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Abstract

Background: Type 2 diabetes (T2D), a multifactorial disease influenced by host genetics and environmental factors,

is the most common endocrine disease. Several studies have shown that the gut microbiota as a close-up

environmental mediator influences host physiology including metabolism. The aim of the present study is to

examine the compositional and functional potential of the gut microbiota across individuals from Denmark and

South India with a focus on T2D. Many earlier studies have investigated the microbiome aspects of T2D, and it has

also been anticipated that such microbial associations would be dependent on diet and ethnic origin. However,

there has been no large scale trans-ethnic microbiome study earlier in this direction aimed at evaluating any

“universal” microbiome signature of T2D.

Methods: 16S ribosomal RNA gene amplicon sequencing was performed on stool samples from 279 Danish and

294 Indian study participants. Any differences between the gut microbiota of both populations were explored using

diversity measures and negative binomial Wald tests. Study samples were stratified to discover global and country-

specific microbial signatures for T2D and treatment with the anti-hyperglycemic drug, metformin. To identify

taxonomical and functional signatures of the gut microbiota for T2D and metformin treatment, we used alpha and

beta diversity measures and differential abundances analysis, comparing metformin-naive T2D patients, metformin-

treated T2D patients, and normoglycemic individuals.
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Results: Overall, the gut microbial communities of Danes and Indians are compositionally very different. By

analyzing the combined study materials, we identify microbial taxonomic and functional signatures for T2D and

metformin treatment. T2D patients have an increased relative abundance of two operational taxonomic units

(OTUs) from the Lachnospiraceae family, and a decreased abundance of Subdoligranulum and Butyricicoccus.

Studying each population per se, we identified T2D-related microbial changes at the taxonomic level within the

Danish population only.

Alpha diversity indices show that there is no significant difference between normoglycemic individuals and

metformin-naive T2D patients, whereas microbial richness is significantly decreased in metformin-treated T2D

patients compared to metformin-naive T2D patients and normoglycemic individuals. Enrichment of two OTUs from

Bacteroides and depletion of Faecalibacterium constitute a trans-ethnic signature of metformin treatment.

Conclusions: We demonstrate major compositional differences of the gut microbiota between Danish and South

Indian individuals, some of which may relate to differences in ethnicity, lifestyle, and demography. By comparing

metformin-naive T2D patients and normoglycemic individuals, we identify T2D-related microbiota changes in the

Danish and Indian study samples. In the present trans-ethnic study, we confirm that metformin changes the

taxonomic profile and functional potential of the gut microbiota.

Keywords: Gut microbiota, Trans-ethnic, Indians, Danes, Populations, Type 2 diabetes, Metformin

Background
Type 2 diabetes (T2D) is a chronic metabolic disease char-

acterized by elevated blood glucose levels, primarily

caused by impaired insulin secretion, increased hepatic

glucose production, and insulin resistance [1]. T2D repre-

sents a major global health challenge, affecting an esti-

mated 382 million people worldwide, with an expectation

to reach 592 million by 2035 [2]. Although genetics, sed-

entary life, overeating and other environmental exposures

throughout life are well-known risk factors of T2D, re-

cently several studies have shown that an aberrant gut

microbiota is a characteristic feature of the disease [3–5].

However, several discrepancies have been reported be-

tween studies, mainly due to multiple confounding factors

including ethnic differences, lifestyle, prescribed pharma-

cotherapy and technical variations in procedures for

examining the gut microbiota [6].

Metformin, an anti-hyperglycemic agent, the thera-

peutic effect of which includes a reduction of hepatic

glucose production and an increase of insulin sensitivity,

is the most commonly prescribed drug for the treatment

of T2D [7]. Some evidence indicates that a part of the

metformin effect on glucose metabolism may be medi-

ated by intestinal mechanisms including the gut micro-

biota. For example, intravenous administration of

metformin does not have the same glucose-lowering ef-

fect compared to oral administration [5, 7], indicating

that intestinal and potentially microbiota-mediated

mechanisms may be part of the blood glucose-lowering

effects of the drug [4].

In a Chinese-Scandinavian study, Forslund et al. [4]

showed country-specific microbial signatures for T2D

and for metformin treatment. It was demonstrated that

demographic variation and metformin treatment were

important confounding factors in T2D microbiota stud-

ies. Here, we have performed a trans-ethnic study with

the aim to characterize the gut microbiota in Indian and

Danish adults in the context of T2D. We included 279

Danish volunteers (138 normoglycemic (NG) individuals

and 141 with T2D) and 294 South Indian volunteers

(137 NG individuals and 157 with T2D). We show major

compositional differences of the gut microbiota between

Danish and South Indian individuals, some of which

may relate to differences in ethnicity, lifestyle, and dem-

ography. In addition, comparing the combined group of

T2D patients and NG individuals from the two coun-

tries, we find gut microbial signatures (taxonomic and

predicted functional potential signatures) of T2D and

metformin treatment, respectively.

Methods
Study design and sample collection

To minimize the confounding effects of the technical

procedures, we (i) synchronized our standard operating

procedures for recruitment of study participants, bio-

logical sample processing, and microbial DNA extraction

of stools and (ii) performed nucleotide sequencing of all

samples in one sequencing center. Similarly, profiling of

inflammation biomarkers from all samples was also per-

formed in the same laboratory.

Danish sub-study

Three hundred and eight Danish volunteers were re-

cruited from outpatient clinics at Steno Diabetes Center

(Gentofte, Denmark), Herlev Hospital (Herlev,

Denmark), and Aarhus University Hospital (Aarhus,

Denmark); recruited as part of DanFund [8] and ADDI

TION-PRO [9] cohorts; and recruited by advertisement
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in local newspapers. All Danish individuals were of

White European ethnicity, aged 35 to 74 years, with a

body mass index (BMI) from 20 to 40 kg/m2. Individuals

who were treated with antibiotics within 4 months, who

were pregnant or lactating, or who were unable to give

informed consent were ineligible for inclusion.

Non-diabetic individuals with a hemoglobin A1c

(HbA1c) below 39mmol/mol (5.7%) and fasting plasma

glucose below 6.1 mmol/L at time of screening were eli-

gible for inclusion as NG controls. Individuals with a

history of gestational diabetes were ineligible for inclu-

sion as NG controls.

Individuals diagnosed with T2D according to the

World Health Organization criteria within 5 years, with

an estimated glomerular filtration rate above 60mL/min,

and an HbA1c level below 75mmol/mol (9.0%) within 3

months of inclusion were eligible for inclusion. Individ-

uals with known monogenic or autoimmune diabetes

were ineligible for inclusion. Individuals whose

metformin-treatment status could not be ascertained

were also excluded.

After applying the inclusion/exclusion criteria above,

we included 279 Danes—138 NG controls and 141 with

T2D.

Volunteers were examined in the morning following

an 8-h overnight fast. Participants were weighed on an

electronic scale (TANITA BC-420MA, Tanita Corpor-

ation of America, USA) without shoes, dressed in light

indoor clothing or underwear after having emptied their

bladder. Height was measured to the nearest 0.5 cm

without shoes, using a wall-mounted stadiometer (ADE

MZ10023, ADE, Hamburg, Germany). BMI was calcu-

lated as weight in kilograms divided by the square of

height in meters. Waist and hip circumference were

measured to the nearest 1 cm in erect position midway

between the iliac crest and the lower costal margin, and

at the level of the pubic symphysis, respectively. Body

composition was assessed using bioelectric impedance

analysis (TANITA BC-420MA, USA). Blood pressure

was recorded as the mean of duplicate measurements on

the non-dominant arm, in reclined position after a 5-

min rest.

Blood was collected by puncture of the antecubital

vein in the morning after an 8-h overnight fast. Plasma

glucose concentration was analyzed by the glucose oxi-

dase method using a colorimetric slide test on a Vitros

5600 system (Ortho Clinical Diagnostics, USA; CV

6.1%). Plasma triglyceride (TG), total cholesterol (TC),

and high-density lipoprotein (HDL) were analyzed on a

Vitros 5600 system (CV 14.6%, 11.6%, and 17.0%, re-

spectively). Very-low-density lipoprotein (VLDL) was

calculated as VLDL = 0.45 × TG. Low-density lipoprotein

was calculated as LDL = TC-HDL-VLDL. HbA1c was

analyzed by high-performance liquid chromatography

(HPLC) on a TOSOH G8 system (Tosoh Bioscience, San

Francisco, CA USA, CV 7.2%).

Indian sub-study

Two hundred ninety-four Indian volunteers, 137 NG

and 157 with type 2 diabetes mellitus, were selected

from Dr. Mohans’ Diabetes Specialities Centre, a tertiary

care center for diabetes at Chennai, India. The control

individuals were selected from an ongoing population-

based epidemiological study at Chennai. All individuals

were of South Indian (Dravidian) ancestry aged 35 to 65

years, and their BMI ranged from 15.6 to 50.5 kg/m2. In-

dividuals suffering from chronic, severe ailments (such

as cancer and tuberculosis); those who were pregnant;

and those who had used medications such as dipeptidyl

peptidase-4 inhibitors, acarbose, glucagon-like peptide-1

receptor agonists, and orlistat were excluded from the

study. T2D was diagnosed if the venous plasma glucose

2 h after an oral glucose load and/or the fasting plasma

glucose levels were ≥ 7.0 mmol/L. History of diabetes

was obtained through self-report. This was then checked

against medical records for validity, which helped to de-

fine the date and year of diagnosis.

Weight, height, and waist circumference were obtained

by trained data collectors using standardized methods.

Participants were weighed on an electronic scale without

shoes and were asked to wear light clothing, and weight

was recorded to the nearest 0.5 kg (TANITA BC-554).

Height was measured to the nearest 0.5 cm without

shoes, using a stadiometer (SECA 213). Waist and hip

circumference were measured to the nearest cm in erect

position—waist was measured at the smallest horizontal

girth between the coastal margin and the iliac crest and

the hip was measured at the greatest circumference at

the level of greater trochanters (widest portion of the

hip). BMI was calculated as weight (kg) divided by height

(m) squared. Blood pressure was recorded from the right

arm in a sitting position to the nearest 2 mmHg with a

mercury sphygmomanometer (Diamond Deluxe BP ap-

paratus, Pune, India). Two readings were taken 5min

apart, and the mean of the two was taken as the blood

pressure. Blood for biochemical analysis was drawn in

the morning following an 8-h overnight fast. All bio-

chemical assays including measurement of fasting

plasma glucose (hexokinase method), serum cholesterol

(cholesterol oxidase–peroxidase–amidopyrine method),

serum triglycerides (glycerol phosphate oxidase–perox-

idase–amidopyrine method) and, HDL cholesterol (dir-

ect method–polyethylene glycol–pretreated enzymes)

were measured using Hitachi-912 Autoanalyzer (Hitachi,

Mannheim, Germany). Low density lipoprotein (LDL)

cholesterol was calculated using the Friedewald formula.

HbA1c was measured by high-performance liquid chro-

matography using the Variant machine (Bio-Rad,
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Hercules, California, USA). In NG controls, glucose tol-

erance status was determined from a standard 75 g 2-h

oral glucose tolerance test (OGTT). Only individuals

with fasting plasma glucose < 6.1 mmol/L and 2-h post-

glucose value < 7.8 mmol/L were included in the group

of NG healthy controls. C-peptide in plasma was mea-

sured using DAKO C-peptide ELISA kit (Dako,

Denmark). All biochemistry measurements were per-

formed in the laboratory at the study site which is certi-

fied by the College of American Pathologists (Northfield,

IL) (No. 7214031) and the National Accreditation Board

for Testing and Calibration of Laboratories (New Delhi,

India) (M0226).

Quantification of inflammatory markers

Serum concentration of high-sensitive C-reactive protein

(hs-CRP) was measured using a particle enhanced

immunoturbidimetric assay with AU680 Clinical Chem-

istry Analyzer (Beckman Coulter Inc., USA) as per man-

ufacturer’s instructions. Absorbance change (570 nm),

with the magnitude of the change being proportional to

the quantity of CRP in the sample, was used as the final

readout. Actual concentration was then determined by

interpolation from a calibration curve prepared from cal-

ibrators of known concentration. The intra- and inter-

assay precisions were 4.2% and 7.1%, respectively.

Serum MCP-1 levels were measured by AlphaLISA

assay (AL509C; Perkin Elmer) as per the manufacturer

specifications. The AlphaLISA signal reporting MCP-1

level in the samples was detected at 680-nm excitation

and 615-nm emission using an EnSpire Multimode Plate

Reader. A standard curve was generated by plotting the

AlphaLISA counts versus the concentration of analyte.

Raw counts from the experiment were exported using

EnSpire Manager (version 4.13.3005.1482). Data were

analyzed using nonlinear regression with a 4-parameter

logistic equation and MCP-1 levels. The lower limit of

detection of the assay sensitivity was 3.8 pg/mL.

A panel of serum cytokines (IL10, IL13, IL17A, IL1β,

IL23, IL6, and TNFα) were measured by custom multi-

plex immunoassay (Human High Sensitivity T Cell

multiplex kit: HSTCMAG-28SK-7, Millipore, Billerica,

MA, USA) according to the manufacturer’s instructions.

Data were acquired on a validated and calibrated Lumi-

nex 200 system (Millipore, Billerica, MA, USA). Raw

data (mean fluorescence intensities) were captured using

the Luminex xPONENT software (v.3.1) and concentra-

tions of immune biomarkers in each sample were inter-

polated from standard curves using a five-parameter,

weighted, logistic regression curve equation in Milliplex

Analyst software (v.5.1). For each assay, the curve was

derived from various concentrations of the cytokine

standards assayed in the same manner as test samples.

The lower limits of detection for specific analytes ranged

from 0.12 to 2.91 pg/mL based on the manufacturer’s

specifications. The methodological details including

assay method and precision are available at the manufac-

turer’s website (www.merckmillipore.com).

LPS-binding protein (LBP) concentrations were mea-

sured in diluted serum samples using the sandwich

ELISA kit (Human LBP, HK315-02, Hycult Biotech,

Uden, The Netherlands) according to the manufacturer’s

instructions. The standard curve was created by six-fold

serial dilution of a 50 ng/ml standard solution in dupli-

cate. Measurement of LBP levels was performed at 450

nm using EnSpire Multimode Plate Reader. Data were

exported using EnSpire Manager software and quantified

by standard curve using Graphpad Prism statistical soft-

ware (v.6). The intra- and inter-assay variability were less

than 11.5% and 8.5%, respectively.

Intestinal alkaline phosphatase (IAP) activity was mea-

sured in serum samples with a SensoLyte pNPP Alkaline

Phosphatase Assay Kit (#71230, AnaSpec, Fremont, CA,

USA) according to the manufacturer’s recommenda-

tions. Alkaline phosphatase (AP) activity measured in

the presence 100 mM L-Phenylalanine (IAP inhibitor)

was subtracted from total AP activity to derive levels of

serum IAP activity.

Fecal DNA extraction, library preparation, and sequencing

Fecal samples were collected by the participants follow-

ing standardized procedures, including home sampling

with immediate freezing at − 18 °C in a home freezer

and transfer in an insulating polystyrene container with

dry ice or cooling elements for final storage at − 80 °C

within 48 h.

Microbial genomic DNA was extracted from 200mg

of feces according to a previously published protocol

[10]. In brief, samples were chemically lysed by Guan-

idine Thiocyanate and N-Lauryl sarcosine followed by

physical lysis which includes the incubation of samples

at 70 °C for 1 h. Samples were then mechanically lysed

by bead beating, and the debris, proteins, and aromatic

compounds were eliminated using polyvinylpyrrolidone,

RNA removed using RNase and ethanol used for the

precipitation of purified DNA. Finally, DNA was dis-

solved in 200 μL TE Buffer and stored at − 80 °C. The

concentration and integrity of extracted DNA were esti-

mated by spectrophotometry (NanoDrop, Thermo Fisher

Scientific Inc., USA) and agarose gel electrophoresis,

respectively.

The variable regions (V1–V5) of the 16S rRNA gene

were amplified using 27F (C1) and 926R (C5) primers in

50 μL reaction volume using 0.1 ng of fecal DNA. We

used 5–6 nucleotide long barcodes in the reverse primer

to label the amplicon of each sample. The PCR-

amplified products (950-bp) were gel purified using

QIAquick gel elution kit (Qiagen, Germany). The quality
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of the DNA library was monitored using the High sensi-

tivity DNA chip compatible to 2100 Bioanalyzer (Agi-

lent, USA). Library quantitation was done using

PicoGreen dye in QubitFluorometer (Invitrogen, USA).

Sequencing of the equimolar libraries was performed on

a 454 GS FLX+ pyrosequencer platform (Roche, USA) in

two different regions in one picotiter plate, at the Centre

for Human Microbial Ecology at the Translational

Health Science and Technology Institute (Faridabad,

India). Sequence reads obtained in FASTQ format were

evaluated by FASTQC [11] using default parameters.

Sequence data processing

We ensured that at least 5000 high-quality reads (Phred

score > 20) were obtained from each sample. V-Xtractor

[12] version 2.0 was used to extract the V3–V5 region

from the sequenced reads. Reads covering the complete

V3–V5 region were kept. OTU picking was performed

using the “open reference OTU picking” approach as im-

plemented in the QIIME pipeline [13] (version 1.9.1). We

used Greengenes version 13_8 as the reference OTU data-

base, clustering at 97% identity [14], while UCLUST [15]

(v 1.2.22) was used as the OTU picking method, using the

default parameters. Finally, OTUs containing < 0.002% of

the total number of high-quality reads sequenced were re-

moved. A final OTU abundance table with a total of 1895

OTUs was considered for downstream analyses. As the

Greengenes database has not been updated since 2013,

taxonomy assignment was performed with the RDP classi-

fier as implemented in dada2 package [16] considering

SILVA database [17] version 132 as a reference. For more

details, please see Additional file 1.

Microbial functional profiles of the microbiome sam-

ples were predicted from the respective 16S taxonomic

profiles using the PICRUSt [18] software version 1.1.0

(using Greengenes annotation, as it is required by

PICRUSt). The results of PICRUSt were curated depict-

ing the relative abundance of KEGG functional modules.

The eukaryotic modules were removed before down-

stream analyses, following the “removal of eukaryotic

functions” strategy implemented in Vikodak [19], an-

other tool for predicting the functional potential of the

microbial community. As they quantify the potential for

these functions encoded in the genomes but not their

expression, we refer to them as “functional potential”.

Downstream analysis of the taxonomic and functional

profiles was performed in R, using phyloseq package [20]

version 1.24.2. OTU level abundances were appropriately

cumulated at higher levels of taxonomic hierarchy using

phyloseq, as required for subsequent analysis steps.

Statistical analysis

Statistical analyses were performed using R v.3.4.1

(www.r-project.org).

Clinical characteristics

Continuous variables were compared across country and dia-

betes status by ANOVA with Tukey’s adjustment for mul-

tiple contrast. Analysis of covariance was applied to adjust

comparisons of waist circumference and waist-to-hip ratio

for effects of sex and BMI. Non-normally distributed vari-

ables were logarithmically transformed prior to analyses.

Microbiome composition and diversity

Sequencing depth differed between samples from the two

study populations (Additional file 2: Figure S1). For the

alpha-diversity measures, samples were rarefied to an equal

sequencing depth of 7000 reads. Differences in alpha-

diversity indices (Shannon index and richness) between

countries and metformin treatment groups were determined

using ANOVA and t test on the rarefied read counts.

Differences in community structure were assessed

using Bray–Curtis dissimilarity on relative abundances

(derived from non-rarefied abundances) as the beta-

diversity measure. To estimate the effect of factors on

the microbiome composition, we used permutational

multivariate analysis of variance implemented in the

adonis function of the vegan package [21] version 2.5.2.

For the analysis of differentially abundant taxa (at spe-

cies, genus, and phylum levels) and functions (at KEGG

module level) using non-rarefied read counts, we used

the negative binomial Wald test as implemented in the

DESeq2 package version 1.20.0 [22]. Multiple test cor-

rection was performed using the Benjamini–Hochberg

method considering a false discovery rate (FDR) < 5%.

None of the taxa or functional categories was filtered

during beta diversity analysis or differential abundance

analysis. In the differential abundance analysis, gut

microbiome variation between T2D and NG cohorts

were adjusted for both metformin and country on the

global analysis, and the effect of metformin treatment in

the gut microbiome is adjusted for country when neces-

sary. Additionally, we adjusted for gender, BMI, age, sul-

fonyl urea, statins, and proton pump inhibitors to verify

whether they confound the results. We adjusted for

these additional factors one by one and took the features

that were significantly different across all tests (Add-

itional file 2: Figure S2-S5). The analysis was conducted

individually for each parameter in this way because sim-

ultaneously adjusting for all these factors led to the

method not converging.

Differential prevalence analysis was performed using

Fisher’s exact test. Benjamini–Hochberg method consider-

ing a false discovery rate (FDR) < 5% was used for multiple

test correction. To determine the association between

Christensenellaceae family and Oscillospira genus with vis-

ceral fat, we used the Spearman correlation test as it is im-

plemented by the cor.test function in R.
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Results
Clinical characteristics of the Danish and Indians’ sam-

ples are presented in Additional file 3: Table S1 and dis-

cussed in Additional file 1. In short, when compared

with Indian study participants, Danish study participants

are older and have higher waist circumference, elevated

blood pressure, and elevated circulating lipid concentra-

tions. Microbiome datasets of Danish normoglycemic

(NG) and type 2 diabetes (T2D) patients have an average

sequencing depth of 16,792 reads/sample and 16,628

reads/sample respectively (Additional file 2: Figure S1A).

In the case of the Indian microbiome datasets, the NG

group has an average depth of 19,429 reads/sample and

the T2D group has 19,418 reads/sample. Within each

population, NG and T2D subgroups did not differ in se-

quencing depth (Additional file 2: Figure S1B).

Different gut microbial community structures in the

Danish and Indian population samples

Multiple factors that might affect the gut microbiota,

such as genetics, lifestyle, and environment, are different

between the two study populations. Therefore, we

searched for differences in the gut microbiota

composition between the Danish and Indian population

samples, using alpha and beta diversity measures. Ana-

lyses of alpha diversity indices, such as OTU richness

and Shannon index (Additional file 2: Figure S6), dem-

onstrate that the microbial composition of the Indian

study sample is significantly less diverse compared to

the Danish study population (p < 0.05, ANOVA). Princi-

pal coordinate analysis (PCoA) shows a clear separation

between the Danish and Indian gut microbiota, demon-

strating that the country of origin significantly influences

the gut microbiota composition, explaining 12% of the

total variation (p < 0.001, PERMANOVA) (Fig. 1). Gut

microbiota compositions do not separate based on T2D

status (Fig. 1), even when we analyze the Danish and In-

dian samples separately (Additional file 2: Figure S7).

We then looked for individual taxa that were differen-

tially abundant between the two populations using nega-

tive binomial regression and correcting for multiple

testing using the Benjamini–Hochberg method. A large

fraction of the taxa—31 out of 73 families, 97 out of 203

genera and 798 out of 1897 OTUs (Additional file 3: Ta-

bles S2 a, b, c)—are differentially abundant between

Danes and Indians (pFDR < 0.05). We show that 16

Fig. 1 Country of origin is the main driver of gut microbial community structure. Danish and Indian microbiota profiles are clearly separated at

OTU level in the principal coordinate analysis using Bray–Curtis dissimilarity measure. Country of origin also explains 12% of the beta-diversity

variation (p < 0.001, PERMANOVA test). Ellipses represent 95% confidence intervals for the Danish and Indian gut microbiota profiles. Gut

microbiota compositions do not separate based on T2D status. DK, Denmark; IN, India; NG, normoglycemic controls; T2D, type 2 diabetes
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families are enriched in the Danish sample, including

Bacteroidaceae, Christensenellaceae, Verrucomicrobia-

ceae (family containing Akkermansia muciniphila; 15-

fold increase), Rikenellaceae, and Desulfovibrionaceae;

and 15 families are enriched in the Indian sample, in-

cluding Lactobacillaceae (45-fold increase), Leuconosto-

caceae, Burkholderiaceae, and Prevotellaceae.

At genus level, we find in the Indian population an en-

richment of Prevotella group 9 (the genus that includes

Prevotella copri), Megasphaera and Lactobacillus, and in

the Danish population a higher abundance of Akkerman-

sia, Alistipes, and Bacteroides (Additional file 2: Figure

S8). Some genera are almost exclusively found in one of

the population samples. For instance, Anaerotruncus is

present in 56% of the Danish samples and only in 3% of

the Indians (pFDR < 0.05, Fisher’s exact test); and Achro-

mobacter is present in 47% of the Indian samples and

completely absent in the Danish samples (pFDR < 0.05,

Fisher’s exact test).

The genus level signatures are mirrored in the OTU

level differences in relative abundance. The abundance

of 11 OTUs from Megasphaera, 36 OTUs from Prevo-

tella group 9, 8 OTUs from Lactobacillus (including two

OTUs from Lactobacillus ruminis), 28 OTUs from

Agathobacter, 12 OTUs from Catenibacterium, 12 OTUs

from Collinsella, and 16 OTUs from Dorea, respectively,

are enriched in the Indian sample. While the abundance

of 39 OTUs from Blautia is enriched in the Indian sam-

ple, only one is enriched in the Danish sample. Con-

versely, 42 Bacteroides OTUs are enriched in the Danish

sample, and only one is enriched in the Indian sample.

Two OTUs from Akkermansia including Akkermansia

muciniphila, a prominent mucin degrader associated

with host metabolic health, are enriched in the Danish

study population, whereas there is no enrichment of

OTUs from Verrucomicrobia in the Indian study popula-

tion. Interestingly, 15 OTUs from the Christensenella-

ceae family, previously reported to be influenced by host

genetics [23], are enriched in the Danish population.

Furthermore, abundance of Christensenellaceae also in-

versely correlates with visceral fat in the Danish popula-

tion (based on spearman correlation with waist-to-hip

ratio adjusted for BMI, r = − 0.21, p = 4.3 × 10−6, and

waist circumference adjusted for BMI, r = − 0.22, p =

0.0003) whereas there is no significant association in the

Indian individuals (Additional file 2: Figure S9). Chris-

tensenellaceae has also been inversely associated with

visceral fat in a UK population [24], suggesting that this

correlation may only apply to western populations.

We also observe that, within some genera present in

both Indians and Danes, different OTUs are enriched in

the two populations, alluding to population-specific spe-

cies or strains of commensal gut microbiota. For in-

stance, 23 Faecalibacterium OTUs are enriched in the

Danish sample, whereas 28 others are enriched in the

Indian sample.

Global and study population-specific signatures of type 2

diabetes at levels of microbial taxonomy and functional

potential

Microbial richness is significantly decreased in

metformin-treated T2D patients compared with

metformin-naive T2D patients (p = 0.032, t test; Fig. 2)

and NG controls (p = 8.6·10−4, t-test; Fig. 2). With Shan-

non diversity index, there is a trend for metformin-

treated T2D patients to exhibit lower diversity than NG

controls (p = 0.168, t test). Both alpha diversity indices

show that there was no significant difference between

NG controls and metformin-naive T2D patients,

highlighting the negative effect of metformin treatment

on gut microbiota richness. Within the individual popu-

lation samples, we reproduce the reduced microbial rich-

ness in metformin-treated T2D individuals compared to

NG controls, but the Shannon diversity index was not

significantly different between any of the groups (Add-

itional file 2: Figure S10).

Given the strong study population effect on the gut

microbiota composition, we adjusted for it in all down-

stream analyses. We looked for T2D-associated differen-

tially abundant taxa in the combined group of T2D

patients (n = 298) compared with all NG controls (n =

275) using negative binomial regression. After correcting

for multiple testing, we identify 33 differentially abun-

dant OTUs and 5 differentially abundant genera (pFDR <

0.05; Additional file 3: Table S3).

More than half of the T2D patients in our study popu-

lation were treated with metformin (Additional file 3:

Table S1), which has previously been shown to affect the

gut microbiota [4, 5]. Additionally, many patients were

also treated with sulfonylurea (used by > 30% of Indian

diabetics), proton pump inhibitors (frequently used and

with known effects on the gut microbiota), and statins.

Finally, anthropometric characteristics including age,

gender, and BMI may also confound the T2D-

association analysis. Therefore, we repeated the T2D-

associated differential abundance analysis while addition-

ally controlling for these potential confounding factors.

Simultaneously controlling for all the factors failed due

to convergence issues in the analysis software. To solve

this, we tested for the confounding factors one by one

and identified T2D-associated differentially abundant

taxa that were not confounded by any of the factors. Be-

ing a known major confounding factor, metformin treat-

ment (metformin-naive T2D, n = 132; and metformin-

treated T2D, n = 166) was always controlled for in

addition to country of origin. Only 4 out of 33 OTUs

(12.1%) and 2 out of 5 genera remain differentially abun-

dant (pFDR < 0.05; Additional file 3: Table S4; Fig. 3,
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Fig. 2 Metformin alters gut microbial richness in combined groups of Danes and Indians. Microbial richness was significantly reduced in

metformin-treated T2D patients (n = 166), when compared to NG controls (n = 275) or metformin-naive T2D patients (n = 132). Microbial richness

did not significantly differ between NG controls and metformin-naive T2D patients. These differences were not reproduced when looking at

Shannon index. Danish and Indians samples were included in the analysis. NG, normoglycemic controls; T2D, type 2 diabetes

Fig. 3 OTUs are differentially abundant in the microbiota from the combined Danish-Indian group of T2D patients after controlling for confounding

factors. Relative abundances of differentially abundant OTUs are shown in log scale. Among T2D patients, metformin-treated individuals are

represented by filled circles and metformin-naive individuals are represented by hollow circles. Danish and Indians’ samples are included in the

analysis (also see Additional file 2: Figure S11 for separate visualizations for the countries). These four OTUs are consistently identified from six different

analyses where country and metformin were always adjusted for, while each additional factor (BMI, age, gender, usage of sulfonyl urea, statins, and

proton pump inhibitors) was adjusted for one by one. NG, normoglycemic controls (n = 275); T2D, type 2 diabetes (n = 298)

Alvarez-Silva et al. Genome Medicine           (2021) 13:37 Page 8 of 13



Additional file 2: Figure S2 a-b), highlighting the import-

ance of adjustment for the confounding factors. As an

alternative to adjustment for study population, we also

performed a meta-analysis of metformin-free T2D signa-

tures from the two study populations. While none of the

OTUs were statistically significant (pFDR < 0.05; see Add-

itional file 3: Table S5a), two out of the three near-

significant OTUs (pFDR < 0.10) in the meta-analysis were

also discovered in our original analysis. Hence, we used

the original results rather than meta-analysis results as

global T2D signatures. In the combined Danish-Indian

group, T2D patients have increased abundance of two

OTUs from the Lachnospiraceae family (Fig. 3, Add-

itional file 3: Table S4a). Similarly, T2D patients also

have decreased abundance of two OTUs from the Rumi-

nococcaceae family (Subdoligranulum and Butyricicoccus

genera). At genus level, Lachnoclostridium is enriched in

T2D microbiota whereas Anaerosporobacter is depleted

in T2D microbiota (Additional file 3: Table S4b).

Similar analyses were conducted within the individual

study populations. In the Danish study sample (metfor-

min- naive T2D, n = 61; metformin-treated T2D, n = 80;

and NG controls, n = 138), the genus Lachnoclostridium

is enriched in T2D patients (pFDR < 0.05; Additional file

3: Table S6). When we repeated this analysis in the In-

dian study sample (metformin-naive T2D, n = 71;

metformin-treated T2D, n = 86; and NG controls, n =

137), none of the OTUs or the genera shows differential

abundance based on our statistical criteria.

We next investigated the signatures of T2D in the

functional potential of the gut microbiome. For this, we

used the microbial functional profiles imputed by

PICRUSt [18]. Following the same methodology as for

taxonomic analysis (using negative binomial regression,

adjusting for confounding factors and correcting for

multiple testing using the Benjamini–Hochberg

method), we find that 18 out of 481 KEGG modules are

differentially abundant between the combined group of

Fig. 4 Microbial functional modules are differentially abundant in the microbiota of the combined Danish-Indian group of T2D patients after

controlling for confounding factors. Fold change of differentially abundant functional modules are shown in log scale. Both Danish and Indians’

samples were included in the analysis. These modules are consistently identified from six different analyses where country and metformin were

always adjusted for, while each additional factor (BMI, age, gender, usage of sulfonyl urea, statins, and proton pump inhibitors) was adjusted for

one by one. NG, normoglycemic controls (n = 275); T2D, type 2 diabetes (n = 298)
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T2D patients and the combined group of NG controls

(Fig. 4, Additional file 2: Figure S3, Additional file 3:

Table S7). Meta-analysis of metformin-adjusted func-

tional profile signatures revealed 17 differentially abun-

dant KEGG modules (pFDR < 0.05; Additional file 3:

Table S5b), 9 out of which were also identified in our

original analysis. Therefore, we considered the original

18 KEGG modules as global T2D signatures.

T2D patients have a significant enrichment of predicted

environmental information-processing functions (10

KEGG modules); with 7 modules from ABC transporters,

2 modules from two-component regulatory systems and 1

module related to drug resistance mechanisms. The mod-

ules from the ABC transporters are distributed between

three transporter systems: monosaccharide transporters

(Rhamnose and D-Xylose), phosphate and amino acid

transporters (Glutamate/aspartate, General L-amino acid

and Phosphonate transporters) and mineral and organic

ion transporters (spermidine/putrescine and Glycine beta-

ine/proline). Further predicted enriched modules belong

to carbohydrate and lipid metabolism, and nucleotide and

amino acid metabolism.

In the Danish population, 5 predicted metabolic mod-

ules are enriched in the T2D patients (Additional file 3:

Table S8). Among these, two are also found in the com-

bined group analysis. Three of these modules are associ-

ated with saccharide transport systems and one with

thiamine transport. In the Indian population, none of

the predicted metabolic modules shows differential

enrichment.

Effect of metformin on gut microbiota of patients with

T2D

Considering the strong confounding effect of metformin

in our analysis, we investigated the effect of metformin

treatment on the gut microbiota of our T2D patients.

We compared metformin-treated T2D (n = 166) and

metformin-naive T2D (n = 132) patients from both pop-

ulations after controlling for study effect and other con-

founding factors (Additional file 3: Table S9, Additional

file 2: Figure S4). Here we identify 3 differentially abun-

dant OTUs using negative binomial regression (pFDR <

0.05; Fig. 5). Metformin-treated T2D patients have an

enrichment of 2 OTUs from Bacteroides and lower

abundance of one OTU from Faecalibacterium. At the

genus level none of the genera shows differential enrich-

ment based on our statistical criteria. When we repeated

this analysis for the individual populations, the genus

Escherichia/Shigella is enriched in Danish metformin-

treated T2D patients (pFDR < 0.05; Additional file 3:

Table S10). In the Indian study sample, one OTU from

Lachnoclostridium is enriched in metformin-treated

T2D patients (pFDR < 0.05; Additional file 3: Table S11).

When we combine Danish and Indian samples, we do

not find any differential abundant KEGG module after

controlling for confounding factors (Additional file 2:

Figure S4). In the individual study population analysis,

we only find metformin signals in the Danish popula-

tion, where 4 predicted modules are increased in

metformin-treated T2D patients, including nitrogen me-

tabolism, drug resistance, fatty acid metabolism, and

manganese/zinc/iron transporters (Additional file 3:

Table S12).

Discussion
We present the gut microbial signatures in Danish and

South Indian individuals who are highly diverse in their

geographic location, ethnicity, and lifestyle including

dietary factors. We observe major compositional differ-

ences between the Danish and South Indian gut micro-

biota when analyzing the combined diabetic and

nondiabetic subgroups from the two countries. We find

Fig. 5 OTUs in the gut microbiota of the combined Danish-Indian group of T2D patients are affected by metformin treatment. Relative

abundances of differentially abundant OTUs are shown in log scale. Both Danish and Indians’ samples were included in the analysis. Comparisons

were made between T2D metformin-treated (n = 166) and T2D metformin-naive (n = 132). These OTUs are consistently identified from six

different analyses where country was always adjusted for, while each additional factor (BMI, age, gender, usage of sulfonyl urea, statins, and

proton pump inhibitors) was adjusted for one by one. T2D, type 2 diabetes
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enrichment of Prevotella group 9 and Megasphaera in

the Indian sample, previously reported as distinctive fea-

tures of the Indian gut microbiota [25]. Higher relative

abundance of Prevotella has been associated with higher

habitual plant-based fiber intake [26], and Prevotella was

shown to rapidly decrease in relative abundance in om-

nivorous subjects when switching to an all animal-based

diet [27]. Thus, the enrichment of Prevotella in the In-

dian sample alludes to the dietary differences, as sug-

gested previously [25]. We also observe an enrichment

of Lactobacillus in Indians, which might be due to

higher consumption of fermented foods [25]. On the

other hand, we find a higher relative abundance of Bac-

teroides in the Danish population, consistent with previ-

ous results for Western countries [28, 29]. Bacteroides

was shown to rapidly increase in omnivorous subjects

when switching to an all animal-based diet [27]. Studies

have suggested that the balance between Bacteroides and

Prevotella is determined by the balance between pre-

dominantly animal- and plant-based diets, which our re-

sults support. We also identify a strong enrichment of

bile acid tolerant bacteria enriched in Danish samples,

further reinforcing the effect of a more animal-based

diet in Danish gut microbiota—11 OTUs from Alistipes,

11 OTUs from Parabacteroides, and one OTU from

Bilophila wadsworthia.

Our search for population-specific T2D signatures

at the taxonomy level fails in both countries, as none

of the OTUs at species level is differentially abundant.

This observation suggests that a taxonomic micro-

biota signal in Indian and Danish T2D patients, if

present, is difficult to detect. In combined analysis,

T2D patients have decreased abundance of short-

chain fatty acid (SCFA) producers from the Rumino-

coccaceae family such as Subdoligranulum and

butyrate-producing Butyricicoccus, consistent with

previous results [4]. Only 2 genera (Anaerosporobacter

and Lachnoclostridium) associate with T2D after con-

trolling for the effect of metformin.

Functionally, T2D patient microbiomes have an en-

richment mainly in carbohydrate and lipid metabolism;

nucleotide and amino acid metabolism; two-component

regulatory systems; several transport systems; and drug

resistance. Particularly, enrichment of sugar transport

systems in T2D patients suggests that this could alter

the availability of sugars to the host thereby affecting

glucose homeostasis. Furthermore, we also find an in-

creased potential for lysine degradation in T2D patients.

These findings are in accordance with previously re-

ported depletion of lysine in serum from T2D patients

[30, 31]. Given the limitations of inferring functional

potential from 16S rRNA amplicon sequencing data, our

findings require future validation using shotgun

metagenomics.

With a reasonably balanced proportion of metformin-

naive and metformin-treated T2D patients in our com-

bined study sample, we had sufficient statistical power

to look for global signatures of metformin in the gut

microbiota. Metformin treatment is associated with re-

duced abundance of Faecalibacterium, a SCFA produ-

cer widely considered as beneficial. While this is

unexpected, a reduction of Faecalibacterium prausnitzii

has previously been seen in Spanish individuals after a

4-month metformin treatment [32]. The enrichment of

Escherichia/Shigella in metformin-treated T2D patients

from the Danish cohort but not in the Indian cohort

after adjusting for the effect of BMI, age, gender, and

additional medications is consistent with results from

our previous multi-cohort analysis of the effect of met-

formin [4]. In our previous Chinese-Scandinavian study

sample, increased abundance of Escherichia was

observed in Danish and Swedish T2D study partici-

pants, but not in the Chinese T2D patients [4], suggest-

ing that this effect may be associated with ethnicity or

demography.

Overall, our study design and the number of partici-

pants allow us to assess “universal” microbial taxonomic

associations with T2D, while controlling for confounding

effects due to ethnic variations, effects of T2D treatments,

and factors such as gender, BMI, and age. While our study

indicates that ethnic signatures overshadow T2D-specific

signatures, some of the microbial signatures show a more

profound and somewhat universal trend.

Conclusions
In the present trans-ethnic study, we demonstrate

major differences between the Danish and Indian gut

microbiota, some of which may relate to differences

in demography and dietary practice. By comparing

T2D patients and NG individuals, we identify T2D-

related microbial changes in taxonomy within the Da-

nish population sample. Such changes are not appar-

ent in the Indian sample potentially due to Indians

having more individually diverse intestinal microbial

communities putting more demand on study sample

size when comparing affected versus non-affected in-

dividuals. We also identify gut microbiota changes as-

sociated with metformin treatment, which confirms

previously known associations. Finally, across the two

population samples, we identify gut microbial signa-

tures which associate with T2D that are not con-

founded by country, medication, or other confounding

factors. These signatures are represented by few

taxa—4 OTUs and 2 genera—suggesting that identifi-

cation of gut microbial signatures of treatment-naive

T2D is a challenge when applying the 16S rRNA gene

amplicon approach with a moderate taxonomic

resolution.
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