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Abstract 

While large-scale genome-wide association studies (GWAS) have identified hundreds of loci           

associated with neuropsychiatric and neurodegenerative traits, identifying the variants, genes          

and molecular mechanisms underlying these traits remains challenging. Integrating GWAS          

results with expression quantitative trait loci (eQTLs) and identifying shared genetic architecture            

has been widely adopted to nominate genes and candidate causal variants. However, this             

integrative approach is often limited by the sample size, the statistical power of the eQTL               

dataset, and the strong linkage disequilibrium between variants. Here we developed the            

multivariate multiple QTL (mmQTL) approach and applied it to perform a large-scale            

trans-ethnic eQTL meta-analysis to increase power and fine-mapping resolution. Importantly,          

this method also increases power to identify conditional eQTL’s that are enriched for cell type               

specific regulatory effects. Analysis of 3,188 RNA-seq samples from 2,029 donors, including            

444 non-European individuals, yields an effective sample size of 2,974, which is substantially             

larger than previous brain eQTL efforts. Joint statistical fine-mapping of eQTL and GWAS             

identified 301 variant-trait pairs for 23 brain-related traits driven by 189 unique candidate causal              

variants for 179 unique genes. This integrative analysis identifies novel disease genes and             

elucidates potential regulatory mechanisms for genes underlying schizophrenia, bipolar disorder          

and Alzheimer’s disease. 

1 

mailto:gabriel.hoffman@mssm.edu
mailto:panagiotis.roussos@mssm.edu


 

Introduction 

Genome-wide association studies (GWAS) have associated hundreds of loci with          

neuropsychiatric and neurodegenerative traits (Jansen et al., 2019; Nalls et al., 2019;            

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Visscher et al.,            

2017; Wray et al., 2018) . Yet elucidating the molecular mechanisms underlying these traits             

remains challenging since most risk variants are non-coding and highly correlated due to             

linkage disequilibrium (Schaid et al., 2018; Visscher et al., 2017) . Integration of risk loci with               

expression quantitative trait loci (eQTL) has been widely adopted to identify genes and             

candidate causal variants (Gallagher and Chen-Plotkin, 2018; GTEx Consortium, 2020;          

Hormozdiari et al., 2016). Recent work by the Genotype-Tissue Expression (GTEx) consortium            

across 838 individuals and 49 tissues, detected eQTLs for 95% of protein-coding and >60% of               

long non-coding RNA genes (GTEx Consortium, 2020). While the power to detect primary (i.e.              

the most significant association) eQTLs is very high, advances in identifying tissue- and             

cell-type-specific effects, conditionally independent effects, and candidate causal variants in          

trait-relevant tissues and cell types promises to further inform the molecular etiology of disease              

(Dobbyn et al., 2018; GTEx Consortium, 2020; Hormozdiari et al., 2016, 2018; Kim-Hellmuth et              

al., 2020). 
Large-scale efforts have been undertaken to catalogue human brain eQTLs (Fromer et al.,             

2016; GTEx Consortium, 2020; Jaffe et al., 2018; Ng et al., 2017; Wang et al., 2018a) . All these                  

efforts focus on homogenate brain tissue, which is composed of multiple cell types (Cao et al.,                

2020; Darmanis et al., 2015; Habib et al., 2017; Lake et al., 2018) , and, therefore, cell                

type-specific eQTLs are not fully captured (Fairfax et al., 2014; Raj et al., 2014; van der Wijst et                  

al., 2018). This is an important limitation given that disease variants act through             

cell-type-specific biological effects (Farh et al., 2015; Finucane et al., 2018; Raj et al., 2014) .               

Initial efforts have performed cell type-specific eQTL analysis in human brain by experimentally             

purifying specific cell types (Jaffe et al., 2020; de Paiva Lopes et al., 2020; Young et al., 2019),                  

but the sample size of such studies are necessarily limited by the increased experimental costs,               

and data quality can be affected by the additional experimental steps. An alternative strategy to               

capture cell type-specific effects is to statistically define conditional- or context-dependent eQTL            

(Dobbyn et al., 2018; Kim-Hellmuth et al., 2020) . While existing studies have sufficient power to               

detect primary eQTLs, identifying conditionally independent eQTLs that capture more subtle cell            

type- specific effects requires large sample sizes (Jansen et al., 2017; Zhernakova et al., 2017) .  

2 

http://sciwheel.com/work/citation?ids=5167004,6246093,111612,8187858,3904976&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=5167004,6246093,111612,8187858,3904976&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=5167004,6246093,111612,8187858,3904976&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=5346105,3904976&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=5337137,9635829,4325968&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=5337137,9635829,4325968&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=9635829&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9635829,9635831,5358793,5689342,4325968&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=9635829,9635831,5358793,5689342,4325968&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=2227080,4179245,6144412,5593206,9635829&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=2227080,4179245,6144412,5593206,9635829&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=4114189,349175,4709763,10019244&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://sciwheel.com/work/citation?ids=4114189,349175,4709763,10019244&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://sciwheel.com/work/citation?ids=422847,5081170,714486&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=422847,5081170,714486&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=5273698,78538,422847&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=5358793,9635831&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=3321001,6654122&pre=&pre=&suf=&suf=&sa=0,0


 

Following eQTL detection, statistical fine-mapping can identify candidate causal variants likely           

to drive variation in expression (Benner et al., 2016; Hormozdiari et al., 2014, 2016; Schaid et                

al., 2018). Going one step further, joint statistical fine-mapping integrating GWAS and gene             

expression traits can define the candidate causal variants that increase disease risk through             

alterations of gene expression (Hormozdiari et al., 2016). Interpreting and validating such            

variants can pinpoint genes such as FURIN (Schrode et al., 2019) , BIN1 (Nott et al., 2019) and                 

C4 (Sekar et al., 2016) along with molecular mechanisms that can be further studied in               

experimental systems. Yet the resolution of statistical fine-mapping for eQTL and GWAS is             

incomplete due to limited sample sizes and lack of trans-ancestry analysis (Schaid et al., 2018) .               

Sample size of more than 2,000 donors is needed to detect eQTLs and perform GWAS               

colocalization for identification of causal variants explaining 1% of heritability (Hormozdiari et al.,             

2016). The largest current human brain eQTL mega-analysis by PsychENCODE included 1,387            

unique donors from multiple cohorts (Wang et al., 2018a) . Moreover, most eQTL analyses have              

been limited to European populations, despite the fact that much shorter linkage disequilibrium             

in individuals of African or African-American ancestry can substantially increase the resolution of             

statistical fine-mapping (Asimit et al., 2016; Morris, 2011; Schaid et al., 2018; Zaitlen et al.,               

2010).  

Given the limited availability of human brain samples, it is critical to maximize power and               

fine-mapping resolution by combining existing datasets. Yet differences in study designs have,            

thus far, hindered such efforts. Trans-ethnic studies have long been challenging in genetics, but              

linear mixed models can control the false positive rate in the presence of complex population               

structure (Sul et al., 2018; Yang et al., 2014; Zhou and Stephens, 2012) . Moreover, expression               

measurements from multiple brain regions in GTEx are not statistically independent, so            

combining these data entails explicit modelling of these correlated measurements from the            

same set of individuals (Han et al., 2016) . 
In order to realize the potential of trans-ethnic eQTL fine-mapping and integration with             

brain-related GWAS results, we developed the multivariate multiple QTL (mmQTL) pipeline and            

applied it to a combined analysis of brain tissues from PsychENCODE, Religious Orders Study              

and Memory and Aging Project (ROSMAP) and GTEx. Our pipeline performs eQTL detection             

with a linear mixed model, identifies conditionally independent eQTL and combines results            

across datasets with a random effects meta-analysis that models the correlation between            

multiple brain regions from a shared set of individuals. Joint fine-mapping then identifies             

candidate causal variants shared between gene expression and GWAS traits. This integrative            
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analysis identifies novel disease genes and elucidates potential regulatory mechanisms for           

genes underlying schizophrenia (SZ), bipolar disorder (BD) and Alzheimer’s disease (AD). 

Results 

Analysis overview 

We performed a trans-ethnic eQTL meta-analysis on RNA-seq gene expression data from            

non-overlapping samples from the dorsolateral prefrontal cortex (DLPFC) from PsychENCODE          

(Wang et al., 2018a) and ROSMAP (Bennett et al., 2018), and 13 brain regions from GTEx                

(GTEx Consortium et al., 2017) (Figure 1A). We accounted for diverse ancestry ( Figure 1B),              

repeated measures from a shared set of donors in GTEx and effect size heterogeneity using a                

linear mixed model for analysis of each dataset, followed by combining these 15 eQTL analyses               

using a random effects meta-analysis (Figure 1C). This statistical framework is implemented in             

our mmQTL software (see Methods). Statistical fine-mapping of the eQTL meta-analysis was            

integrated with GWAS fine-mapping from CAUSALdb (Wang et al., 2020) to identify candidate             

causal variants shared between gene expression and neuropsychiatric traits.  

 

For example, results for THOC7 illustrate that increasing the number of GTEx tissue from 1 to 7                 

to 13 enhances power and decreases the size of the 95% credible sets, while integration with                

PsychENCODE and ROSMAP nominates a single candidate causal variant (Figure 1D).           

Integrating GWAS and eQTL results produces co l ocalization p osterior p robabilities (CLPP) >           

0.05 for SZ, BD and sitting height, and identifies rs832190 and THOC7 as the candidate causal                

variant and gene, respectively, for this locus. 
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Figure 1: Workflow for trans-ethnic eQTL meta-analysis. A) RNA-seq datasets with details            

about ancestry and repeated measures. B) Multidimensional scaling illustrating diverse          

ancestry of donors from PsychENCODE resource. C) mmQTL workflow is composed of eQTL             

analysis within each brain region for each resource using a linear mixed model to account for                

population stratification. Each analysis is then combined using a random effects meta-analysis            

that accounts for repeated measures from GTEx sample and effect size heterogeneity across             

brain regions and resources. Statistical fine-mapping is performed on GWAS and combined            

eQTL results separately. Finally, fine-mapping posterior probabilities from the eQTL analysis           

and each GWAS are combined to produce co l ocalization p osterior p robabilities (CLPP). D)            
Analysis of data for THOC7 from 1, 7 and 13 GTEx brain tissues, and addition of                

PsychENCODE and ROSMAP, reduces the size of the 95% credible sets indicated by red              

points. Statistical fine-mapping for this gene and integration with GWAS nominates a single             

candidate causal variant, rs832190, affecting SZ, a combined risk for SZ and BD, and sitting               

height in this region.  

Biologically motivated simulations 

Simulations motivated by the scenarios considered here (i.e. diverse ancestry and repeated            

measures design of the human brain datasets) were used to evaluate mmQTL performance in              

terms of: 1) controlling the false positive rate, 2) leveraging eQTL effects shared across multiple               

tissues and 3) reducing the size of the credible set from statistical fine-mapping ( Figure 2). For                

the eQTL analysis we considered a linear regression model including 5 genotype PC’s and a               

linear mixed model that counts for the genetic similarity between all pairs of samples (Sul et al.,                 
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2018; Yang et al., 2014; Zhou and Stephens, 2012). The summary statistics for each              

SNP-gene pair were aggregated across tissues using a fixed- or random-effects meta-analysis,            

or simply the minimum p-value with a Sidak correction to account for the number of tissues.                

The first two explicitly account for the repeated measures design by modeling the correlation              

between summary statistics under the null, while the Sidak-corrected minimum p-values assume            

independence. 

  

We simulated genotypes for 500 individuals in each of three distinct populations: European,             

African, and Asian. A single causal eQTL explaining 1-2% of expression variation in up to 5                

tissues for these 1,500 individuals was simulated for 800 randomly chosen genes where the              

number of tissues with a shared effect varied from 1 to 5. Correlation between the same gene                 

expression trait measured in two tissues was simulated to be low (r=0.12) or high (r=0.45) ( see                
Methods).  

 

In a null simulation with all genetic effects set to zero in both the low and high correlation                  

scenarios, the linear mixed model accurately controlled the false positive rate when summary             

statistics from multiple tissues were aggregated using the Sidak method as well as fixed or               

random effects meta-analysis (Figure 2A, Supplementary Figure 1). As expected, the linear            

model did not adequately account for the complex population structure and showed an inflated              

false positive rate.  Therefore, it was not included in subsequent simulations.  

 

Power analyses were performed on the same set of samples of diverse ancestry where the               

number of tissues with a shared eQTL effect varied between 1 and 5 (Figure 2B). Using a                 

p-value cutoff of 10 -6, the random effects meta-analysis following a linear mixed model eQTL              

analysis had the highest power under most levels of eQTL sharing across tissues because it               

models heterogeneity in effect sizes across tissues. The fixed-effect meta-analysis was less            

powerful because it assumes a shared effect size across tissues. The Sidak corrected minimum              

p-value only performed best when the eQTL was tissue-specific (i.e. no cross-tissue sharing)             

since it assumes statistical independence of the results from each tissue. 

 

The mmQTL workflow with linear mixed model followed by a random-effects meta-analysis            

demonstrated accurate control of the false positive rate while retaining high power under             

biologically motivated simulations. With the goal of identifying candidate causal variants shared            

with brain-related traits, we evaluated the benefit of using a dataset of diverse ancestry. A               
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dataset of 1,500 European individuals was simulated in addition to the trans-ethnic cohort             

above. One causal variant with effect size was used to simulate gene expression              

traits. Statistical fine-mapping of eQTL results from the trans-ethnic cohort produced 95%            

credible sets containing a mean of 2.0 SNP’s compared to a mean of 4.8 for the European only                  

cohort (Figure 2C). In the trans-ethnic cohort, 73.0% of genes have a single candidate causal               

variant compared to 51.6% in the European cohort. Moreover, random-effects meta-analysis           

reduces the credible set by 10.0% compared to fixed effects meta-analysis.  

  

 

Figure 2: Biologically motivated simulations demonstrate performance of mmQTL         
workflow: high correlation scenario. A) QQ plot of results from null simulation shows that the               

linear mixed model (LMM) with fixed or random effect meta-analysis accurately controls the             

false positive rate, while linear regression with 5 genotype principal components did not. The              

Sidak method was very conservative in both cases. λGC indicates the genomic control inflation              

factor. B) Power from LMM followed by 3 types of meta-analysis versus the number of tissues                

sharing an eQTL. C) Size of the 95% credible sets from statistical fine-mapping for a dataset of                 

European samples versus a trans-ethnic dataset of the same size. 

Evaluating mmQTL workflow on real data 

Here we evaluate the empirical performance of our mmQTL workflow on real data by analysing               

an increasing number of brain regions (k=1,4,7,13) from GTEx ( Figure 3). As expected,             

mmQTL is able to borrow information across multiple brain regions using a random-effects             

meta-analysis so that increasing k substantially increases the empirical effective sample size            

(Neff) (Figure 3A). With k=13, there are 1,335 RNA-seq samples from 192 individuals producing              
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empirical N eff = 524. Moreover, increasing k decreases the median size of the 95% credible sets                

from statistical fine-mapping (Figure 3B).  
 

The value of adding each successive study to the meta-analysis was evaluated for primary              

eQTLs as well as secondary and tertiary conditional eQTLs using a conservative p-value cutoff              

of 10 -6 (Figure 3C, see Methods). The PsychENCODE study included the largest cohort and              

yielded 50.4% of genes having genome-wide significant primary eQTLs. Adding data from            

GTEx and ROSMAP produced a combined eQTL analysis comprising 3,188 RNA-seq samples            

from 2,029 donors to give N eff = 2,974. Powered by this substantial increase in N eff, eQTLs were                 

detected for 73% of genes analysed in the final meta-analysis. 

 

Figure 3: Evaluation of mmQTL workflow on real data. A) Increasing the number of brain               

regions from GTEx increases the effective sample size. B) Increasing the number of brain              

regions from GTEx decreases the median 95% credible set size. P-values are shown from              

one-sided Kolmogorov–Smirnov test between adjacent categories. C) Including additional         

datasets increases the proportion of genes with a detectable primary or conditional eQTL.             

Colors indicate degree of eQTL. Panel is divided into regions showing 1) GTEx and ROSMAP               

results; 2) PsychENCODE (PEC) data analyzed here, and published PEC summary statistics            

(Wang et al., 2018a) ; 3) adding an increasing number of GTEx brain tissues to the               

PEC+ROSMAP results; 4) final version merging PEC+ROSMAP+GTEx.  

Properties of brain eQTL meta-analysis 

Our brain eQTL meta-analysis identifies 10,456 genes with a genome-wide significant eQTL,            

including 4,808 with at least one conditional eQTL using a conservative p-value threshold of 10 -6               

(Figure 4A). These eQTL results are highly reproducible with estimated replicated rate            
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π1=75.6% when evaluated in an independent dataset of bulk brain tissue (Wang et al., 2018b)               

using Storey’s π1 statistic (Storey and Tibshirani, 2003). The increased power from our             

meta-analysis enables detection of cell-type-specific eQTL not detectable in smaller studies of            

bulk brain tissue. eQTLs detected in the granule cell layer of the dentate gyrus enriched for                

excitatory neurons (Jaffe et al., 2020) , are replicated in our analysis at π1=83.8% compared to               

π1=65.2% in the PsychENCODE analysis (one-sided z-test p < 1.15e -8), and eQTLs detected in              

purified microglia (Kosoy, et al, in preparation) are replicated in our analysis at π1=89.0%              

compared to π1=55.0%, from the PsychENCODE analysis (one-sided z-test p < 6.24 -6) (Figure             
4B). Overlaying variants in 95% credible sets with with ATAC-seq regions identified by             

fluorescence activated nuclei sorting for 4 cell populations (GABAergic neurons, glutamatergic           

neurons, oligodendrocytes, and a mixture of microglia and astrocytes) (Hauberg et al., 2020)             

identifies significant enrichment within open chromatin regions for each cell population ( Figure            
4C).  

 

Conditional eQTLs have different properties than primary eQTLs. While primary eQTLs are a             

median of 24 kb from the transcription start site, conditional eQTL are more distal with median                

distances of 39 kb for secondary, 53 kb for tertiary and 75 kb for quaternary eQTL (p < 0.001 for                    

all comparisons of adjacent categories using one sided Kolmogorov–Smirnov test)          

(Supplementary Figure 2A). This is consistent with primary eQTLs often affecting promoters            

and conditional eQTL more often affecting enhancers. In addition, genes with more            

independent eQTLs have higher cell type specificity in human (Darmanis et al., 2015)             

(Spearman rho = 0.0408, p = 1.85x10 -6) and mouse (Zeisel et al., 2015) (Spearman rho:               

0.04435, p = 2.18x10 -7) brain (Supplementary Figure 2B). Finally, genes with more conditional             

eQTLs tend to be under lower evolutionary constraint, as measured by the probability of loss               

intolerance (pLI) calculated from large-scale exome sequencing (Lek et al., 2016). While 35%             

of genes with no detectable eQTLs are highly constrained (pLI > 0.9), only 10% of genes with 4                  

eQTLs exceed this cutoff ( Supplementary Figure 2C).   
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Figure 4: Properties of brain eQTL meta-analysis. A) Number of genes having a significant              

primary or conditional eQTL for degree up to 12. Inset shows number of genes for eQTL                

degree 4 to 12. B) Replication rate measured by Storey’s π1 in the current study and                

PsychENCODE for eQTLs discovered in the granule cell layer of the dentate gyrus enriched for               

excitatory neurons (Jaffe et al., 2020) , and purified microglia (Kosoy, in preparation). Error bar              

indicates standard error from 100 bootstrap samplings. P-value indicates one-sided z-test. C)            
Enrichment of variants in the 95% causal sets for each gene in open chromatin regions assayed                

in each of 4 cell populations. Results are shown for eQTL degree 1 to 4. Error bars indicate                  

standard deviation, ‘#’ indicates Bonferroni adjusted p-value < 0.05 and ‘*’ indicates nominal             

p-value < 0.05.   

Variants in credible sets are enriched for risk for brain-related traits  

Integration of variants in the 95% credible set for primary and conditional eQTLs with              

large-scale GWAS summary statistics using stratified linkage disequilibrium scores regression          

(Finucane et al., 2015) finds significant enrichments across 22 complex traits after accounting             

for baseline annotations ( Figure 5). Variants in the 95% credible set for primary eQTLs were               

enriched for 21 traits, including 8 neuropsychiatric and behavioral traits, and 4            

neurodegenerative diseases. Meanwhile, the enrichment for conditional eQTLs was limited to           

AD, BD and alcohol use. These enrichments indicate that our meta-analysis and statistical             

fine-mapping captures risk variants for brain-related phenotypes.  
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Figure 5. Heritability enrichment of variants in the 95% causal set for 22 complex traits.               
Linkage disequilibrium score regression (LDSC) enrichments are shown for variants in the 95%             

causal set for primary and secondary eQTLs. Error bars indicate standard errors. ‘#’ indicates              

p-value passes 5% Bonferroni cutoff for 44 tests and ‘*’ indicates p-value < 0.05. See               

Supplementary Table 1 for trait abbreviations and references.  

Fine mapping identifies candidate causal variants conveying risk for         

brain-related traits 

Integrating our eQTL fine-mapping results with candidate causal variants from large-scale           

GWAS (Wang et al., 2020) using a joint fine-mapping approach (Hormozdiari et al., 2016)              

identifies 6,978 variant-trait pairs (CLPP > 0.01) including 2,048 unique candidate causal            

variants and 1626 unique genes among 683 complex traits ( Supplementary Figure 3). These             

results include 301 variant-trait pairs for 23 brain-related traits for 189 and 179 unique candidate               

causal variants and genes, respectively ( Figure 6A). Analysis of SZ and BD, two             

neuropsychiatric diseases with high genetic co-heritability (Bipolar Disorder and Schizophrenia          

Working Group of the Psychiatric Genomics Consortium, 2018; Cross-Disorder Group of the            

Psychiatric Genomics Consortium., 2019; Pardiñas et al., 2018) identified candidate causal           

variants for 20 genes predicted to confer risk for one or both diseases ( Figure 6B). The top                 

genes with CLPP > 0.5 for either of these diseases include ZNF823, THOC7 and FURIN. While                
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these genes have been implicated in SZ or BP previously, and in fact the candidate causal                

variant for FURIN, rs4702, has been validated experimentally (Schrode et al., 2019), candidate             

causal variants for the other two genes have not been previously identified. Moreover,             

integrating results from analysis of SZ, BP and SZ+BP versus controls indicates the specificity              

of these candidates causal variants. ZNF823 is predicted to confer risk to SZ, but not BD.                

THOC7 has a substantially larger CLPP score for SZ compared to the joint SZ+BP GWAS.               

Conversely, FURIN has a higher CLPP for the joint SZ+BP GWAS than for SZ alone. Notably,                

the candidate causal variants driving the colocalization with SZ and BD for CACNA1C and              

VARS2 are in fact secondary eQTLs, emphasizing the importance of including conditional eQTL             

analysis. The candidate causal variant for CACNA1C , rs2007044, which is within an intronic             

enhancer, has been previously shown to affect transcription due to reduced promoter interaction             

(Roussos et al., 2014) . 
 

In addition, analysis of candidate causal variables across many phenotypes enables insight into             

pleiotropy. FURIN and rs4702 are also implicated in the number of sexual partners, age at first                

sexual intercourse, risk taking behavior, and emotional sensitivity / hurt feelings, and multiple             

anthropometric traits ( Figure 6C, Supplementary Figure 4). Sharing of a candidate causal            

variant and gene between SZ+BP and these risk-taking behavior traits is particularly interesting             

given that impulsiveness is a clinical feature of both SZ and BD (Najt et al., 2007; Ouzir, 2013) ,                  

and is associated with more severe psychiatric symptoms and decreased level of functioning             

(Cerimele and Katon, 2013). 
 

Analysis of AD identified candidate causal variants for 6 genes. While these genes have been               

highlighted previously (Jansen et al., 2019) , our analysis highlights variants and their            

mechanistic link to disease (Figure 6D). 
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Figure 6: Summary of joint fine-mapping colocationation with brain-related traits A)           
Number of genes with colocalization posterior probability (CLPP) > 0.01 for B) Genes with              

CLPP > 0.01 for Schizophrenia (SZ) and Bipolar Disorder (BP) and a joint GWAS of SZ+BP                

versus controls. For each gene, the max CLPP across SZ, BP and SZ+BP is shown. Right                

Panel shows CLPP for BP, SCZ and SZ+BP compared to controls. C) A validated casual               

variant, rs4702, that affects expression of FURIN is predicted to affect risk for multiple complex               

behavioral, psychiatric and anthropometric traits.  D) Genes with CLPP > 0.01 for AD. 

Candidate causal variants elucidate potential molecular mechanisms 

rs117618017 is the top causal variant for AD and drives the expression of APH1B, a subunit of                 

the gamma-secretase complex, which includes multiple AD risk genes as components (Figure            
7A). This missense coding variant was identified in a GWAS meta-analysis for AD (Jansen et               

al., 2019), but an attempt to experimentally validate a functional effect from this single amino               

acid change yielded only negative results (Zhang et al., 2020). Yet our analysis indicates an               

alternative molecular mechanism, whereby, instead of acting by changing protein sequence, the            
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minor allele of rs117618017 increases AD risk by directly increasing gene expression of             

APH1B.  

 

The top hit for SZ is rs72986630, which is predicted to drive expression of ZNF823 , a zinc finger                  

protein with little additional annotation ( Figure 7B). This C/T SNP is located in the 5’ UTR of                 

the gene and the minor allele, T (MAF ~6%), is protective against SZ. This variant is predicted                 

to disrupt a binding site for the RE1 silencing transcription factor (REST), also known as               

neuron-restrictive silencing factor. REST is upregulated during neurogenesis and in adult           

non-neuronal cells, and acts by silencing neuron specific genes (Hwang and Zukin, 2018;             

Schoenherr and Anderson, 1995) . Analysis of chromatin accessibility in this region using a             

large-scale ATAC-seq dataset from purified neuronal and non-neuronal nuclei from the anterior            

cingulate cortex (ACC) of post mortem brains of 368 donors elucidated the molecular             

mechanism (Bendl, et al. in preparation) (Figure 7C). In non-neuronal cells, but not in neuronal               

cells, individuals heterozygous at this site have higher chromatin accessibility at both the 644 bp               

ATAC-seq peak (p = 0.016) and the 21 bp motif (p = 0.026), and this corresponds to decreased                  

binding of REST at this site. Since REST is a transcriptional silencer, decreased binding of               

REST should lead to increased expression of ZNF823 . Querying RNA-seq data from brain             

homogenate from these samples confirms that heterozygous individuals have increased          

expression of ZNF823 (p=6.01x10 -9).  

 

 
Figure 7: GWAS-eQTL colocationation by joint fine-mapping. A,B) Starting from the top, the             

plot shows -log 10 p-values from eQTL analysis, poster probabilities from statistical fine-mapping            

of eQTL results, poster probabilities from statistical fine-mapping of GWAS results, and            

colocalization posterior probabilities (CLPP) for combining eQTL and GWAS fine-mapping. A)           
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Expression of APH1B and AD risk share rs117618017 as a candidate causal variant. B)              

Expression of ZNF823 and SZ risk share rs72986630 as a candidate causal variant. This              

variant is predicted to disrupt a REST binding site motif. C) Individuals heterozygous for              

rs72986630 have increased chromatin accessibility at the peak and REST binding site in             

non-neuronal cells. Genome-plot shows chromatin accessibility for neuronal (top) and          

non-neuronal (middle) nuclei, and gene expression from brain homogenate bottom. The lower            

panel shows boxplots comparing chromatin accessibility and gene expression between          

individuals with two reference alleles (i.e. CC) compared to CT heterozygotes.  

Discussion 

Integration of eQTL and GWAS is a powerful method to understand the molecular mechanism              

influencing complex traits. While transcript-wide association studies aim to identify genes           

underlying a complex trait, correlated expression and co-regulation can be challenging to            

overcome (Mancuso et al., 2019; Wainberg et al., 2019) . Joint fine-mapping focuses instead on              

identifying variants that drive both gene expression and a downstream trait (Hormozdiari et al.,              

2016). Despite recent successes, fine-mapping is often limited by statistical power and linkage             

disequilibrium (Hormozdiari et al., 2016; Schaid et al., 2018) . Our mmQTL workflow addresses             

both of these issues by performing a trans-ethnic eQTL meta-analysis of 3,188 RNA-seq             

samples from 2,029 donors, with an effective sample size of 2,974, to produce the largest               

resource to date characterizing the genetics of gene expression in the human brain. This              

analysis has substantially boosted the catalog of genes with detected conditional eQTLs, while             

increasing the resolution of statistical fine-mapping. 

 

Despite being performed on bulk RNA-seq data, our analysis is able to replicate eQTLs              

discovered in purified microglia (Kosoy, in preparation) and neurons (Jaffe et al., 2020), and the               

replication rate is substantially higher than for PsychENCODE (Wang et al., 2018a) . Moreover,             

we identify candidate causal variants enriched in cell type specific open chromatin regions.             

While much recent work has pursued generating eQTLs from purified cell populations (Jaffe et              

al., 2020; de Paiva Lopes et al., 2020; Young et al., 2019) , and eQTL discovery from single                 

cell/nucleus RNA-seq is becoming tractible (Mandric et al., 2020; van der Wijst et al., 2020) , our                

eQTL meta-analysis from bulk tissue illustrates thats large sample size and sophisticated            

statistical modelling has substantial power to replicate eQTLs from smaller studies of purified             

cell types.  
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While the number of genes with detectable eQTLs approaches saturation, there is substantial             

value in increasing sample size. Here, we use individuals of diverse ancestry paired with a               

linear mixed model in our mmQTL workflow to increase the resolution of statistical fine-mapping.              

Moreover, we perform conditional eQTL analysis to identify genes with up to 12 independent              

eQTLs. These conditional eQTLs tend to have smaller effect sizes, be farther from transcription              

start sites, and affect genes that are more cell type specific. The number of genes with                

secondary and tertiary eQTL does not appear close to saturation, underscoring the regulatory             

variation that remains to be identified. 

 

Integrating statistical fine-mapping for eQTLs and GWAS across hundreds of complex traits            

enabled insight into candidate causal variants, mechanisms of disease genetics and pleiotropy.            

Focusing on regulatory mechanisms for genes underlying brain-related traits, we identified 20            

genes and candidate causal variants predicted to drive risk for SZ and BD, plus another 6 for                 

AD. While other methods focus on discovering disease genes, here we focus on discovering              

gene-variant pairs underlying disease risk in order to elucidate the molecular mechanisms that             

convey risk.  

 

Here we highlighted two examples. The SNP rs117618017 is a candidate causal variant             

causing a single amino acid change in APH1B. While experimental results of the impact of this                

amino acid change were negative (Zhang et al., 2020) , our analysis instead supports a              

mechanism where this variant increases disease risk by increasing expression of APH1B. Our             

analysis predicts that rs72986630 drives expression of ZNF823 and is protective against SZ.             

By integrating chromatin accessibility data from post mortem brains, we traced the predicted             

chain of causality and found that the minor allele disrupts binding of REST in non-neuronal cells,                

which then increases expression of ZNF823. The lack of an effect in neuronal nuclei is               

consistent with the higher expression of REST in non-neuronal cells during adulthood, silencing             

neuron-specific genes (Hwang and Zukin, 2018; Schoenherr and Anderson, 1995) .  
 

While we focused on regulatory mechanisms for genes underlying SZ, BD and AD, all results               

are available from the Brain e QTL meta-a nalysis (BREMA) resource (icahn.mssm.edu/brema ). 
 

Further integration of multi-omics data with trans-ethnic fine-mapping and large-scale GWAS           

promises to yield further insight into the molecular mechanisms underlying disease risk. Future             
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studies are poised to perform multiple genomic assays, namely RNA-seq and ATAC-seq, on             

multiple tissues or brain regions, and target multiple cell types either by sorting or single               

cell/nucleus methods (Mandric et al., 2020; van der Wijst et al., 2020) . Moreover, these studies               

will increasingly include individuals of diverse ancestry (Wojcik et al., 2019) . Our mmQTL             

method will enable the field to take advantage of these repeated measures datasets while              

modeling effect size heterogeneity and controlling the false positive rate. Efforts to trace the              

chain of causality from variants and molecular mechanisms to pleiotropy across complex            

phenotypes are poised to yield insight into novel therapeutic targets.  

Resources 

Brain eQTL meta-analysis resource: http://icahn.mssm.edu/brema  
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Methods 

Obtaining and processing of RNA-seq datasets 

Imputed genotypes from GTEx v7 were downloaded from dbGAP (Accession          

phs000424.v7.p2 ). For ROSMAP, the imputed genotypes were downloaded from the Synapse           

website (id: syn3157329 ). The imputed genotype for each cohort in the PsychENCODE study             

was downloaded from Synapse website (id: syn21052530 ), and was then filtered to retain             

variants with imputation quality ≥0.3. Filtered genotypes from each cohort were merged and             

variants with MAF ≥ 1% and Hardy-Weinberg Equilibrium p-value ≥ 1e-6 were retained.  

The original PsychENCODE analysis performed eQTL detection using 1,387 individuals (Wang           

et al., 2018a). In the current work we exclude a small fraction of these individuals. First, the full                  

PsychENCODE dataset contains GTEx samples which we excluded in order to avoid            

redundancy with our separate GTEx analysis. Second, the original analysis used ~5 million             

imputed SNPs. Since accurate statistical fine-mapping depends on including the true causal            

variant in the analysis, we included additional well-imputed SNPs at the cost of excluding a               

small set of samples. Excluding samples with < 8 million well-imputed (info score >0.3) variants               

yielded 1,215 individuals used in this study. 

The normalized gene expression of GTEx v7 was downloaded from GTEx Portal            

(GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz , 
https://gtexportal.org/), and we regressed out covariates from the companion file          

GTEx_Analysis_v7_eQTL_covariates.tar.gz with linear regression. Normalized data from       

PsychENCODE (DER-01_PEC_Gene_expression_matrix_normalized.txt ) was   

downloaded from http://resource.psychencode.org/, and as the downloaded gene expression is          

already normalized regressing out the effect of covariates, no further normalization was taken.             

Data from ROSMAP (syn3388564 , ROSMAP_RNAseq_FPKM_gene.tsv ) was downloaded from        

https://adknowledgeportal.synapse.org . The provided FPKM abundance values were quantile        

normalized, log2 transformed, standardized to normal distribution, and 20 principal components           

of the gene expression matrix were regressed out. 

Linear mixed model eQTL analysis 

Given expression abundance of a gene measured in tissues from same set of individuals, the                

gene expression in tissue  can be modeled as:  
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where, is the measured gene expression value for individual in tissue which has been              

normalized so that it has mean 0 and variance 1, is the genotype dosage for individual at                  

variant normalized so that it has mean 0 and variance 1, is effect size for variant and                   

tissue . The next term models the polygenic background across variants where is the                

genotype dosage value for individual at variant and is the effect size for variant and                  

tissue with distribution , where is the tissue-specific parameter for genetic             

background. Finally, is the normally distributed error variance for individual and tissue               

with distribution , where  is the tissue-specific parameter for random noise.  

This linear mixed model can be transformed for practical estimation the effect size .              

Equation (1) can be rewritten as  

  

where and has a distribution , where is a genetic            

relatedness matrix estimated based on genome-wide genotypes.  

Considering that the phenotype was collected among individuals, we can write formula (2) into       l         

a vector format:  

 

where , and are -dimensional vectors, and contain normalized phenotype, normalized             

genotype of variant , and noise, respectively. 

From Equation (3),   can be estimated as 

     

where  and produces an unbiased estimator since 

   . 
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Modeling covariance across tissues 

While standard meta-analysis assumes that effect size estimates are statistically independent,           

analysis of multiple tissues from the same set of subjects produces covariance between the              

coefficient estimates. Here we explicitly model this covariance in order to control the false              

positive rate.  

Denote the estimate for variant across all tissues as the vector . Since              

individuals overlap across the multiple tissues, the entries of will be correlated. Estimating              

coefficients for tissues 1 and 2 using Equation 4 gives  

 

 

where an index is added to to distinguish the two tissues which may have partial sample                

overlapping.  These estimates are not statistically independent since 

  

where is only involved with transformed       

genotypes projected by a covariance matrix. Noting that and are the summed              

contribution from polygenic background and noise, if there are sample overlapping and the             

phenotypes share causal variants in two tissues, then 

 , 

where is the number of shared individuals, and and are the genetic               

component for polygenic background in tissue 1 and tissue 2.   Finally we note that   

, 

explicitly indicating that there is nonzero covariance between estimators. Our mmQTL method            
estimates the covariance matrix among n tissues based on the non-significant z-score in             

tissues, and set it to be . This matrix is defined so that the covariance between tissues and                   

is estimated by the covariance between z-scores from non-significant variants (p>0.05)            

according to: 
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, 

where  and  are vectors containing statistical Z-scores. 

Fixed-and random effects meta-analysis 

The results from multiple analyses are aggregated using either a fixed or random effects              

meta-analysis. The true effects sized are assumed to be drawn from a normal distribution              

centered at the true effect size with variance . For a fixed effect model, the true                  

effect size is fixed at a constant value which is equivalent to setting and for the random                  

effects model . From this hierarchical framework, we obtain estimators for variant             

among tissues, denoted as a vector which has a distribution .            

We applied the Brent-method implemented in C++ Boost library ( https://www.boost.org ) to           

estimate and . To test the difference with null hypothesis, we applied the random-effect               

model2 (Han and Eskin, 2011; Han et al., 2016)  to obtain a p-value.  

Detection of conditional eQTLs 

We applied a stepwise selection strategy explore cis-region and identify conditionally           

independent eQTL associations. An iterative strategy is applied to find conditional independent            

eQTL: previously detected eQTL signals are regressed out and another round of eQTL             

detection was initiated. If one or more variants with p-value less than 10 -6, the variant with the                 

smallest p-value is added to the list of conditionally independent effects. The process is              

repeated until no addition variant has a p-value < 10 -6. If a high-order eQTL is in high LD with                   

low-order eQTL ( >=0.3), the high-order eQTL will be excluded in order to avoid attenuating              

the  estimated effect size of low-order eQTL. 

Importantly, we demonstrate statistically that the order in which conditional eQTLs are detected             

is biologically meaningful: large-effect eQTL shared among tissues are likely to be detected first,              

while and small-effect eQTL or tissue-specific effect will be detected as higher-order eQTL. 

Consider two true causal variants and where the estimated effect has the distribution               

around the true value according to , where is defined above. The             

non-centrality parameter (NCP) reflecting the statistical power for this variant is  
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. 

The ratio between the NPC of variant  and the second variant  is 

 

From empirical observation that the effect size (with the genotype and response normalized) of              

primary eQTL is much larger than that of non-primary eQTL, and both are positive               

definite, and can be decomposed into , in which consists of the eigenvectors, and is                 

a diagonal matrix with elements being eigenvalues, denoted as .         iag(λ , λ , λ , , )d 1  2  3 … λN  

can be decomposed into , and to be .           

Therefore, Equation (7) can be rewritten as  

.  

Based on this, it is apparent that the difference in statistical power for variants and is mainly                   

determined by effect size, and its variance. For a variant with larger effect size, and smaller                

variance, it has a higher statistical power, which is consistent with the empirical that primary               

eQTL has a much larger normalized effect size ( ), and smaller variance because of the               

sharing among tissues , so . It follows that on average, mmQTL will pick              

the independent eQTL signal in a biologically meaningful manner, so that eQTL with a larger               

influence on expression abundance among conditions tends to be selected first.  

Multiple testing 

Multiple testing correction is performed at the level of the locus as well as genome-wide.               

Empirically, we performed the locus-level control applying Bonferroni correction, which is a most             

conservative strategy, and Benjamini-Hochberg method (Benjamini and Hochberg, 1995) on          

genome-wide correction, and we found that a p-value 10 -6 is enough for two-level multiple test               

correction. While studies often use more liberal multiple testing cutoffs because of the limited              
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statistical power, the statistical fine-mapping that is the focus of this analysis can perform poorly               

on genes that only pass a liberal cutoff (Hormozdiari et al., 2016, 2018) .  

Computing empirical effective sample size 

In linear regression model for QTL analysis, given that both phenotype and genotype were              

normalized, the estimator for the allelic effect size is , and its variance is              

. Letting be the variance explained by the explored variant and             

be the (effective) sample size for study , the variance of the effect size estimate is               

. Consider two studies, where the (effective) sample size of the first study is              

easy to estimate just by using the number of samples, and the second has some confounding                

factors such as repeat measurements or population structure. Assuming that the effect size of a               

given causal variant is constant in the two studies, the ratio of the variances is determined only                 

by  and : 

. 

Therefore the effective sample size, , can be computed from known values by            

. 

We used individual brain tissue in GTEx dataset as study 1 to define , and eQTL results from                  

fixed-effect meta-analysis as study 2. The genome-wide variance ratio was set to be the              

median ratio of variances based on all variants with abs(z-score)>=10 in the fixed-effect meta              

analysis. When evaluating the effective size of a meta-analysis, the effective sample size was              

computed by treating each brain tissue in GTEx as the baseline study and then taking the mean                 

estimate effective sample size over 13 brain regions.  

Replication of eQTLs from purified cell types 

In order to assess the replication of eQTLs discovered in independent datasets, we considered              

the lead SNP for each gene with a genome-wide significant eQTL in the granule cell layer of the                  

dentate gyrus enriched for excitatory neurons (Jaffe et al., 2020) and purified microglia (Kosoy,              

et al., in preparation). For the set of lead SNPs from each dataset, the p-values were extracted                 
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from the current eQTL analysis as well as the PsychENCODE analysis (Wang et al., 2018a) and                

Storey’s π1 was evaluated using qvalue (Storey and Tibshirani, 2003) . The PsychENCODE            

p-values were obtained from    

http://resource.psychencode.org/Datasets/Derived/QTLs/Full_hg19_cis-eQTL.txt.gz . 
Uncertainty in π1 estimates were evaluated using 100 bootstraps where SNPs were sampled             

with replacement and π1 was recomputed each time. A p-value comparing the replication rate              

for the current and PsychENCODE analysis was computed using a one-sided z-test using the              

estimated π1 values and their bootstrap variances. 

 

Simulation pipeline to evaluate mmQTL performance 

Genotype and gene expressions data simulated to compare to empirical performance of eQTL             

analysis using a linear model with 5 genotype principal components compared to a linear mixed               

model. Results from eQTL analysis of 5 simulated tissues were then aggregated using either              

Sidak correction, or a fixed- or random-effects meta-analysis.  

Biologically realistic genotype data reflecting real human populations was simulated with a            

sampling-based simulation package, hapgen2 (Su et al., 2011), and haplotype information for            

European, African, and Asian populations from the 1000 Genomes Project          

(https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_2010_interim.html ). We  

simulated 500 individuals for each population, and merged these individuals into a single             

trans-ancestry dataset with sample size 1,500. We also simulated 1,500 individuals solely            

based on European haplotype information.  

Based on these genotypes, we adapted the phenotypesimulator pipeline (Meyer and Birney,            

2018) to perform 800 simulations for each scenario, simulating one gene expression trait for              

each simulation. For each gene a single eQTL was simulated to affect expression abundance              

explaining 1% phenotypic variance, and the contribution due to polygenic background was set             

to be 30%. We applied phenotypesimulator’s simulating strategy to account for shared            

environmental factors, measurement noise, and polygenic background to create correlated          

phenotypes. In the simulation, we simulated phenotypes in 5 tissues, and set the number of               

tissues that the causal genetic variant affects to be 1, 2, 3, 4, 5. To demonstrate the robustness                  

of mmQTL to control for population structure and batch effect, we set two different levels of                

phenotype correlation, a low level, r=0.12, and the high level r=0.45. For power analysis, any               
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simulated causal variants located in high LD (r2 >= 0.8) with a variant passing the multiple                

testing cutoff was considered to be detected. 

We also performed a null simulation with no true causal variants where all effect sizes were set                 

to zero. Results from 50 simulations were aggregated and we used genomic inflation factor              

(Devlin and Roeder, 1999)  and QQ plots to assess the false positive rate.  

Comparison of fine-mapping resolution between a European and trans-ethnic population was           

performed using simulated pure 1,500 European European individuals and trans-ethnic 1,500           

individuals with 500 individuals in each of European, African and Asian population. Gene             

expression phenotype was simulated in a single tissue, and a causal variant was randomly              

chosen to explain 2% phenotypic variance. For 1,500 European individuals, we applied            

standard linear regression model to detect eQTL and then fine-mapping was conducted to             

obtain a 95% credible set candidate for causal variants, while for 1,500 trans-ethnic individuals,              

we used mixed linear model to detect eQTL and then fine-mapping was taken to find a 95%                 

credible set. The size of the 95% credible set was used to compare the fine-mapping resolution,                

a smaller number indicating a higher fine-mapping resolution.  

Integration with ATAC-seq data 

Variants in the 95% credible set were overlaid with open chromatin regions from four distinct               

populations of cells (glutamatergic neurons, GABAergic neurons, oligodendrocytes, and a          

mixture of microglia/astrocytes) identified by ATAC-seq (Hauberg et al., 2020). In order to             

reduce the influence of the low fine-mapping resolution of conditional eQTL, if the size of the                

95% credible set for a single gene contained >10 variants, only the 10 variants with highest PIP                 

were included. Enrichment of variants within open chromatin regions was evaluated using a             

Fisher’s exact test implemented in QTLTools (Delaneau et al., 2017) .  

Evaluating GWAS enrichments for variants in credible sets 

We applied a strategy developed in Hormozdiari et al. (Hormozdiari et al., 2018): for each eQTL,                

we performed fine-mapping and compute the causal posterior probability (CPP) of each cis-SNP             

and only variants in the fine-mapped 95% credible set are left for following analysis. For each                

SNP in cis-regions, we assign an annotation value based on the maximum value of CPP across                

all molecular phenotypes; SNPs that do not belong to any 95% Credible Set are assigned an                

annotation value of 0, which is referred as MaxCPP in (Hormozdiari et al., 2018) . Stratified               
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linkage disequilibrium (LD) score regression (S-LDSC) (Finucane et al., 2015) was then used to              

partition trait heritability using the constructed functional annotations, and the estimated           

enrichment was used to measure the importance of each eQTL category on human complex              

traits or diseases. To rule out the potential influences of the correlation among eQTL categories,               

we aggregate the baselineLD model, which includes a set of 75 functional annotations, and              

functional annotations for eQTL categories and run S-LDSR simultaneously.  

GWAS summary statistics were obtained for 22 human complex traits or diseases, which             

contain both brain traits and non-brain traits (Supplementary Table 1). The summary results             

were firstly converted into the required format for LDSR by the provided            

“munge_sumstats.py ” command in the LDSC package (https://github.com/bulik/ldsc). 

eQTL detection in cell type specific datasets 

Microglia from fresh human brain specimens (101 samples, including 27 non-Europeans) were            

prepared using the Adult Brain Dissociation Kit (Miltenyi Biotech). Tissue homogenates were            

incubated in antibody (CD45: BD Pharmingen, Clone HI30 and CD11b: BD Pharmingen, Clone             

ICRF44) at 1:500 for 1 hour in the dark at 4˚C with end-over-end rotation. Prior to FACS, DAPI                  

(Thermoscientific) was added at 1:1000 to facilitate identification of dead cells. Viable (DAPI             

negative) CD45 +/CD11b+ cells were isolated by FACS using a FACSAria flow cytometer (BD             

Biosciences) (Kosoy et al., in preparation). RNA was extracted from FACS sorted cells (Arcturus              

PicoPure RNA Isolation Kit, Life Technologies) and sequencing libraries generated using the            

SMARTer Stranded RNA-seq kit (Clontech), according to manufacturer’s instructions. Variants          

with MAF > 5%, and Hardy-Weinberg equilibrium test p-value > 10 -6 were retained and analyzed               

using a linear mixed model implemented in mmQTL. Gene expression was normalized using             

log2 CPM and eQTL analysis was performed on residauals after regression out 15 principal              

components of the gene expression. For each gene, a Benjamini-Hochberg (BH) FDR            

correction was applied across all variants tested in the cis regulatory region to obtain the               

minimum q-value. Then, the minimum q-values across all genes are adjusted again by the BH               

FDR method to compute the genome-wide FDR. Limited by the small sample size, we chose a                

less conservative FDR cutoff of 10%. 

Statistical fine-mapping 

For each detected eQTL, we conducted a fine-mapping analysis applying the CAVIAR method             

(Hormozdiari et al., 2014) implemented in mmQTL to find a 95% credible set for causal variants.                

26 

http://sciwheel.com/work/citation?ids=2297651&pre=&suf=&sa=0
https://github.com/bulik/ldsc
http://sciwheel.com/work/citation?ids=4326536&pre=&suf=&sa=0


 

Briefly, meta-analysis p-value based on a random-effect model in each round of conditional             

eQTL detection was firstly converted to z-score, which was then used as input for fine-mapping.               

CAVIAR will calculate the posterior inclusion probability (PIP) of each variant to causal, and a               

set of variants prioritized by PIP score were outputted with summed PIP equal to 0.95. 

Detecting colocalization between eQTL and GWAS signals 

Joint statistical fine-mapping of eQTL’s and GWAS signals (Hormozdiari et al., 2016) was             

performed by multiplying the estimated posterior inclusion probability (PIP) for a given variant             

from the eQTL analysis by the PIP for this variant from GWAS of traits compiled in CausalDB                 

(Wang et al., 2020) to obtain a co l ocalization p osterior p robability (CLPP). A gene is              

considered to share a candidate causal variant with a GWAS trait if at least one variant has a                  

CLPP > 0.01 (Hormozdiari et al., 2016) . 

Trait classification 

CausalDB (Wang et al., 2020) provided the MeSH Category for each GWAS trait. However,              

brain-related traits fall in multiple MeSH categories and there is no single criterion to identify               

such traits. We performed manual inspection of traits in CausalDB that could be considered              

neuropsychiatric, neurodegenerative or behavioral and termed them ‘brain related’.  

Validation of rs72986630 effect in chromatin accessibility and gene         

expression data 

To further investigate one prioritized functional variant rs72986630 that reside in REST TF             

binding site overlapping TSS of ZNF823 , we queried our unpublished ATAC-seq data set (Bendl              

et al., in preparation) of neuronal and non-neuronal samples from ACC brain region generated              

on postmortem human brains from CommonMind cohort (Hoffman et al., 2019) . This dataset             

consists of samples from 370 donors (114 SZ cases, 64 BD cases, 64 controls) with               

rs72986630 MAF of 6.0%. Since only two donors carry the ALT/ALT (i.e. T/T) genotype, we               

excluded them for further analysis.  

 

To generate ATAC-seq data set, neuronal and non-neuronal cell populations were isolated from             

postmortem tissue by fluorescence-activated nuclear sorting using anti-NeuN antibody.         

ATAC-seq libraries were created using an established protocol (Buenrostro et al., 2015). Raw             

sequencing reads were mapped to human genome hg38 using STAR aligner (Dobin et al.,              
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2013). The samples of the same cell type (neuron / non-neuron) and genotype at rs72986630               

(CC / CT) were subsampled and merged, creating 4 BAM files with a uniform depth of 1 billion                  

pair-end reads. Subsampling ratios were calculated per each sample individually within those            

four respective groups (genotype by cell type) to ensure that each of them contributed the same                

number of reads, regardless of their per-sample read counts. Using these BAM files, bigWig              

files were created and peaks were called by the MACS (v2.1) with the same parameters as                

described in (Hauberg et al., 2020) , but using an FDR threshold of 0.01. After removing peaks                

overlapping the blacklisted genomic regions and peaks not being sufficiently accessible (CPM>1            

in at least 10% of samples was required), 498,183 peaks remained. The final read count matrix                

of 664 samples by 498,183 peaks was normalized using the trimmed mean of M-values (TMM)               

method. The following covariates were selected by Bayesian Information Criterion (BIC) method            

to be added to the base covariates, i.e. genotype by cell type: mean GC content, fraction of                 

reads with GC content 0-19%, 20-39%, 40-59%, fraction of reads in peaks, fraction of              

unmapped reads, AT dropout, and mean insert size. Since our dataset contains up to two               

samples per individual, we ran differential analysis to get differentially accessible peaks            

between CC and CT carriers using dream (v1.17.9) (Hoffman and Roussos, 2020) that accounts              

for correlation structure in repeated measures. As an alternative approach, instead of            

quantifying changes between all open chromatin regions, we performed differential analysis           

between CC and CT carriers on TF binding sites of REST motif. We used footprinting to narrow                 

down our focus only to 31,534 REST TF binding sites that are bound in at least one set of                   

samples (out of 4 sets, i.e. genotype by cell type) as predicted by TOBIAS (Bentsen et al.,                 

2020). 
 

The analysis of differential gene expression between REF/REF (C/C) and REF/ALT (C/T)            

genotype at rs72986630 followed the same approach as the analysis of chromatin accessibility.             

We used a subset of 338 homogenate RNA-seq samples of ACC brain region from              

CommonMind Consortium (Hoffman et al., 2019) that originate from the same donors as             

ATAC-seq samples. We performed differential analysis only for sufficiently expressed          

protein-coding genes (CPM>1 in at least 30% of samples was required), i.e. we start the               

analysis with a count matrix of 338 samples by 14,893 genes that were normalized by trimmed                

mean of M-values (TMM) method. The following technical covariates were selected by BIC             

method: institution, expression profiling efficiency, intronic rate, intragenic rate, fraction of reads            

with GC content 20-39%, 40-59%, and AT dropout.  
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Supplementary Figures 

 

 
Supplementary Figure 1: Biologically motivated simulations demonstrate performance of         
mmQTL workflow: low correlation scenario. A) QQ plot of results from null simulation shows              

that the linear mixed model (LMM) with fixed or random effect meta-analysis accurately controls              

the false positive rate for, while linear regression with 5 genotype principal components did not.               

The Sidak method was very conservative in both cases. λGC indicates the genomic control              

inflation factor. B) Power from LMM followed by 3 types of meta-analysis versus the number of                

tissues sharing an eQTL. C) Size of the 95% credible sets from fixed- (y-axis) and random-                

(x-axis) effects meta-analysis from simulations in Figure 2C.  
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Supplementary Figure 2: Properties of conditional eQTLs. A) The distribution of the            

distance to the transcription start site is shown for the lead variant for eQTL analysis of                

increasing degree. P-values indicate significance of one-sided Wilcoxon test between adjacent           

groups. Box plot indicates median, interquartile range (IQR) and 1.5*IQR. B) Cell type             

specificity metric tau plotted against the number of independent eQTLs discoverged for each             

gene. C) The fraction of genes with high evolutionary constraint (pLI > 0.9) is shown increasing                

eQTL degree for the current study, PsychENODE (Wang et al., 2018a), and whole blood              

(Glassberg et al., 2019). Error bars indicate standard error based on asymptotic estimate of              

binomial proportion.  
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Supplementary Figure 3. Number of genes colocalizing for each MeSH category with            
CLPP > 0.01. The phenotype with the highest number of colocalized genes for each MeSH               

category is indicated. 
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Supplementary Figure 4. Expression of FURIN and risk for multiple complex traits share             
rs4702 as a candidate causal variant. Starting from the top, the plot shows -log 10 p-values               

from eQTL analysis, poster probabilities from statistical fine-mapping of eQTL results, poster            

probabilities from statistical fine-mapping of GWAS results, and colocalization posterior          

probabilities (CLPP) for combining eQTL and GWAS fine-mapping. Traits are shown in the box              

on the right in decreasing order to CLPP value. 
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Supplementary Tables 

 

 

Supplementary Table 1. Trait/Disease, abbreviation and reference for GWAS included in           
LD-score regression analysis  
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Abbreviation Trait/disease Reference (doi) 
ADHD Attention deficit hyperactivity disorder 10.1016/j.jaac.2010.06.008 
ALS Amyotrophic lateral sclerosis 10.1016/j.neuron.2018.02.027 

PD Parkinson's disease 10.1016/S1474-4422(19)30320-5 
RA Rheumatoid arthritis 10.1038/nature12873 
BMI Body mass index 10.1038/nature14177 
EduYear Educational years 10.1038/nature17671 
HEIGHT Height 10.1038/ng.3097 
CD Crohn's disease 10.1038/ng.3359 
IBD Inflammatory bowel disease  10.1038/ng.3359 
UC Ulcerative colitis 10.1038/ng.3359 
CAD Cardiovascular disease 10.1038/ng.3396 
DS Depression symptom 10.1038/ng.3552 
Neu Neuroticism 10.1038/ng.3552 
SLE Systemic lupus erythematosus 10.1038/ng.3603 
T2D Type 2 Diabetes 10.1038/s41588-018-0241-6 
DRINKING Alcohol Assumption 10.1038/s41588-018-0309-3 
AD Alzheimer's disease 10.1038/s41588-018-0311-9 
ASD Autism spectrum disorder 10.1038/s41588-019-0344-8 
BD Bipolar disorder 10.1038/s41588-019-0397-8 
MDD Major depression disorder 10.1038/s41593-018-0326-7 
SZ Schizophrenia 10.1101/2020.09.12.20192922 
MS Multiple sclerosis 10.1126/science.aav7188 



Figures

Figure 1

Work�ow for trans-ethnic eQTL meta-analysis. A) RNA-seq datasets with details about ancestry and
repeated measures. B) Multidimensional scaling illustrating diverse ancestry of donors from
PsychENCODE resource. C) mmQTL work�ow is composed of eQTL analysis within each brain region for
each resource using a linear mixed model to account for population strati�cation. Each analysis is then
combined using a random effects meta-analysis that accounts for repeated measures from GTEx sample
and effect size heterogeneity across brain regions and resources. Statistical �ne-mapping is performed
on GWAS and combined eQTL results separately. Finally, �ne-mapping posterior probabilities from the
eQTL analysis and each GWAS are combined to produce c o l ocalization p osterior p robabilities (CLPP).
D) Analysis of data for THOC7 from 1, 7 and 13 GTEx brain tissues, and addition of PsychENCODE and
ROSMAP, reduces the size of the 95% credible sets indicated by red points. Statistical �ne-mapping for
this gene and integration with GWAS nominates a single candidate causal variant, rs832190, affecting
SZ, a combined risk for SZ and BD, and sitting height in this region.



Figure 2

Biologically motivated simulations demonstrate performance of mmQTL work�ow: high correlation
scenario. A) QQ plot of results from null simulation shows that the linear mixed model (LMM) with �xed
or random effect meta-analysis accurately controls the false positive rate, while linear regression with 5
genotype principal components did not. The Sidak method was very conservative in both cases. λ GC
indicates the genomic control in�ation factor. B) Power from LMM followed by 3 types of meta-analysis
versus the number of tissues sharing an eQTL. C) Size of the 95% credible sets from statistical �ne-
mapping for a dataset of European samples versus a trans-ethnic dataset of the same size.

Figure 3

Evaluation of mmQTL work�ow on real data. A) I ncreasing the number of brain regions from GTEx
increases the effective sample size. B) Increasing the number of brain regions from GTEx decreases the
median 95% credible set size. P-values are shown from one-sided Kolmogorov–Smirnov test between
adjacent categories. C) Including additional datasets increases the proportion of genes with a detectable
primary or conditional eQTL. Colors indicate degree of eQTL. Panel is divided into regions showing 1)



GTEx and ROSMAP results; 2) PsychENCODE (PEC) data analyzed here, and published PEC summary
statistics (Wang et al., 2018a) ; 3) adding an increasing number of GTEx brain tissues to the
PEC+ROSMAP results; 4) �nal version merging PEC+ROSMAP+GTEx.

Figure 4

Properties of brain eQTL meta-analysis. A) Number of genes having a signi�cant primary or conditional
eQTL for degree up to 12. Inset shows number of genes for eQTL degree 4 to 12. B) Replication rate
measured by Storey’s π 1 in the current study and PsychENCODE for eQTLs discovered in the granule cell
layer of the dentate gyrus enriched for excitatory neurons (Jaffe et al., 2020), and puri�ed microglia
(Kosoy, in preparation). Error bar indicates standard error from 100 bootstrap samplings. P-value
indicates one-sided z-test. C) Enrichment of variants in the 95% causal sets for each gene in open
chromatin regions assayed in each of 4 cell populations. Results are shown for eQTL degree 1 to 4. Error
bars indicate standard deviation, ‘#’ indicates Bonferroni adjusted p-value < 0.05 and ‘*’ indicates nominal
p-value < 0.05.



Figure 5

Heritability enrichment of variants in the 95% causal set for 22 complex traits. Linkage disequilibrium
score regression (LDSC) enrichments are shown for variants in the 95% causal set for primary and
secondary eQTLs. Error bars indicate standard errors. ‘#’ indicates p-value passes 5% Bonferroni cutoff
for 44 tests and ‘*’ indicates p-value < 0.05. See Supplementary Table 1 for trait abbreviations and
references.



Figure 6

Summary of joint �ne-mapping colocationation with brain-related traits A) Number of genes with
colocalization posterior probability (CLPP) > 0.01 for B) Genes with CLPP > 0.01 for Schizophrenia (SZ)
and Bipolar Disorder (BP) and a joint GWAS of SZ+BP versus controls. For each gene, the max CLPP
across SZ, BP and SZ+BP is shown. Right Panel shows CLPP for BP, SCZ and SZ+BP compared to
controls. C) A validated casual variant, rs4702, that affects expression of FURIN is predicted to affect risk
for multiple complex behavioral, psychiatric and anthropometric traits. D) Genes with CLPP > 0.01 for AD.



Figure 7

GWAS-eQTL colocationation by joint �ne-mapping. A,B) Starting from the top, the plot shows -log 10 p-
values from eQTL analysis, poster probabilities from statistical �ne-mapping of eQTL results, poster
probabilities from statistical �ne-mapping of GWAS results, and colocalization posterior probabilities
(CLPP) for combining eQTL and GWAS �ne-mapping. A) Expression of APH1B and AD risk share
rs117618017 as a candidate causal variant. B) Expression of ZNF823 and SZ risk share rs72986630 as a
candidate causal variant. This variant is predicted to disrupt a REST binding site motif. C) Individuals
heterozygous for rs72986630 have increased chromatin accessibility at the peak and REST binding site
in non-neuronal cells. Genome-plot shows chromatin accessibility for neuronal (top) and non-neuronal
(middle) nuclei, and gene expression from brain homogenate bottom. The lower panel shows boxplots
comparing chromatin accessibility and gene expression between individuals with two reference alleles
(i.e. CC) compared to CT heterozygotes.




