in an independent dataset

comprising four different non-blood tissues (subcutaneous adipose,

visceral adipose, liver and muscle, Figure S5, Table S9 and S10).

Since this dataset comprised only 90 samples, it is very

encouraging that 18 trans-eQTL could be replicated.

Discussion

Here we investigated gene expression in peripheral blood from

1,469 individuals to identify cis- and trans-effects of common

variants on gene expression levels. When comparing to other

Figure 4. Pairs of SNPs that cause the same phenotype more frequently than expected also affect the same downstream genes.
Various pairs of unlinked SNPs cause the same phenotype but also converge on the same downstream genes. a) When using cis- and trans-eQTLs,
identified when controlling FDR at 0.05, 7 unique pairs of SNPs cause the same phenotype but also affect the same downstream gene. When
controlling the FDR at 0.50 for the trans-eQTLs, 18 unique pairs of SNPs show this convergence. b) This is significantly higher than expected,
determined using 100 permutations. c) The SNPs that affect these downstream genes in most instances explain a proportion of the downstream gene
expression variation that is substantially higher than what their effect is on the eventual phenotypes.
doi:10.1371/journal.pgen.1002197.g004
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genetical genomics studies [12–14,16,18,21–24,45,46] we observe

an increasing percentage of genes that are cis- or trans-regulated

(39% of 19,689 unique genes at FDR 0.05). When eQTL studies

further increase the sample-sizes and thus increase statistical

power, we expect that for the far majority of genes the expression

levels are to some extent determined by genetic variation.

GWA studies have identified many loci, but it is still often unclear

what the affected gene in each locus is. Here we showed that 39% of

trait-associated SNPs affect gene expression in cis which is helpful in

pinpointing the most likely gene per susceptibility locus. However,

GWAS do not immediately provide insight in the trans-effects of these

susceptibility variants on downstream genes. Here we identified for

2.6% of all trait-associated SNPs trans-eQTL effects on in total 113

unique genes. While some of these trans-eQTLs are known to be

involved in these phenotypes (such as HBG2 in hemoglobin protein

levels and ß-Thallasemia), most of these genes have not been

implicated before in these complex traits, and provide additional

insight in the downstream mechanisms of these variants. Interestingly,

48% of trans-acting trait-associated SNPs map within the HLA,

indicating the HLA has a prominent role in regulating peripheral

blood gene expression. This might partly explain why the HLA has

been found to be associated with so many different diseases.

While we concentrated on peripheral blood, we could replicate

35% of the trans-eQTLs in monocytes. Particularly surprising was

Figure 5. Trait-associated SNPs show convergence on multiple genes. For several traits different and unlinked SNPs affect the same genes in
cis or trans. For beta thalassemia three different loci affect hemoglobin (HBG2) gene expression (one in cis, indicated with gray arrow, two in trans (at
FDR 0.05), indicated with red arrows). For mean corpuscular volume (MCV) the same trans-effects on HBG2 (at FDR 0.05) exist, but convergence is also
apparent on ESPN, VWCE, PDKZ1IP1 and RAP1GAP (at FDR 0.50). For mean platelet volume (MPV) numerous trans-effects on genes involved in blood
coagulation were identified. Two MPV loci (rs12485738 on 3p26.3 and rs11602954 on 11p15.5) both affect GP9, F13A1 and C19orf33 (at FDR 0.05) and
SAMD14, GNG11 and VCL (at FDR 0.50). Peripheral blood co-expression (Pearson correlation coefficient r$0.19, p,1.0610211) between genes is
indicated in light grey.
doi:10.1371/journal.pgen.1002197.g005
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the observation that for SNPs, known to affect the volume of

platelets or erythrocytes the identified trans-eQTL effects in whole

blood were also present in these monocytes. Among these

replicated genes are a considerable number of highly plausible

trans-genes. For example, for mean platelet volume SNP

rs12485738 we detected the same trans-eQTL effects on seven

well-known blood coagulation genes (F13A1, GP1BB, GP9,

ITGA2B, MMRN1, THBS1 and VWF) in both the peripheral

blood data and the monocyte data. Interestingly, in both datasets,

trans-effects for this SNP on another 31 genes were identified as

well, which suggests these genes play a role in blood coagulation. It

can thus be concluded that trans-eQTLs, identified in peripheral

blood, generally apply to monocytes as well. We assumed these

eQTLs might therefore also be present in other, non-blood tissues,

as previously observed for rodents [47–49]. Indeed we could

replicate some of these trans-eQTLs in a smaller dataset of four

non-blood tissues. Importantly, as mentioned before [46], the

allelic directions were nearly always identical to blood, which

implies that trans-eQTLs, if also present in another tissue, work in

the same way.

Our observation that sets of independent SNPs, associated with

the same complex phenotype sometimes also affect exactly the

same trans-gene, further substantiates the validity of our findings.

Based on the reported effect-sizes of these variants on these

complex phenotypes, we have shown here that the individual

effects of these SNPs on trans-gene expression can often be

stronger. This suggests that these down-stream gene expression

effects do not fully propagate to the eventual phenotype and are

somehow buffered. This ‘phenotypic buffering’ has been observed

before in plants [44] and suggests that additional compensatory

mechanisms exist that control these complex phenotypes.

However, we do realize that accurate estimates on this

phenomenon requires the availability of both gene-expression

and phenotype data for these traits. As we did not have these

phenotypes for our samples, we relied upon estimates from

literature. Future studies that have collected both genome-wide

genotype, expression and phenotype data from the same

individuals will permit answering the question what the extent of

this phenotypic buffering is. We should emphasize that the

number of converging pairs of SNPs that we identified must be a

very strong underestimate, and as such the false-negative rate from

this analysis is likely to be high: As we observed that on average

40.4% of the trait-associated SNPs affect gene expression levels in

cis, we expect that many of these SNPs will exert effects on gene

expression in trans. However, these effects are likely to be small and

due to multiple testing issues our current study identified only a

relatively small set of trans-eQTL effects. Likewise the number of

detected converging pairs of SNPs is even smaller. However, as we

observed this convergence for various pairs of SNPs, future

genetical genomics studies using larger sample sizes will likely

reveal many more pairs of converging SNPs, providing better

insight in the downstream molecular mechanisms that are affected

by these disorders.

The convergence and phenotypic buffering we observed might

also help uncover some of the missing heritability in complex

disease. As there are probably many SNPs with low marginal

phenotypic effects [50], GWAS currently lack power to detect

these. However, the effect of these trait-associated SNPs on

expression seems to be less multifactorial, leading to larger

expression effects. These numerous expression disturbances will

eventually converge to a phenotype, explaining the small

phenotypic effect of individual trait-associated SNPs.

Therefore, studying expression as intermediate phenotype will

be important for disease association studies trying to account for

the missing heritability of complex diseases. Disease SNPs, already

found to be disease-associated and marked as eQTL, lead to a set

of candidate downstream genes. Additional genetic variants that

also affect the expression of these genes will therefore be powerful

candidates for disease susceptibility.

Materials and Methods

Peripheral blood genetical genomics study populations
The peripheral blood genetical genomics study population

contained 1,469 unrelated individuals from the United Kingdom

and the Netherlands. Some of these are healthy controls while

others are patient samples. The 49 ulcerative colitis (UC) cases in

this study are part of the inflammatory bowel disease (IBD) cohort

of the University Medical Centre Groningen. The 111 celiac

disease samples were collected within the Barts and the London

NHS Trust and the Oxford Radcliffe Hospitals NHS Trust. The

453 chronic obstructive pulmonary disease (COPD) samples were

collected within the NELSON study. The 856 amyotrophic lateral

sclerosis (ALS) cases and controls were collected in the University

Medical Centre Utrecht. All samples were collected after informed

consent and approved by local ethical review boards. Individual

sample information is provided in Table S11.

Peripheral blood (2.5 ml) for all samples was collected with the

PAXgene system (PreAnalytix GmbH, UK). PAXgene vials were

chosen to prevent density gradient centrifugation, immortalization

or in vitro cell culture artifacts changing mRNA profiles. PAXgene

tubes were mixed gently and incubated at room temperature for

two hours. After collection, tubes were frozen at 220uC for at least

24 hours followed by storage at 280uC. RNA was isolated using

the PAXgene Blood RNA isolation kit (PreAnalytix GmbH, UK).

RNA was quantified using the Nanodrop (Nanodrop Technolo-

gies, USA). Total RNA integrity was analyzed using an Agilent

Bioanalyzer (Agilent Technologies, USA).

Peripheral blood SNP genotyping
Peripheral blood samples were either genotyped using the

Illumina (Illumina, San Diego, USA) HumanHap300, Human-

Hap370 or 610 Quad platform. Genotyping was performed

according to standard protocols from Illumina. Although the

different genotype oligonucleotide arrays differ, they share

294,757 SNPs, to which the analysis was confined. In addition,

SNPs with a minor allele frequency of ,5%, or a call-rate ,95%,

or deviating from Hardy-Weinberg equilibrium (exact p-value

,0.001) were excluded, resulting in 289,044 SNPs for further

analysis. Genotype calling for each SNP was performed by a

previously described algorithm [51].

Peripheral blood Illumina expression profiling
Anti-sense RNA was synthesized, amplified and purified using

the Ambion Illumina TotalPrep Amplification Kit (Ambion, USA)

following the manufacturers’ protocol. Complementary RNA was

either hybridized to Illumina HumanRef-8 v2 arrays (229 samples,

further referred to as H8v2) or Illumina HumanHT-12 arrays

(1,240 samples, further referred to as HT12) and scanned on the

Illumina BeadArray Reader. Raw probe intensities were extracted

using Illumina’s BeadStudio Gene Expression module v3.2 (No

background correction was applied, nor did we remove probes

with low expression). The raw expression data of the 1,240 HT12

peripheral blood samples were combined with the raw expression

data of 296 replication samples (described in detail in paragraph

‘Trans-eQTL replication dataset’). Both datasets (H8v2 and HT12)

were quantile normalized separately to the median distribution

and expression values were subsequently log2 transformed.
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Subsequently, the probes were centered to zero and linearly scaled

such that each probe had a standard deviation of one.

Integration of the Illumina H8V2 and HT12 peripheral
blood expression platform identifiers

The HT12 and H8v2 arrays share a considerable number of

probes with identical probe sequences. However, in a considerable

number of occasions the two platforms use different probe

identifiers for the same probe sequences. More importantly,

although probe identifiers are often identical, they sometimes

represent different probe sequences. In order to permit a meta-

analysis incorporating data from both arrays, we decided on the

following naming convention: if an H8v2 probe had the same

sequence as an HT12 probe, the HT12 ‘ArrayAddressID’ probe

identifier was used. If not, the original H8v2 probe identifier was

used, but with the prefix ‘‘Human_RefSeq-8_v2-’’ to prevent any

potential probe identifier ambiguity. A total of 52,061 unique

probes were used for further analysis, representing 19,609 unique

genes according to HUGO gene nomenclature.

Initial genomic mapping of Illumina expression probe
sequences

Various mapping strategies were used for the expression probes

to get a mapping location that was as unambiguous as possible: if

probes have been mapped incorrectly, or cross-hybridize to

multiple genomic loci, it might be that an eQTL will be

incorrectly deemed a trans-eQTL, while in fact it is a cis-eQTL

or primer polymorphisms. We used Ensembl database version 52

(NCBI 36.3 assembly) to obtain, for each annotated gene, the

transcript with the largest number of exons and included this main

spliced transcript in our reference set. Second, we added one

sequence per intron, extending intron boundaries 40 bp on each

side to allow mapping of the 50 bp probe sequences that

overlapping exon-intron junctions. Last, a version of the reference

DNA genome with masked annotated transcripts was included.

Probe sequences were mapped using NOVOALIGN V2.05.12 for

all the sequences (main transcript, introns, and non standard exon-

exon junctions) originating from the same transcript (parameters

2t 150 2v 20 20 200 [.]( [ˆ_]*)_). For each probe it was

determined whether it was mapping uniquely to one particular

genomic locus, or, if multiple hits were present whether all these

mappings resided in each other vicinity (,250 kb). Probes that did

not map at all, or mapped to multiple different loci were excluded

from further analyses. Using this approach, 43,202 of the 48,751

probes on the HT12 and 21,316 of the 22,185 probes on the H8v2

platform were eventually mapped to a single genomic location.

eQTL mapping
In order to detect cis-eQTLs, analysis was confined to those

probe-SNP combinations for which the distance from the probe

transcript midpoint to SNP genomic location was #250 kb. For

trans-eQTLs, analysis was confined to those probe-SNP combina-

tions for which the distance from probe transcript midpoint to

SNP genomic location was $5 Mb (to exclude the possibility of

accidentally detecting cis-eQTLs due to long ranging linkage

disequilibrium). Additionally, for the trans-eQTL analysis the

effects of the significant cis-eQTLs were removed from the

expression data by keeping the residual expression after linear

regression.

Association for cis- and trans-eQTL was tested with a non-

parametric Spearman’s rank correlation. For directly genotyped

SNPs we coded genotypes as 0, 1 or 2, while for imputed SNPs we

used SNP dosage values, ranging between 0 and 2. When a

particular probe-SNP pair was present in both the HT12 and

H8v2 datasets, an overall, joint p-value was calculated using a

weighted (square root of the dataset sample number) Z-method.

To correct for multiple testing, we controlled the false-discovery

rate (FDR) at 0.05: the distribution of observed p-values was used

to calculate the FDR, by comparison with the distribution

obtained from permuting expression phenotypes relative to

genotypes 100 times within the HT12 and H8v2 dataset for both

the cis- and trans- analyses [52].

In order to increase the number of detectable cis- and trans-

eQTLs we applied a principal component analysis (PCA) on the

sample correlation matrix. We, among others [19,20], argue that

the dominant PCs, capturing the larger part of the total variation,

will primarily capture sample differences in expression that reflect

physiological or environmental variation as well as systematic

experimental variation (e.g. batch and technical effects). Figure S6

shows for the 1,240 HT12 samples what per individual the PC

scores are. It is evident there are, especially among the first PCs,

strong batch effects are still present after proper quantile-quantile

normalization. By removing the variation captured by these PCs,

we expected that the residual expression is more strongly

determined by genetic variants and the number of significantly

detected cis- and trans-eQTLs will increase. An aspect to consider is

that with the removal of more PCs from the data, the degrees of

freedom of the data will decrease. Furthermore, it is not

immediately clear which PCs will actually capture physiological,

environmental, and systematic variation, which might lead to

removal of genetically determined expression variation as well.

Therefore a tradeoff has to be made on the number of PCs to

subtract from the data. We assessed this systematically, by

removing up to 100 PCs from the genetical genomics dataset (in

steps of 5).

Figure S7A shows that the number of significantly detected cis-

eQTL probes increases two-fold when 50 PCs were removed from

the expression data. There is a long plateau visible (around PC50),

where the number of detected cis-eQTLs probes remains

approximately constant, irrespective of removing for instance 10

fewer or 10 extra PCs (reported numbers in this figure also include

false-positive eQTLs due to potential primer polymorphisms, as

we here wanted to solely compare the performance of removing

different numbers of PCs). Figure S7B shows that of the initial

5,950 significantly detected cis-eQTL probes (no PCs removed),

4,965 (83.5%) were still detected with 50 PCs subtracted. The 985

initially detected cis-eQTLs probes, yet no longer detected when

50 PCs had been removed from the expression data, all had a low

significance (Figure S8). As we controlled the FDR at 0.05 in all

analyses it is therefore likely that a considerable amount of these

reflect false-positives. Figure S8C shows that for all the

overlapping 4,965 detected cis-eQTLs probes between the

different analyses, the allelic direction was identical, and effect

size on expression correlate well (Pearson r = 0.95) although these

were nearly always stronger after having subtracted 50 PCs.

We assessed this for trans-eQTLs as well. An important aspect to

consider is that trans-eQTL SNPs might affect multiple genes. If

these effects are substantial (either in effect size or the number of

affected genes), it is likely that a certain PC will capture this.

Removal of such PCs from the expression data will therefore

unintentionally result in the inability to detect these trans-eQTLs.

In order to avoid such false-negatives we first performed a QTL

analysis on the first 50 PCs (that had been removed from the

expression data for the cis-eQTL analysis) to assess whether some

of these PCs are under genetic control (genome-wide analysis,

controlling FDR at 0.05). We did this for the large HT12 and the

smaller H8v2 expression data separately, as PCA had been applied
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independently to these datasets. We observed that out of the first

25 PCs in the HT12 data three PCs and in the H8v2 two PCs

were to some extent genetically determined (r2.5%). This was

different for PCAs 26–50 in the HT12 data: 11 PCs were under

substantial genetic control (Figure S9a).

We therefore assumed that most trans-eQTLs could be detected

when removing approximately 25 PCs. We quantified this

systematically, by removing increasing amounts of PCs from the

expression data and conducting a full genome-wide trans-eQTL

mapping. Indeed, in these analyses at most 244 significant trans-

eQTLs could be detected (at FDR 0.05, with potential false-

positives due to cross-hybridizations removed), when removing

25 PCs (Figure S9b). The overlap with the expression with no PCs

removed was substantial: 62 of the 82 trans-eQTLs (77%), detected

in the original analysis were detected as well in the analysis with

25 PCs removed (Figure S9c), all with identical allelic directions

(Figure S9d).

Identification of false eQTLs due to primer
polymorphisms and cross-hybridization

One should be aware that sequence polymorphisms can cause

many false cis-eQTLs [53]. Such false cis-eQTLs do not reflect

actual expression differences caused by sequence polymorphisms

in cis-acting factors that affect mRNA levels. Instead they indicate

hybridization differences caused by sequence polymorphisms in

the mRNA region that is targeted by the microarray expression

probes. Therefore, SNP-probe combinations were excluded from

the cis-eQTL analysis when the 50 bp long expression probe

mapped to a genomic location that contained a known SNP that

was showing at least some LD (r2.0.1) with the cis-SNP. We used

SNP data from the 1000 Genomes Projects, as it contains LD

information for 9,633,115 SNPs (April 2009 release, based on 57

CEU samples of European descent).

Detected trans-eQTLs might also reflect false-positives, although

we initially had attempted to map the expression probes as

accurately as possible, by using the aforementioned three different

mapping strategies: it is still well possible that some of the

identified, putative trans-eQTLs in fact reflect very subtle cross-

hybridization (e.g. pertaining to only a small subsequence of the

probe). We therefore tried to falsify each of the putative trans-

eQTLs by attempting to map each trans-probe into the vicinity of

the SNP probe location, by using a highly relaxed mapping

approach. All putative Illumina trans-expression probes were

mapped using SHRiMP [54], which uses a global alignment

approach, to the human reference genome (NCBI 36.3 build). The

mapping settings were chosen very loosely to permit the

identification of nearly all potential hybridization locations: match

score was 10, the mismatch score was 0, the gap open penalty was

2250, the gap extension penalty was 2100, Smith and Waterman

minimum identical alignment threshold was 30.0%, while other

SHRiMP parameters were left at default. Using these settings all

mappings with a minimum overlap of 15 bases, or with 20 matches

with one mismatch, or 30 matches with 2 mismatches, or full-

length (50 bp) probe hybridizations with no more than 15

mismatches were accepted. Any trans-eQTL was discarded, if the

expression probe had a mapping that was within 2 Mb of the SNP

that showed the trans-eQTL effect. Once these potential false-

positive trans-eQTLs had been removed from the real, non-

permuted data, we repeated the multiple testing correction (again

controlling the FDR at 0.05).

Using this strategy we observed several instances where only 20

out the 50 bases of a probe sequence mapped in the vicinity of the

trans-SNP (data not shown). For these trans-eQTLs the Spearman’s

rank correlation p was often lower than 102100, which would

imply these SNPs explain over 25% of the total expression

variation of the corresponding trans-genes. Given the small amount

of trans-eQTLs we detected in total, such effect sizes are quite

unlikely and therefore provide circumstantial evidence these

indeed reflect cross-hybridization artifacts.

We also assessed whether any of the Illumina SNPs that

constitute trans-eQTLs might map to a different position than what

is reported in dbSNP. As such we mapped the 50 bp Illumina SNP

probe sequences to the genome assembly, permitting up to four

mismatches per 50 bp SNP probe sequence. We did not observe

any SNP that could map (with some mismatches) to the same

chromosome of the trans-probe.

It is still possible that some of the trans-eQTLs for which we did

not find any evidence of cross-hybridization, still are false positives,

e.g. by missing some cross-hybridizations due to imperfections in

the NCBI v36 assembly we used. Although we have identified

numerous occasions where a SNP affects two different probes

within the same gene in trans, substantiating the likelihood these

trans-eQTLs are real, providing unequivocal evidence that all our

reported trans-eQTLs are real is not straightforward.

Enrichment analysis of trait-associated SNPs and SNPs
located within the HLA region

To assess enrichment of trait-associated SNPs, we used a

collection of 1,262 unique SNPs from ’A Catalog of Published

Genome-Wide Association Studies’ (accessed 09 February 2010,

and each having at least one reported association p-value

,5.061027). We could successfully impute the genotypes for

1,167 of these SNPs and therefore confined all analyses to these

SNPs. Of these SNPs 572 had been directly genotyped on the

Illumina HumanHap300 platform, with a MAF.0.05, an HWE

exact p-value .0.0001 and call-rate .95%.

To ascertain whether these SNPs are more often constituting an

eQTL than expected, we used a methodology that is not affected

by the following potential confounders: non-even distribution of

SNP markers and expression probe markers across the genome,

differences in MAF between SNPs and LD structure within the

genotype date and correlation between probes in the expression

data. Additionally, this methodology is also not confounded by the

fact that for certain traits different SNPs in strong LD can have

been reported, due to differences in the platforms that were used to

identify these loci.

We first determined how many unique eQTL SNPs had been

identified in the original eQTL mapping (with an FDR,0.05) and

how many of these are trait-associated. Subsequently we permuted

the expression phenotypes relative to the genotypes (thus keeping

the correlation structure within the genotype data and the

correlation structure within the expression data intact, yet

assigning the genotypes of a sample to the expression data of a

randomly chosen sample) and reran the eQTL mapping, sorting

all tested eQTLs on highest significance. We then took an equal

number of top associated, but permuted, eQTL SNPs and

determined how many of these permuted eQTL SNPs are trait-

associated. By performing 100 permutations we obtained an

empiric distribution of the number of trait-associated SNPs

expected by chance. We subsequently fitted a generalized extreme

value distribution (EVD, using the EVD add-on package for R),

permitting us to estimate realistic enrichment significance

estimates (called EVD p throughout the manuscript).

For the MHC enrichment analysis the followed procedure was

identical, with the difference that we looked for enrichment for

SNPs within the MHC, defined as SNPs physically mapping

between 20 Mb and 40 Mb on chromosome 6 (NCBI 36

assembly).

Convergence of Trans-eQTLS on Intermediate Genes

PLoS Genetics | www.plosgenetics.org 11 August 2011 | Volume 7 | Issue 8 | e1002197



Trans-eQTL replication datasets
Replication of the detected eQTLs was performed in monocytes

from 1,490 different samples [45] and in an independent

population of 86 morbidly obese individuals that underwent

elective bariatric surgery (Department of general surgery,

Maastricht University Medical Centre, the Netherlands). Both

these datasets also used the same Illumina HumanHT-12

expression platform.

For the 1,490 monocyte samples eQTL P-Values summary

statistics were available for all monocyte trans-eQTLs with a

nominal p,1.061025. We ascertained how many of the trans-

eQTLs we had found in our peripheral blood data had a nominal

eQTL p,1.061025 in this monocyte dataset.

We also assessed trans-eQTLs in four different tissues from the

86 morbidly obese individuals that underwent bariatric surgery.

DNA was extracted from blood samples using the Chemagic

Magnetic Separation Module 1 (Chemagen) integrated with a

Multiprobe II Pipeting robot (PerkinElmer). All samples were

genotyped using both Illumina HumanCytoSNP-12 BeadChips

and Illumina HumanOmni1-Quad BeadChips (QC was identical

as was applied to the peripheral blood samples). We imputed

HapMap 2 genotypes using Impute version 2.0. In addition

expression profiling was performed for four different tissues for

each of these individuals using the Illumina HumanHT-12 arrays.

Wedge biopsies of liver, visceral adipose tissue (VAT, omentum

majus), subcutaneous adipose tissue (SAT, abdominal), and muscle

(musculus rectus abdominis) were taken during surgery. RNA was

isolated using the Qiagen Lipid Tissue Mini Kit (Qiagen, UK,

74804). Assessment of RNA quality and concentration was done

with an Agilent Bioanalyzer (Agilent Technologies USA). Starting

with 200 ng of RNA, the Ambion Illumina TotalPrep Amplifica-

tion Kit was used for anti-sense RNA synthesis, amplification, and

purification according to the protocol provided by the manufac-

turer (Ambion, USA). 750 ng of complementary RNA was

hybridized to Illumina HumanHT12 BeadChips and scanned on

the Illumina BeadArray Reader. Expression data preprocessing

was as mentioned before. We first attempted to replicate the trait-

associated trans-eQTLs per tissue, using an FDR of 0.05 and 100

permutations. Subsequently we conducted a meta-analysis,

combining the four tissues. Per trans-eQTL we used a weighted

Z-method to combine the four individual p-values. However, these

four datasets are not independent, as they reflect the same

individuals. We resolved this by conducting the permutations in

such a way that in every permutation round the samples were

permuted in exactly the same way for each of the four tissues. By

doing this we retained the correlations that exist between the

different tissues per sample, and were able to get a realistic empiric

(null-)distribution of expected test-statistics.

Convergence analysis
Per trait we assessed all the SNPs that have been reported to be

associated with that particular trait. We analyzed per trait all

possible SNP-pairs. If a pair of SNPs was not in LD (r2,0.001) we

assessed whether they affected the same gene in cis or trans. When

using the trait-associated cis- and trans-eQTLs that had been

identified when controlling the FDR at 0.05, we identified 7

unique pairs of SNPs that caused both the same phenotype and

also affected the same gene(s). When using a somewhat more

relaxed set of trans-eQTLs, identified when controlling the FDR at

0.5, we identified 18 unique pairs of SNPs that affect the same

downstream gene.

We assessed whether these numbers were significantly higher

than expected, by using the same strategy that we had used to

assess the enrichment of trait-associated SNPs and the HLA; we

ran 100 permutations. We kept per permutation the cis-eQTL list

as it was, but generated a permuted set of trans-eQTLs, equal in

size to the original set of non-permuted trans-eQTLs. This enabled

us to determine per permutation round how many unique pairs of

SNPs converge on the same gene(s). We subsequently fitted a

generalized extreme value distribution, permitting us to estimate

realistic enrichment significance estimates.

Co-expression between genes, based on HT12 peripheral
blood co-expression

If a particular SNP is cis- or trans-acting on multiple genes, it is

plausible that those genes are biologically related. Co-expression

between these genes provides circumstantial evidence this is the

case, strengthening the likelihood such cis- and trans-eQTLs are

real. We assessed this in the peripheral blood data, by using the

expression data of the 1,240 samples, run on the comprehensive

HT12 expression platform. As we had removed 25 PCs (to remove

physiological, environmental variation, and systematic experimen-

tal variation) for the trans-eQTL analyses, we decided to confine

co-expression analyses to this expression dataset. As there are

43,202 HT12 probes that we mapped to a known genomic

location, 43,202643,201/2 = 933,184,801 probe-pairs exist. Giv-

en 1,240 samples, a Pearson correlation coefficient r$0.19

corresponds to a p,0.05 when applying stringent Bonferroni

correction for these number of probe-pairs.

Accession numbers
Expression data for both the peripheral blood and the four non-

blood datasets have been deposited in GEO with accession

numbers GSE20142 (1,240 peripheral blood samples, hybridized

to HT12 arrays), GSE20332 (229 peripheral blood samples,

hybridized to H8v2 arrays) and GSE22070 (subcutaneous adipose,

visceral adipose, muscle and liver samples).
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Figure S1 Detected cis- and trans-eQTLs in genome-wide

analysis.

(TIF)

Figure S2 Detected cis- and trans-eQTLs for 1,167 trait-

associated SNPs.

(TIF)

Figure S3 Detected cis- and trans-eQTLs per complex trait.

Immune-related and hematological associated SNPs often affect

gene expression in cis or trans.

(TIF)

Figure S4 Co-expression distribution between eQTL genes for

mean platelet volume and mean corpuscular volume.

(PDF)

Figure S5 Replication of trans-eQTLs in four non-blood tissues.

(TIF)

Figure S6 Principal components used as covariates in analyses.

(PDF)

Figure S7 Effect of removing principal components from

expression data on detect ability of cis-eQTLs

(TIF)

Figure S8 Significance of detected cis-eQTLs before and after

removal of principal components from expression data.

(TIF)
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Figure S9 Effect of removing principal components from

expression data on detect ability of trans-eQTLs.

(TIF)

Table S1 Detected cis-eQTLs (FDR 0.05) for all common SNPs.

(XLSX)

Table S2 Detected trans-eQTLs (FDR 0.05) for all common

SNPs.

(XLS)

Table S3 Detected cis-eQTLs (FDR 0.05) for 1,167 trait-

associated SNPs.

(XLS)

Table S4 Detected trans-eQTLs (FDR 0.05) for 1,167 trait-

associated SNPs.

(XLS)

Table S5 Detected cis- and trans-eQTLs (FDR 0.05) per complex

trait.

(XLS)

Table S6 Plots of detected trans-eQTLs for 1,167 trait-associated

SNPs for each of the seven individual cohorts of samples that make

up the total of 1,469 peripheral blood samples.

(PDF)

Table S7 Detected trans-eQTLs (FDR 0.50) for 1,167 trait-

associated SNPs.

(XLS)

Table S8 Replicated trans-eQTLs in monocyte eQTL dataset.

(XLS)

Table S9 Characteristics of subcutaneous adipose, visceral

adipose, muscle and liver datasets.
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Table S10 Replicated trans-eQTLs in subcutaneous adipose,
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