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COVID-19 has caused numerous infections with diverse clinical symptoms. To identify

human genetic variants contributing to the clinical development of COVID-19, we genotyped

1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667)

patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced

ancestry-matched population controls, and tested genome-wide association on 1072 severe

cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with

summary statistics of 3199 hospitalized cases and 897,488 population controls from the

COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-

established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR= 1.28,

P= 2.51 × 10−10, allele frequencies in Chinese/European AF= 0.345/0.105), a frameshift

insertion in ABO (rs8176719, OR= 1.19, P= 8.98 × 10−9, AF= 0.422/0.395) and a Chinese-

specific intronic variant in MEF2B (rs74490654, OR= 8.73, P= 1.22 × 10−8, AF= 0.004/0).

These findings highlight an important role of the adaptive immunity and the ABO blood-group

system in protection from developing severe COVID-19.
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T
he coronavirus disease 2019 (COVID-19) is an ongoing
pandemic caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Despite a huge number of

cases have been diagnosed, both modeling studies and ser-
oprevalence studies estimate the actual number of infections to be
much larger, suggesting the majority of infected individuals might
have mild or no symptoms1–4. COVID-19 patients display a wide
spectrum of clinical symptoms. Up to 5% of the confirmed cases
would develop severe pneumonia with acute respiratory distress
syndrome (ARDS)5,6 and millions of deaths have been attributed
to COVID-197. While older age, male sex, and comorbidities,
such as hypertension, diabetes, obesity, and cardiovascular dis-
eases, were found to associate with severe COVID-196,8,9, many
patients with no major risk factors were reported to develop
severe symptoms10. Host genetic variation might contribute to
the diverse clinical presentations of infectious diseases, potentially
through the regulation of the immune system. Classic examples
include the association between CCR5 gene and the human
immunodeficiency virus (HIV) infection11, ABO and malaria12

and SARS13, and HLA-C and chronic hepatitis B virus infection14.
The first genome-wide association study (GWAS) of COVID-19

has reported two severity-associated loci in Italians and Spanish:
the 3p21.31 locus containing several immune genes and the ABO
(9q34.2) locus determining ABO blood groups15. The 3p21.31
locus has been replicated by several follow-up studies, including
the COVID-19 Host Genetics Initiative (HGI)16 and a recent
GWAS comparing COVID-19 patients from intensive care units
(ICU) across the UK and ancestry-matched population controls17,
which also reported three additional loci at 12q24.13, 19p13.3, and
21q22.1. Furthermore, whole-genome sequencing studies (WGS)
have identified several rare putative loss-of-function (LOF) var-
iants, which could impair type I and II interferon (IFN) immunity,
in association with severe COVID-1918,19.

Identification of host genetic variants associated with severe
COVID-19 can help understand how our immune system inter-
acts with SARS-CoV-2 and thus guide the development of effec-
tive prevention and therapeutic strategies, including prioritizing
high-risk populations for vaccination in shortage of vaccine sup-
ply. Current genetic studies of COVID-19, like many other human
genetic studies, are mainly based on European populations, which
might lead to potential bias in translating findings to non-
Europeans20. A striking example is the 3p21.31 locus for COVID-
19. The risk haplotype at this locus was found to inherit from
Neanderthals, reaching a high frequency of 30% in South Asians
and 8% in Europeans, but almost absent in Africans and East
Asians15,21. Thus, risk stratification based on this locus is not
applicable to Africans and East Asians. A recent study of the host
genetic contribution to COVID-19 severity in the Chinese popu-
lation did not identify genome-wide significant association signal
due to a small sample size of 332 patients22.

In this study, we bridge the gap by collecting and analyzing
GWAS and WGS data of 1072 severe COVID-19 cases and 3875
controls (including 1526 patients with mild symptoms and 2349
population controls), all of the Chinese ancestry, and meta-
analyzing with summary statistics from the HGI analysis

(B2_release3) of 3199 hospitalized cases and 897,488 population
controls of primarily European ancestry. We group population
controls with mild patients because the vast majority of popula-
tion controls would likely have COVID-19 with mild or no
symptoms if they were exposed to the virus1–4. Our analyses lead
to three significant loci predisposing risk to severe COVID-19,
including an intronic variant in FOXP4-AS1, a frameshift insertion
in ABO, and a Chinese-specific rare intronic variant in MEF2B.

Results
We successfully genotyped 1626 COVID-19 patients from Tongji
Hospital and Hubei Hospital of Traditional Chinese Medicine
(TCM) in Wuhan using the Illumina Global Screening Array
(GSA). After quality controls, we merged the COVID-19 dataset
with 1459 population controls from the Coke Oven Worker
(COW) cohort in Wuhan, who were genotyped using the same
array, resulting in 369,072 autosomal and 8942 X chromosomal
SNPs with minor allele frequency (MAF) > 0.005 in both datasets.
The merged data were imputed to an East Asian WGS reference
panel combining East Asians from the 1000 Genomes Project
(1KGP)23 and our in-house WGS data of Chinese, achieving good
imputation quality for common variants with MAF > 0.01
(“Methods” and Supplementary Fig. 1). We kept 6,019,210
autosomal and 132,535 X chromosomal variants with imputation
R2 > 0.8 and MAF > 0.01 for downstream analyses.

After excluding second-degree and above relatedness and
contaminated samples, we performed a GWAS of 598 severe cases
versus 2260 controls (including 859 mild patients and 1401
population controls), correcting for the first two principal com-
ponents (PCs) of population structure. The demographic char-
acteristics of the samples were presented in Table 1. We detected
a significant association signal located on 1p36.31, an intronic
region of CHD5 (rs34308690, OR= 1.50, P= 4.52 × 10−8, AF=
0.386, 0.389, and 0.144 in Chinese GWAS, Chinese WGS, and
1KGP Europeans, respectively) (Supplementary Fig. 2). We then
combined our results with GWAS summary statistics of 3199
hospitalized COVID-19 patients versus 897,488 population con-
trols from the HGI study (B2_release3). Meta-analysis of our
GWAS and the HGI results did not replicate the signal in CHD5,
but led to three other significant loci (P < 5 × 10−8), including the
previously reported 3p21.31 locus and the ABO locus15, and a
novel locus at 6p21.1 within the FOXP4-AS1 gene (Supplemen-
tary Fig. 2). We noted that the signal of the 3p21.31 locus was
solely from the HGI analysis because the risk variant at this locus
was absent in our GWAS dataset15,21.

We then pooled together WGS data of 474 severe and 667 mild
COVID-19 patients from Wuhan Tongji Hospital, Wuhan Union
Hospital, and the Third People’s Hospital of Shenzhen, and 948
ancestry-matched population controls from BGI-Shenzhen, all
sequenced at BGI (Shenzhen). These WGS samples have no
overlap with our GWAS samples (Table 1 and “Methods”).
Samples from different sources were sequenced in batches, in
which 467 COVID-19 patients from Union Hospital were
sequenced using cell-free DNA (cfDNA) to ~17.8× , while the

Table 1 Demographic characteristics of Chinese GWAS and WGS datasets.

Chinese GWAS Chinese WGS

n Male (%) Age (mean ± SD) n Male (%) Age (mean ± SD)

Severe COVID-19 598 49.7 63.6 ± 12.3 474 54.9 61.5 ± 13.8

Mild COVID-19 859 45.6 55.8 ± 14.3 667 46.0 49.4 ± 16.2

Population control 1401 86.2 41.7 ± 8.1 948 47.4 29.0 ± 5.4
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other samples were sequenced to >33× following standard WGS
protocols. To minimize batch effects, we performed linkage dis-
equilibrium (LD) based joint calling and stringent variant quality
controls, followed by association tests correcting for the first two
PCs and an indicator variable for the cfDNA batch. Summary
statistics from these WGS samples were meta-analyzed with those
from the previous two GWAS datasets (Fig. 1a–e). We observed
no genomic inflation in all association analyses (genomic inflation
factor λGC < 1.011, Supplementary Fig. 2).

Lead variants in both the 6p21.1 locus and the ABO locus have
a consistent direction of effect in the WGS samples, and no
heterogeneity in effect size was detected across cohorts (Table 2).

The top association signal at the 6p21.1 locus is an intronic SNP
(rs1853837, alleles: C/A) of the FOXP4-AS1 gene, which has
P= 2.51 × 10−10 and OR= 1.28 (95% confidence interval [CI]:
1.19–1.39) after meta-analysis. The risk allele A is much more
common in Chinese than in Europeans (allele frequency AF=
0.353 in our WGS Chinese and 0.105 in 1KGP Europeans). The
top association signal at the ABO locus is a frameshift insertion in
the ABO gene (rs8176719, alleles: T/TC, P= 8.98 × 10−9, OR=
1.19 [1.12–1.26]), which is the only variant passing the genome-
wide significance level of P < 5 × 10−8 and is located about 6 kb
away from the previously reported lead SNP rs657152 (LD in
Chinese, r2= 0.95)15. The rs8176719 insertion is common in both

Fig. 1 Trans-ethnic meta-analysis results for severe COVID-19. a Manhattan plot of meta-analysis P values. The red dash line indicates the genome-wide

significance level at P= 5 × 10−8 and the gray dash line indicates the suggestive significance level at P= 10−6. b QQ plot, in which the gray region

represents 95% confidence interval under the null hypothesis of no association. c–e Regional plots of three significant loci at 6p21.1, 9q34.2, and 19q13.11.

The lead variant within each locus is indicated by the purple diamond while neighboring variants were colored based on LD to the lead variant in our

Chinese WGS samples. Gray color indicates LD information is not available.

Table 2 Significant loci associated with COVID-19 severity.

Locus Dataset Sample size Lead varianta AFb OR (95% CI)c P Heterogeneity

3p21.31 Chinese (GWAS) 598/2260 rs35044562 – – –

LZTFL1 HGI (B2_release3) 3199/897,488 chr3:45867532 0.080 1.60 (1.42–1.79) 3.11 × 10−15

Chinese (WGS) 474/1615 A/G, Intronic – – –

6p21.1 Chinese (GWAS) 598/2260 rs1853837 0.345 1.30 (1.13–1.50) 3.24 × 10−4

FOXP4-AS1 HGI (B2_release3) 3199/897,488 chr6:41529297 0.105 1.28 (1.15–1.42) 5.24 × 10−6

FOXP4 Chinese (WGS) 474/1615 C/A 0.353 1.27 (1.07–1.51) 7.06 × 10−3 I2= 0.00%

Meta-analysis 4271/901,363 Intronic 1.28 (1.19–1.39) 2.51 × 10−10 Phet= 0.97

9q34.2 Chinese (GWAS) 598/2260 rs8176719 0.422 1.28 (1.12–1.46) 3.19 × 10−4

ABO HGI (B2_release3) 3199/897,488 chr9:133257521 0.395 1.17 (1.09–1.26) 1.27 × 10−5

Chinese (WGS) 474/1615 T/TC 0.433 1.17 (0.98–1.38) 8.03 × 10−2 I2= 0.00%

Meta-analysis 4271/901,363 Exonic (frameshift) 1.19 (1.12–1.26) 8.98 × 10−9 Phet= 0.51

19q13.11 Chinese (GWAS) 598/2260 rs74490654 – – –

MEF2B HGI (B2_release3) 3199/897,488 chr19:19163581 – – –

Chinese (WGS) 474/1615 C/G, Intronic 0.004 8.73 (4.14–18.41) 1.22 × 10−8

Notes: Sample size is presented as the number of cases/number of controls.
aVariant with the smallest P-value within each locus: rs number, GRCh38 genomic position, reference/alternative alleles, and annotation of the variant.
bAF: frequency of the alternative allele: the first row is based on controls from the Chinese GWAS samples, the second row is based on the 1KGP European samples, and the third row is based on controls

from Chinese WGS samples.
cOdds ratio (OR) and 95% confidence interval (CI) of the alternative allele. Meta-analysis is based on the Han-Eskin random-effect method63. Gene expression patterns for FOXP4-AS1, FOXP4, ABO, and

MEF2B from GTEx28 are shown in Fig. 3a–d.
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Europeans and Chinese (AF > 0.39). Notably, this variant is one
of the three major variants determining the haplotypes of the
ABO blood group15,24,25. Carriers of the T/T homozygote belong
to blood group O, while carriers of the risk allele TC belong to the
non-O group unless they also carry an extremely rare allele T at
SNP rs41302905 (absence in our Chinese samples). Thus, con-
sistent with previous studies15, our result suggests the blood
group O is protective for COVID-19 severity. When further
adjusting for age and sex (Supplementary Table 1 and Supple-
mentary Fig. 3), the FOXP4-AS1 locus remained significant
(P= 4.20 × 10−10), but the signal at the ABO locus diminished
(P= 5.88 × 10−7), likely due to loss of power given that our
population controls were younger and mostly males (Table 1).

To explore the potential mechanism of these two common
variant association signals, we examined the association between
SNP genotypes and nine inflammatory biomarkers in a subset of
COVID-19 patients with detailed clinical data during their hos-
pitalization. These serum biomarkers included interleukin 1 beta
(IL-1β, sample size n= 804), interleukin 2 receptor (IL-2R,
n= 802), interleukin 6 (IL-6, n= 846), interleukin 8 (IL-8,
n= 790), interleukin 10 (IL-10, n= 799), tumor necrosis factor-
alpha (TNF-α, n= 785), complements C3 (n= 273) and C4
(n= 272), and C-reactive protein (CRP, n= 768). Interestingly,
we observed a significant association between genotypes of
rs8176719 at the ABO locus and the serum level of IL-1β
(Spearman’s correlation rs=−0.274, P= 2.61 × 10−15, Fig. 2a),
despite no association between IL-1β and COVID-19 severity in
our samples (Table 3 and Fig. 2b). The association between
rs8176719 and IL-1β remains significant after dichotomizing

IL-1β as normal (≤12 pg/ml) and abnormal (> 12 pg/ml) and
controlling for COVID-19 severity, age, and sex (OR= 0.22
[0.10–0.50], P= 2.28 × 10−4, Wald test based on logistic regres-
sion, Fig. 2b–d). We found no association between rs1853837 at
FOXP4-AS and inflammatory biomarkers.

In addition, we identified a rare intronic SNP within the
MEF2B gene reaching genome-wide significance (rs74490654 at
19q13.11, alleles: C/G, P= 1.22 × 10−8). This signal is contributed
by our Chinese WGS data because the alternative allele is extre-
mely rare with AF= 0.4% in 1KGP East Asians and 0 in other
continental groups23. The AF in our WGS controls (including
mild patients) is 0.4%, the same as the 1KGP East Asians, but
increases to 2.2% in our cases with severe COVID-19. Among 35
carriers of the alternative allele (all in heterozygote), there are 21
from 474 severe cases, 4 from 667 controls with mild COVID-19,
and 10 from 948 population controls, translated into a large effect
size of OR= 8.73 (95% CI: 4.14–18.41). Variant rs74490654
locates only 7 bp upstream of an ENCODE candidate cis-reg-
ulatory element (cCRE) E1945041, which is annotated with a
distal enhancer-like signature in the B-cell lymphocyte lineage
OCILY726. Hi-C data further suggest the cCRE E1945041 and the
promoter of MEF2B locate in the same topologically associating
domain (TAD)27, indicating rs74490654 is likely to disrupt the
transcriptional activities of MEF2B.

Finally, there are four suggestively significant loci (P < 10−6)
reported by at least two datasets (Supplementary Table 2):
21q22.11 (rs1051393 in IFNAR2, OR= 1.17 [1.10–1.25],
P= 4.33 × 10−7), 3p14.2 (rs672699 in PTPRG, OR= 1.18
[1.04–1.34], P= 5.58 × 10−7), 16q21 (rs7499679 in ADGRG1,

5.7e−16

1.2e−08

0.77

159/221 398/422 153/1610

20

40

60

T/T T/TC TC/TC

Genotype at rs8176719

0.14

302/350 408/4540

20

40

60

Mild Severe

0.84

0.86

0.7

171/194 389/439 150/1710

20

40

60

18−50 51−70 71−91

Age (years)

0.28

347/387 363/4170

20

40

60

Male Female

IL
−

1
ß

 (
p
g
/m

l)

IL
−

1
ß

 (
p
g
/m

l)

IL
−

1
ß

 (
p
g
/m

l)

IL
−

1
ß

 (
p
g
/m

l)

COVID-19 severity

Sex

a

ba

c d
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OR= 0.85 [0.79–0.90], P= 8.09 × 10−7), and 1q44 (rs12130553
in HNRNPU, OR= 1.19 [1.11–1.27], P= 9.17 × 10−7). All four
loci have a consistent direction of effects across datasets, but locus
3p14.2 (rs672699) has significant variation in the effect sizes
(I2= 67.21%, Phet= 0.05; Supplementary Table 2).

Discussion
In this study, we tested host genetic association with COVID-19
severity based on the largest COVID-19 GWAS and WGS data-
sets of Chinese ancestry to date, including 1072 severe COVID-19
patients, 1526 mild patients, and 2349 population controls. We
detected a Chinese-specific rare variant (rs74490654 in MEF2B
19q13.11) at genome-wide significance in the WGS samples of
474 cases and 1615 controls. This signal, however, was not
replicated in the GWAS samples due to the low imputation
quality of rare variants. Given the limited power to detect rare
variant association with our small WGS sample size, further
sequencing-based replication in large samples will be required to
confirm the association signal at MEF2B. Two additional loci
(FOXP4-AS1 at 6p21.1 and ABO at 9q34.2) were identified by
trans-ethnic meta-analysis with summary statistics from the HGI
(B2_release3) analysis of 3199 hospitalized patients and 897,488
population controls, most of which were European samples,
highlighting that COVID-19, like many other complex diseases,
requires a large sample size to reliably detect moderate effects of
common variants.

In the HGI analysis, cases were hospitalized COVID-19
patients and controls were population controls with no infor-
mation on COVID-19. Given that most hospitalized patients in
western countries have severe symptoms and that most SARS-
CoV-2 infections result in mild or no symptoms, the HGI data
likely enrich for genetic associations with COVID-19 severity,
despite different case definitions from our samples. The only
significant locus in the HGI B2_release3 analysis was the 3p21.31
locus, which was first identified in Italians and Spanish15. Because
the risk haplotype of this locus was almost absent in East Asians,
our data provide no additional evidence.

The lead SNP of locus 6p21.1, rs1853837, is in the intron of the
lncRNA forkhead box P4 antisense RNA 1 (FOXP4-AS1). The
risk allele (A) at rs1853837 is an eQTL in positive association with
the expression of FOXP4-AS1 in lung28, and has been reported to
associate with an increased risk for non-small cell lung cancer by
GWAS29. The GeneHancer database indicates rs1853837 is resi-
ded in an enhancer targeting FOXP4-AS1, forkhead box P4
(FOXP4), and natural cytotoxicity triggering receptor 2 (NCR2)30.

During the revision of this paper, an updated HGI analysis
with a much larger sample size (B2_release5, involving 13,641
cases and 2,070,709 controls) has identified FOXP4-AS1 as a
significant locus associated with hospitalized COVID-19
(rs1886814, OR= 1.26, P= 1.11 × 10−9, LD r2= 0.64 with
rs1853837)31, supporting the validity of our result. FOXP4 is a
transcription factor expressed in thymocytes and peripheral
CD4+ and CD8+ T cells, and knockout of FOXP4 can impair
memory recall of T-cell cytokines in response to viral infections32.
For COVID-19, SARS-CoV-2-specific T cells have been detected
in many uninfected healthy individuals, likely due to an exposure
history to common cold coronaviruses33,34. Such cross-reactive
T-cell immunity from other coronavirus has been speculated to
affect COVID-19 severity. Furthermore, FOXP4 plays a key role
in regulating lung secretory epithelial cell fate and regeneration
and thus can affect the production of mucus to protect the lung
against pathogens and pollution35.

The association between blood group O with COVID-19 has
been reported by both genetic and non-genetic studies15,25,36,37.
However, as discussed by Ellinghaus et al.15, their association signalT
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at the ABO gene (9q34.2) might be subject to population stratifi-
cation because of the inclusion of blood donors as controls, which
might enrich for blood group O. Skepticism of this association was
elevated when the association was not replicated in the HGI release
3 analysis with large sample size. Our result, in contrast, confirmed
the association at a frameshift insertion rs8176719 of the ABO
gene, which showed no heterogeneity across populations (OR=
1.28 [1.12–1.46] in Chinese GWAS, 1.17 [1.09–1.26] in HGI
B2_release3, and 1.17 [0.98–1.38] in Chinese WGS; I2= 0.00%,
Phet= 0.51). rs8176719 is the major variant determining blood
group O and has been reported to associate with susceptibility to
malaria12. The ABO blood groups have also been implicated in the
association with susceptibility to SARS13 and several immune
diseases, such as allergy, amyotrophic lateral sclerosis, and
asthma38–40. We observed that carriers of T/T homozygote at
rs8176719 (i.e., individuals of blood group O) tend to have an
elevated serum level of IL-1β among COVID-19 patients (Fig. 2b).
Nevertheless, unlike other inflammatory cytokines, such as IL-2R,
IL-6, IL-8, IL-10, TNF-α, and CRP, which were elevated in severe
patients due to strong immune response, we observed no asso-
ciation between IL-1β and COVID-19 severity (Table 3). Further
investigations are needed to understand how the ABO gene affects
susceptibility to severe COVID-19.

The top SNP rs74490654 was a rare variant located in the intron
of myocyte enhancer factor-2B (MEF2B), one of the four MEF2
transcription factors involved in the regulation of muscle, neural
crest, endothelial cell, and lymphocyte development41. Both epige-
netic and Hi-C annotations suggest rs74490654 is likely to tran-
scriptionally regulate the expression of MEF2B in lymphocytes.
MEF2B could bind to its target DNA sites with a degenerate motif
and act as a specific transcriptional regulator42. Importantly,
MEF2B is overexpressed in lymphocytes (Fig. 3d)28 and plays cri-
tical roles in anti-virus immune which would be associated with
COVID-19 development and severity. First, MEF2B is critical for
the formation of germinal centers and promoting early B-cell
development43,44, while B cells are essential in the defense of virus
infection by producing protective antibodies. Second, MEF2 is
necessary during peripheral T-cell activation by activating IL-2 and
other cytokines45,46. Moreover, Clark et al. revealed that MEF2
regulates susceptibility to infection and is associated with tolerance
of pathology by regulating metabolism47. Taking together, MEF2
plays essential roles in B-cells development, T-cells activation, and
in immune-metabolic switch, which could at least partially explain
the association between rs74490654 and COVID-19 severity.

Several candidate genes within the four suggestive loci have
been reported to associate with immune-related traits. IFNAR2
and IL10RB at 21q22.11 were associated with the susceptibility to
hepatitis B virus infection48, Crohn’s disease49, type 2 diabetes50,
and immunodeficiency51. In particular, IFNAR2 encoded inter-
feron alpha- and beta-receptor subunit 2, which is essential for
antiviral immunity52. Both common and rare variants in IFNAR2
have been implied in the susceptibility to severe COVID-1917,19.
PTPRG at 3p14.2 was associated with pneumococcal
bacteremia53. While HNRNPU at 1q44 is famous for association
with neurodevelopmental delays and epilepsy54,55, it also plays a
role in restricting HIV activity by blocking the cytoplasmic
accumulation of viral mRNA transcripts56.

Vigorous multi-faceted public health interventions have led to
rapid control of the COVID-19 epidemic in China3,57. Therefore, it
is difficult for us to recruit more patients to increase the sample size
and statistical power. We augmented our samples with population
controls from two existing cohorts, who were primarily males (for
the COW cohort) and under age 50 (for both). To avoid loss of
power, we did not adjust for age and sex in our main analyses
because age and sex were systematically different between cases and
population controls due to data collection rather than biological

effects. Given that age and sex are not associated with autosomal
genotypes, we do not expect spurious genetic association signals due
to confounding effects of unadjusted age and sex. We identified
common variants in ABO and FOXP4-AS1 and a rare variant in
MEF2B to be significantly associated with COVID-19 severity, likely
through regulation of the adaptive immunity. Unlike the 3p21.31
locus, of which the risk haplotype is specific to Europeans and
South Asians15,21, risk variants in both ABO and FOXP4-AS1 loci
are common in worldwide populations23. The rare risk variant in
MEF2B, on the other hand, is specific to East Asians and confers
about the eightfold increase in the risk of severe COVID-19 among
carriers. These findings, together with many more to discover
through ongoing international collaborations16, have important
implications on the biology underlying the clinical development of
COVID-19, and thus might help develop targeted prevention and
therapeutic strategies to combat the pandemic.

Methods
Ethics statement. This study was reviewed and approved by the Institutional Review
Boards of Tongji Hospital (TJ-IRB20200405) and Union Hospital (UH-IRB20200075-
1), Tongji Medical College, Huazhong University of Science and Technology, and the
Third People’s Hospital of Shenzhen (SZ3H-2020-006-02). Informed consent was
obtained from all enrolled patients. Blood samples were collected using the rest of the
standard diagnostic tests, with no burden to the patients.

Phenotype definition. We classified COVID-19 patients into two groups: severe
and mild. The severe group included those diagnosed as critical or severe following
the guidelines for diagnosis and treatment of COVID-19 (Trial Version 7) released
by the National Health Commission of the People’s Republic of China. Briefly, a
patient was diagnosed as a critical illness if at least one of the following conditions
was met: (1) acute respiratory distress syndrome (ARDS) requiring mechanical
ventilation, (2) shock, (3) combining with other organ failure requiring ICU
admission. Severe illness was defined by meeting at least one of the following
conditions: (1) respiratory rate ≥30 times/min, (2) oxygen saturation ≤93% at
resting state, (3) arterial partial pressure of oxygen (PaO2)/fraction of inspired
oxygen (FiO2) ≤300 mmHg, (4) pulmonary imaging examination showed that the
lesions significantly progressed by more than 50% within 24–48 h. The other
patients, including those with no clinical symptoms, were defined as mild cases. For
patients whose electronic medical records (EMR) were available, we examined the
EMR to classify the disease severity. For those with no EMR, we extracted infor-
mation on disease severity from the municipal Notifiable Disease Report System,
which might be determined based on similar criteria in early versions of the
guidelines for diagnosis and treatment of COVID-19.

GWAS data of COVID-19. Blood samples of 1626 COVID-19 patients were collected
from Tongji Hospital and Hubei Hospital of Traditional Chinese Medicine (TCM) in
Wuhan. For samples from Tongji Hospital, genomic DNA was extracted from thawed
whole blood samples with the BioTeke Genomic DNA kit (BioTeke, Beijing, China).
For samples from Hubei Hospital of TCM, genomic DNA was extracted from 200 µl of
EDTA-treated whole blood using the KingFisher Flex Purification System with the
KingFisher Pure DNA Blood Kit (Thermo Fisher Scientific). All extractions were
performed under Level III protection in the biosafety III laboratories.

For each sample, 200 ng of DNA was loaded on the Infinium Global Screening
Array (GSA, Illumina, San Diego, CA) for genotyping, following the
manufacturer’s instructions. Genotype calling was performed using GenomeStudio
(v 2.0). After filtering SNPs with a call rate < 0.95, we genotyped 650,630 autosomal
SNPs and 27,495 SNPs on the X chromosome. We then performed QC using
PLINK (v 2.0)58, removing 29 samples with missing rate > 0.1, 3 samples with
inbreeding coefficient <−0.1, 76 duplicated samples, and 22 samples with the
discrepancy between the inferred sex and the recorded sex (Supplementary Fig. 4).
Finally, we kept SNPs with Hardy-Weinberg equilibrium (HWE) P > 10−6,
including 649,431 autosomal SNPs and 27,479 X chromosomal SNPs. HWE tests
for the X chromosomal SNPs were based on females.

GWAS data of population controls. We used existing genotyping data of a Coke
Oven Worker (COW) cohort in Wuhan as population controls, whose ancestry
background is similar to our COVID-19 patient samples collected in Wuhan59. In
total, 1477 individuals were genotyped using the GSA array in 2018. After
excluding 18 samples with call rate < 0.9, 9 potentially contaminated samples
(inbreeding coefficient <−0.1), 49 second-degree and above related samples
(kinship coefficient φ > 0.088), 1401 individuals (1207 males and 194 females) were
included as population controls. We removed SNPs with call rate <0.95, HWE
P < 10−6, and monomorphic variants, and lift over the remaining SNPs from
human reference genome GRCh37 to GRCh38, leaving 476,578 autosomal SNPs
and 11,082 SNPs on chromosome X.
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Imputation. We merged our COVID-19 GSA dataset and the COW dataset by
extracting 436,444 autosomal and 10,528 chromosome X SNPs genotyped in both
datasets. We further excluded SNPs with MAF < 0.005 in either dataset, leaving
369,072 autosomal and 8942 chromosome X SNPs for imputation.

We constructed an imputation reference panel by combing the 1000 Genomes
Project (1KGP) dataset23 and our in-house WGS data of COVID-19 patients from
Tongji Hospital (see the “WGS data and analysis” section below). We first extracted
the intersecting variants of 1KGP and our WGS dataset and used EAGLE2 (v 2.3.5)
to phase our WGS samples with haplotypes from 1KGP as the reference60. We then
combined the phased haplotypes of our WGS samples and the East Asian samples
from 1KGP to form a reference panel to phase and impute our array genotyping
datasets. Imputation was performed using Minimac461. For the X chromosome,
pseudo-autosomal regions (PARs) were excluded and non-PARs were imputed
separately for males and females. After removing variants with MAF < 0.01 and
imputation R2 < 0.8, 6,019,210 autosomal variants and 132,535 on the X
chromosome remained for downstream analyses.

Cryptic relatedness and population structure. We filtered variants with
MAF < 0.05, and pruned the merged COVID-19 and COW genotyping data to
have linkage disequilibrium (LD) r2 < 0.5, resulting in 157,968 autosomal SNPs58.
Using this set of SNPs, we inferred genetic relatedness using KING (v 2.2.5) and
determined relatedness types based on the estimated kinship coefficients φ and the
probability of zero-IBD-sharing π062. We identified 31 first-degree and 7 second-

degree related pairs in the COVID-19 samples (Supplementary Fig. 5). After
excluding close relatedness up to the second degree (φ > 0.088), we performed
principal components analysis (PCA) on the combined COVID-19 and COW
datasets. No systematic ancestral or batch effect differences were observed in the
top PCs between cases and controls from different sources (Supplementary Fig. 6).

Association tests and meta-analysis. We performed association analysis using
the EPACTS software on the imputed dosage data, which accounts for the impu-
tation uncertainty. After removing close relatedness and 5 patients with missing
severity information, we tested for the single-variant association on 598 severe/
critical COVID-19 cases versus 2260 controls. Effect sizes and P values were derived
fromWald tests under a logistic model, adjusting for the first two PCs of population
structure. For the analysis of chromosome X, we treated the non-PAR variants as
homozygotes for males and included sex as an additional covariate. We also per-
formed genome-wide association analysis further adjusting for age and sex.

We downloaded summary statistics of the COVID-19 HGI B2_release3 analysis
of 3199 hospitalized COVID-19 patients versus 897,488 population controls, who
were primarily Europeans. There were very few Asian samples in the B2_release3
(only 62 South Asian cases) and we thus did not request for Asian-specific statistics.
We performed random-effects meta-analysis using the RE2 model implemented in
METASOFT63. We chose the B2 dataset rather than the A2 dataset from HGI
because the cases in A2 were defined as very severe confirmed COVID-19 cases that
required respiratory support more than simple supplementary oxygen, a much
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Fig. 3 RNA expression in multiple tissues for genes within significant loci. a FOXP4-AS1. b FOXP4. c ABO. d MEF2B. TPM, transcripts per million. This

figure was generated by the GTEx portal (https://www.gtexportal.org).
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stronger case definition than the definition of severe cases in China. Considering that
only patients with severe clinical symptoms were recommended for hospitalization in
most western countries during the early phase of the pandemic, the case definition of
hospitalized COVID-19 patients in B2 dataset aligned better with the severe patient
definition in China. We reported meta-analysis results, as well as the I2 index of
heterogeneity across datasets and the corresponding P-value Phet. We visualized
regional association results using the LocusZoom software with LD information
based on Chinese WGS samples64.

WGS data and analysis. Blood samples of 474 severe and 667 mild COVID-19
patients were sequenced at BGI, Shenzhen. These samples were from three sources,
including 305 (mild/severe: 211/94) samples from Tongji Hospital in Wuhan, 467
(170/297) from Union Hospital in Wuhan, and 369 (286/83) from the Third
People’s Hospital of Shenzhen after excluding related and duplicated samples22.
For those from Tongji Hospital and the Third People’s Hospital of Shenzhen,
genomic DNA was extracted from frozen blood samples using Magnetic Beads
Blood Genomic DNA Extraction Kit (MGI, Shenzhen, China). Around 0.5 μg DNA
was used for creating the WGS library for each patient. For those from Union
Hospital, circulating cell-free DNA (cfDNA) was extracted from 200 μL plasma
using MagPure Circulating DNA Mini KF Kit (MD5432-02) following the man-
ufacturer’s instructions. The cfDNA was eluted by 200 μL TE buffer for QC and
40 μL for the rest. The extracted cfDNA was processed to library construction using
MGIEasy Cell-free DNA Library Prep kit (MGI, cat. No.: AA00226). After library
preparation, all samples were sequenced by the DNBSEQ platform (MGI, Shenz-
hen, China) to generate 100bp paired-end reads. The mean sequencing depth was
45.0× for those from the Third People’s Hospital of Shenzhen, 33.3× for those from
Tongji Hospital, 17.8× for those from Union Hospital.

To minimize batch effects, we performed joint calling and quality controls for all
three datasets together. We used Sentieon (sentieon-genomics-201911) for alignment
and variant detection following the best practices (https://gatk.broadinstitute.org/hc/
en-us/sections/360007226651-Best-Practices-Workflows)65. Briefly, sequence reads
were mapped to GRCh38 using BWA66. For each sample, after duplication removal,
INDEL realignment and base quality score recalibration, SNPs and INDELs were
detected using the Sentieon Haplotyper algorithm with option “--emit_mode gvcf” to
generate an individual GVCF file. Then the GVCF files for all samples were subjected
to Sentieon GVCFtyper algorithm for joint variant calling. Variant Quality Score
Recalibration (VQSR) was performed using GATK (v 4.1.2). Reference-free LD-
based genotype refinement was performed using BEAGLE (v 4.0)67, which took the
genotype uncertainty into account with the -gl flag. Variants with DR2 < 0.8 or HWE
P < 10-6 were excluded from downstream analysis.

To boost statistical power, we searched for additional population controls from
an existing WGS dataset in BGI, Shenzhen, consisting of 1872 unrelated individuals
sequenced to a mean depth of 40.0×. Sequencing and genotype calling for this
dataset follow the standard WGS protocol as described above except that no LD-
based refinement was performed given the high sequencing depth. We combined
two call sets by extracting 8,673,249 shared biallelic variants after excluding
variants with minor allele counts MAC < 5 or missing rate > 0.05 in either set, or
HWE P < 10−6 in the combined set. We then performed PCA using 539,603
autosomal biallelic SNPs with MAF > 0.05 and LD r2 < 0.558. For each of our
474 severe COVID-19 cases, we identified two ancestry-matched population
controls based on Euclidean distances in the first two PCs using the optmatch R
package68,69. Thus, the final WGS dataset consists of 474 cases with severe
symptoms, 667 controls with mild symptoms, and 948 ancestry-matched
populations controls. Again, no systematic differences between samples from
different batches were found in the top PCs (Supplementary Fig. 7).

Despite the very stringent quality controls described above, residual batch
effects might persist because samples from Union Hospital were sequenced at
17.8× using cfDNA. We, therefore, included an indicator variable for the cfDNA
batch and the first two PCs as covariates in our logistic model for association tests
between 474 severe cases and 1615 controls (mild patients and population
controls). Genomic inflation factor was λGC= 1.001, indicating overall well-
controlled batch effects and population stratification. Furthermore, we performed
additional association tests on 667 mild patients versus 948 population controls,
adjusting for the top two PCs and the cfDNA batch indicator, and identified 1869
variants with P < 10−6. We conservatively excluded these variants from our final
results because they might be subject to residual batch effects.

Clinical measurements. We analyzed the serum level of inflammatory biomarkers,
including interleukin 1 beta (IL-1β), interleukin 2 receptor (IL-2R), interleukin 6
(IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), tumor necrosis factor-alpha
(TNF-α), complements C3 and C4, and C-reactive protein (CRP) for hospitalized
patients from Tongji Hospital, including both mild and severe patients. For
patients with measurements at multiple time points, we used the earliest mea-
surement after hospitalization. The majority of the measurements were taken in the
first week of hospitalization. We compared these clinical measurements in different
groups of samples defined by COVID-19 severity, age, sex, and genotypes of
GWAS top SNPs using the Wilcoxon rank-sum test and Spearman’s correlation.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Summary statistics of the association tests in our Chinese samples have been deposited in

the China National Genebank Sequence Archive (https://db.cngb.org/cnsa/) with

accession number CNP0001981. Individual-level genotype data are not publicly available

due to the protection of privacy and regulations. Source data for Fig. 2 is provided in

Supplementary Data 1.

Code availability
Details regarding the packages and versions used are included in “Methods”.
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