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We investigated the relative importance of dispersal and vicariance in forming the Madagascar insect

fauna, sequencing approximately 2300 bp from three rRNA gene regions to investigate the phylogeny of

Afrotropical small minnow mayflies (Ephemeroptera: Baetidae). Six lineages contained trans-oceanic

sister taxa, and variation in genetic divergence between sister taxa revealed relationships that range from

very recent dispersal to ancient vicariance. Dispersal was most recent and frequent in species that spend the

larval stage in standing water, adding to evidence that these evolutionarily unstable habitats may select for

ecological traits that increase dispersal in insects. Ancestral state likelihood analysis suggested at least one

Afrotropical lineage had its origin in Madagascar, demonstrating that unidirectional dispersal from a

continental source may be too simplistic. We conclude that the Malagasy mayfly fauna should be

considered in a biogeographical context that extends beyond Madagascar itself, encompassing trans-

oceanic dispersal within multiple lineages.
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1. INTRODUCTION

Madagascar is one of the most biologically diverse areas on

Earth and is well recognized as a discrete, globally

important centre of evolution (Goodman & Benstead

2003; de Wit 2003). While large parts of the fauna and

flora have evolved over more than 80 million years of

isolation from all other landmasses (Lourenço 1996;

Goodman & Benstead 2003), an increasing number of

studies highlight the important impact of more recent

colonizations (Cibois et al. 1999; Douady et al. 2002;

Nagy et al. 2003; Yoder et al. 2003; Sparks 2004). In

particular, recent molecular phylogenetic studies of

reptiles (Raxworthy et al. 2002; Vences et al. 2003) and

birds ( Jansa et al. 1999; Groombridge et al. 2002) have

begun to establish a closer link of Malagasy lineages with

groups elsewhere, where trans-marine migrations occur

within geographically widespread radiations. To date,

these studies have been confined to vertebrates.

Insects comprise a large proportion of faunal biodi-

versity in Madagascar (Paulian & Viette 2003). Insects are

highly diverse in their ecological attributes affecting

dispersal propensity, and therefore their ability to colonize

islands, but we are aware of no formal studies of the age

and origin of Malagasy insect groups. The global

biogeography of many insect groups is attributed to

vicariance processes (e.g. Gauld & Wahl 2002; Sanmartin

& Ronquist 2004). Single dispersal events are sometimes

invoked to link speciose allopatric lineages, e.g. Tricoptera

( Johanson 1998) and families of Coleoptera (Sequeira &

Farrell 2001; Davis et al. 2002), but wide-ranging and

repeated dispersal is thought to occur for only the more

vagile groups, such as Lepidoptera (de Jong 2003;

Zakharov et al. 2004). Nonetheless, many Malagasy insect

groups are taxonomically more similar to Africa than Asia

or Australia (e.g. Cassola 2003; Donnelly & Parr 2003).

This suggests that geographical proximity and trans-

oceanic dispersal may be an important determinant of

the Malagasy insect fauna.

Mayflies (Ephemeroptera) are well suited for biogeo-

graphical studies because of their ancient origins, global

distribution, limited dispersal powers and strict larval

habitat affinity (Sartori et al. 2000). Mayfly fossils date

from the Carboniferous (ca 300 Ma; Hubbard & Kukalo-

va-Peck 1980), thus pre-dating Gondwanan vicariance.

Their global diversification has been thought to be the

result of ancient continental separations (Edmunds 1972,

1975), including their presence on islands (e.g. Gerlach

2001). Long before theories of continental drift were well

established, the presence of mayflies on the Seychelles was

taken as evidence that the islands were of continental

origin (see Scott 1932; Perkins 1933). Mayfly dispersal is

thought to be very limited (Brittain 1982). A number of
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studies of small minnow mayflies (Baetidae) suggest that

dispersal is largely limited to the same or nearby water

bodies (Hershey et al. 1993; Monaghan et al. 2002;

Caudill 2003; Hughes et al. 2003). This is partly due to the

fact that most species live only a few hours as winged

adults, relying for energy in the adult stage entirely on

reserves built up during the larval stage. However, some

ovoviviparous females may live up to two weeks in the

adult phase (Gillies 1949). Larvae of most species are

restricted to either lentic (e.g. lakes, ponds) or lotic

(streams, rivers) freshwaters.

For the mayflies, taxonomic similarity among former

parts of Gondwanaland appears more related to present-

day geographical distance rather than to vicariant history

(Sartori et al. 2000). Of 24 Baetidae genera in Mada-

gascar, 16 are shared with Africa (separated 165 Ma). Of

these 16 shared genera, only three occur in India

(separated 88 Ma), and two in Australia (separated

110 Ma) (see Gattolliat & Sartori 2003). All species of

mayfly in Madagascar are endemic, except for Cloeon

smaeleni (Gattolliat & Rabeantoandro 2002; Elouard et al.

2003). The Malagasy fauna of mayflies therefore con-

stitutes a puzzle in that affinities with the African continent

are apparent, but their seemingly poor dispersal ability

would argue against trans-ocean exchange. Testing the

origin and relatedness of Malagasy lineages, and their

sister relationships elsewhere, would be a major step

towards the understanding of global diversity of the

Ephemeroptera.

Here we investigate the relative importance of trans-

oceanic exchange, vicariance and endemic radiations in

the formation of the Malagasy fauna, using a group of

insects thought to have limited powers of dispersal. We

conducted a phylogenetic analysis of all major Malagasy

groups of Baetidae and their African counterparts, to

include representatives of 26 genera. Our specific goals

were to determine the number of lineages shared between

Madagascar and Africa and whether lineage origins could

be attributed to either area. The results show a complex

pattern, from very recent dispersal to events of ancient

vicariance, and indicate that a traditional scenario of

unidirectional dispersal from a continental source is too

simplistic.

2. MATERIAL AND METHODS

(a) Sampling

Of the 24 Malagasy Baetidae genera, eight are endemic, 13

are restricted to the Afrotropical region, one is pantropical

(Cloeodes) and two are cosmopolitan (Labiobaetis/Pseudocloeon

and Cloeon) (Gattolliat & Sartori 2003). We focussed on 10

genera found in both Madagascar and Africa, and on six

Malagasy endemic genera. Ten additional Afrotropical

genera, as well as the Palaearctic and Afrotropical Baetis

were added to the analysis to examine basal relationships

among lineages of Baetidae. Labiobaetis/Pseudocloeon from

Borneo and New Guinea were included in the analysis, as

were Cloeon from Europe. Samples were collected in May–

June 2003 by the authors or taken from collections of the

Museum of Zoology in Lausanne. DNA was extracted from

thoracic muscles using a Qiagen Dneasy Tissue Kit.

Mitochondrial 12S and 16S ribosomal subunits were

amplified using primers 12Sai and 12Sbi (Simon et al.

1994), and 16Sar (Simon et al. 1994) and 16S2 (Giessler

et al. 1999). Two fragments of nuclear 18S rRNA were

amplified using 18S5 0, 18Sb5.0, and 18S1.0, 18Sbi, 18S2.0,

and 18S3 0 (Whiting et al. 1997; Shull et al. 2001). Both

strands were sequenced using PCR primers and analysed with

an ABI 3700 automated sequencer. For the choice of out-

group taxa, molecular evidence to date indicates Baetidae are

the sister taxon to all mayflies, and that Odonata are the most

closely related extant insects (Hovmöller et al. 2002; Ogden &

Whiting 2003). Thus, four mayfly species from the family

Tricorythidae were analysed for this study and sequences

from the dragonfly Libellula saturata (Odonata, Libellulidae)

were taken from Genbank (accession numbers: 12S

AY282562; 16S AF037181; 18S AY338717). Multiple

individuals of 38 in-group species were sequenced to test

for errors, contamination, and mislabelling, but removed

from final phylogenetic analysis. All specimens were given a

unique number for the study and extracted DNA is stored at

the Natural History Museum, London in the frozen

collection database (BMNH 704056–704132 and BMNH

704630–704678).

(b) Phylogenetic Analysis

All four gene fragments were length-variable (two 18S

fragments combined: 1444–1449 bp; 12S: 326–338 bp;

16S: 498–510 bp) and thus we used three general approaches

to phylogeny reconstruction: direct optimization as

implemented in POY v. 3.0.11 (Gladstein & Wheeler 1999)

and parsimony and maximum likelihood searches of static

multiple alignments. For direct optimization, an initial

alignment was performed manually for 18S regions and the

sequences were separated into one conserved fragment and

two variable fragments for ease of analysis. POY searches were

performed under equal weight of all character changes

including indels, conducting 10 replicates and holding a

maximum of 10 trees each replicate. Alternative gap cost

parameters were explored with no substantial effects on

topology. Complete command lines and implied alignments

can be obtained from the corresponding author. Bremer

support was calculated using a heuristic procedure

implemented in POYon the best output tree.

For parsimony and likelihood searches, we first examined

gap opening penalties (from 1 to 15) for congruence of length-

variable regions using an incongruence length difference

(ILD) test (Farris et al. 1994, 1995). Multiple alignments

were assembled using CLUSTALW (using web servers provided

by Major Linux and Institut Pasteur). Tree searches were

conducted with PAUP
� v. 4.0b10 (Swofford 2002) using

random addition sequences, 1000 replicates and gaps coded

as a fifth character state, holding 50 trees at each replicate.

The tree with lowest ILD was found using gap penalties of 10

for all three ribosomal markers. Parsimony tree searches on

this alignment (2385 characters; 12S: 365 bp, 16S: 554 bp,

18S: 1466 bp) were conducted with PAUP
� as above, with the

multi-trees option. Congruence of mtDNA and nDNA

markers was examined by comparing each partition with the

total evidence tree. Mapped on the total evidence tree,

mtDNA tree length increased by 0.1% (from 7076 to 7084)

and nDNA by 7% (597–641), and there was no incongruence

within the seven well supported lineages (see below). Based

on these results, we present only the total evidence tree. Data

were bootstrapped (1000 replicates) with PAUP
�. Inferred

indels were treated as distinct character states (Phillips et al.

2000), but coding them as missing data had no effect on tree

topologies within well supported lineages. We constructed a

maximum likelihood topology under a GTRCICG model
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(selected in MODELTEST 3.06; Posada & Crandall 1998) with

all parameters estimated from the data using PHYML (Guindon

& Gascuel 2003).

(c) Ancestral state likelihood

Using likelihood methods (Pagel 1999; Belshaw et al. 2000),

we estimated the ancestral state for each well resolved clade

joining African–Malagasy sister taxa. Geographic area was

treated as a multi-state character (Africa, Madagascar,

Seychelles, Asia, Europe) and we used MULTISTATE v. 0.8 to

calculate tree likelihoods (10 replicates) with single nodes

fixed at either Africa or Madagascar as a state. Using the

highest log-likelihood calculated for each state, differences

greater than 2.0 were considered significant (Schluter et al.

1997), with the higher likelihood considered to be the most

well supported ancestral state.

3. RESULTS

(a) Phylogenetic analysis

Direct optimization produced a single tree (figure 1). This

topology differed from that of the shortest parsimony tree

search on static alignments by only a single node within the

Cloeon lineage (clade B, figure 1). Six well supported clades

(figure 1, clades A, B,D, E, F, G) contained bothMalagasy

and African taxa and a seventh (figure 1, clade C) was

composed entirely ofMalagasy species. Support for deeper

nodes within the tree was weaker than at the tips, with very

low support among the seven major clades. Maximum

likelihood recovered the same seven lineages with only a

single change within clade B: Afrotropical Cloeon was

monophyletic, with Procloeon and the two EuropeanCloeon

species basal to the Afrotropical clade (figure 2b). The

likelihood topology was different from direct optimization

and parsimony at deeper nodes, notably by separating

Baetidae into two basal sister groups (see figure 1 inset).

The Labiobaetis/Pseudocloeon/Baetis lineage (clade A)

was the most geographically widespread and our results

highlight the taxonomic uncertainty of the group.

Historically, adults with no hind wing and double

intercalary veins on the forewing were assigned to the

cosmopolitan genus Pseudocloeon. Waltz & McCafferty

(1985) restricted the concept of Pseudocloeon to the type

species, and Lugo-Ortiz et al. (1999) assigned all

Labiobaetis to Pseudocloeon. Malagasy species described

subsequently were assigned to Labiobaetis (Gattolliat

2001a). To avoid confusion, we hereafter refer to this

lineage as Labiobaetis/Pseudocloeon. African and Malagasy

members of Labiobaetis/Pseudocloeon appeared polyphy-

letic, with each well supported clade containing two

Malagasy and one African species. Asian (New Guinea,

Borneo) Labiobaetis/Pseudocloeon clustered together

weakly but were not supported as sister to an Afrotropical

clade. Likelihood branch lengths suggest a wide range of

genetic divergence between over-ocean sister taxa within

the group (figure 2a).

The Cloeon and Procloeon lineage (clade B, figure 1)

displayed three clear instances of trans-oceanic sister

relationships, including very closely related C. smaeleni

in both Africa and Madagascar. For the taxa studied,

Africa–Madagascar divergence, based on branch length

differences, appeared less than Seychelles–Madagascar

divergence (figure 2). This pattern does not correspond

with geological age (165 Ma and 65–80 Ma, respectively).

A third major clade (clade C) consisted entirely of

Malagasy species. Eight Malagasy species of Afroptilum,

Dicentroptilum and Xyrodromeus occurred within clade C,

and the fact that their African congeners occurred in other

clades makes these genera paraphyletic. The four smaller

lineages (figure 1, clades D, E, F, G) each contained

African and Malagasy sister taxa. Malagasy species within

these clades always were monophyletic, and branch

lengths revealed a wide range of trans-oceanic genetic

divergence (figure 2).

(b) Ancestral distribution

Ancestral state reconstructions were conducted separ-

ately for nine nodes within the likelihood tree where

species from Madagascar and Africa occurred in lineages

(figure 2). Likelihood estimations testing for a signifi-

cantly higher probability for Africa or Madagascar as the

ancestral state found that only the Cloeodes (clade F)

lineage clearly discriminated between both possibilities,

with Madagascar as the more likely ancestral state

(figure 2). No significant differences were found between

likelihoods in analyses of the remaining lineages.

4. DISCUSSION AND CONCLUSIONS

Most species of Baetidae in Madagascar could be grouped

into seven well supported lineages. One lineage was

entirely endemic, four were Afrotropical (i.e. composed

of Malagasy and African mainland species), and two

included Asian and European species. Phylogenetic

support was inconclusive for basal relationships among

the seven lineages; nonetheless, a number of inconsisten-

cies with proposed species complexes are clear from the

data. Bugilliesia (Lugo-Ortiz & McCafferty 1996), Cen-

troptiloides (Lugo-Ortiz & McCafferty 1998a) and Cloeodes

(Lugo-Ortiz &McCafferty 1998b) species complexes were

all polyphyletic based on our molecular reconstruction.

Likelihood analysis recovered two major lineages within

the family and provided support for the hypothesis that the

Afrotropical Baetidae is composed of two subfamilies,

Baetinae and Cloeoninae (Gillies 1991). The inclusion of

Asian and European taxa in these two proposed sub-

families indicates they may represent a deep subdivision of

the Baetidae globally. Several genera were polyphyletic,

suggesting that taxonomic revision is needed. This was

particularly the case for the Labiobaetis/Pseudocloeon line-

age and for species within the Malagasy endemic lineage

that are assigned to African genera (see below).

The phylogenetic reconstruction suggests that the

Malagasy Baetidae fauna is not the result of simple

vicariance or unidirectional mainland–island dispersal.

In many instances, Malagasy species had closest relatives

in Africa, and clades also included closely related Asian

species (e.g. within clade A). The large number of trans-

oceanic sister groups and the wide range of genetic

relatedness is strong evidence that Madagascar is part of

a larger geographical network of lineage evolution and

exchange that includes the African continent (sensu

Raxworthy et al. 2002), Indian Ocean Islands (Seychelles

in our study; see Groombridge et al. 2002; Vences et al.

2003) and southern Asia. The wide range of genetic

divergence between African and Malagasy sister taxa

(estimated from likelihood branch length) indicates a lack

of synchrony in divergence events and shows that trans-

oceanic exchange has occurred repeatedly.
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It may be appropriate to consider the evolution of the

Malagasy insect fauna in a biogeographical context that

extends beyond Madagascar itself, and that trans-oceanic

dispersal may be more common than thought for a broad

range of insects (Trewick 2000). Zakharov et al. (2004)

recently discussed genetic evidence that the highly vagile

swallowtail butterflies (Papilio spp.) have made repeated

trans-oceanic dispersal. Our estimates of ancestral states

were largely inconclusive with regard to the origin of

Malagasy lineages, except for Cloeodes, which our results

indicate to be ancestrally a Malagasy lineage with descen-

dents now confined to Africa. Further sampling of African

taxa is required to confirm such a result (Emerson2002), but

it casts doubt on any hypothesis of unidirectional,mainland–

island dispersal. The widespread nature of several lineages

also requires a more thorough sampling and assessment of

the Indian subcontinent andAsia aspotential ancestral areas.

For the two most widespread lineages (Cloeon and

Labiobaetis/Pseudocloeon), close trans-oceanic sister

relationships preclude any significant substructure within

the Afrotropical region, including Madagascar. For

example, the very small genetic difference between trans-

oceanic C. smaeleni, and its wide sub-Saharan and

southern Arabian distribution (Gillies 1985) suggest a

large, continuous range and frequent dispersal, even

across the ocean. Species of Cloeon possess several

attributes that may act alone or in combination to increase

their dispersal success and therefore their range size. Eggs

can reach complete development in the adult female and

hatch upon contact with water (Gillies 1949), and

unmated females can produce fully reproductive offspring

(Harker 1997). Larvae can tolerate periods of anoxia and

unusually high water temperature (e.g. Nagell 1980) as

well as high salinity (Forbes 1968; Forbes & Allanson
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1970). Not all species possess all of these characteristics,

but singly or in combination, these traits are likely to

increase the success of active or passive long-distance

dispersal. We are unaware of any such mechanisms in

Labiobaetis/Pseudocloeon, although some data suggest that

the specific habitat type in which larvae live may be related

to their range size (see below).

Only in one case (clade C) was a major radiation

entirely composed of species endemic to Madagascar. It is

an ecologically important group, because one or more

members of this clade often are present in high abundance

(e.g. Benstead et al. 2003) and members of the group are

found in most rivers in Madagascar (authors’, personal

observation). Interestingly, every feeding behaviour

known for Baetidae (collector–gatherer, scraper, predator)

occurred in this lineage except for detritus ‘shredding,’

which is poorly represented in the tropics generally

(Dudgeon 1999; Dobson et al. 2002). This lineage is

most likely the result of a radiation from an ancestor that

was a collector–gatherer such as Afroptilum. Both Mala-

gasy Xyrodromeus exhibit a high degree of convergence to

African Xyrodromeus africanus, with specialized mouth-

parts for scraping epilithic algae (Gattolliat & Sartori

2003). This character is also present in several other

Malagasy genera outside of this lineage, including all

species of Rheoptilum and Scutoptilum (Gattolliat 2001b,

2002), and in a single species each of Cloeodes and

Dabulamanzia (Gattolliat & Sartori 2000; Gattolliat

2001c), indicating it has evolved repeatedly. Interestingly,

Malagasy Herbrossus and Guloptiloides are predators, a

relatively rare life strategy among mayflies (Gattolliat &

Sartori 2001). These were recovered as sister taxa in our

analysis, and members of the endemic clade; however,

predation was paraphyletic in Madagascar based on the

phylogenetic position of a third predator, Nesoptiloides. A

fourth, African carnivore (Centroptiloides) appeared within

yet another lineage, strongly suggesting predation has

evolved independently several times.

The spatial scale of lineage evolution within the

Baetidae supports the hypothesis that habitat type is an

important predictor of aquatic insect range size (Ribera &

Vogler 2000). For aquatic beetles (Coleoptera), Ribera

et al. (2001, 2003) found that standing-water (lentic)

species had larger ranges than species living in running

waters, and hypothesized that standing water bodies of

the size inhabited by most insects are short-lived at the

scale of decades, and hence long-term persistence of

populations is only possible through dispersal. Consistent

with these predictions, the predominantly lentic clade of

Cloeon was least structured geographically, and hence the

most dispersive lineage in our study. Labiobaetis/Pseudo-

cloeon was the only other lineage with closely related

trans-oceanic sister taxa. Interestingly, larval Labiobaetis/

Pseudocloeon species live in running waters, but many

species are confined to slow-moving sections of rivers and

are found in aquatic vegetation where water movement is

slow (personal observation). Based on this finding, we

hypothesize that the two other standing-water Afrotropi-

cal genera, Demoulinia and Potamocloeon (Gattolliat

2003), also have undergone recent trans-oceanic dis-

persal events.

In conclusion, our study contributes to recent evidence

that dispersal has greatly affected the faunal composition

of Madagascar, and proposes that the geographical extent

of lineages may be predicted by ecological traits of

organisms that are principally determined by their habitat

type. The results demonstrate the high vagility of insects,

even for mayflies (e.g. Johnson 1969), whose brief winged

phase and strict habitat fidelity would seem to prohibit

trans-oceanic dispersal (Brittain 1982; Brittain & Sartori

2003). It is also evident that dispersal is not necessarily

unidirectional; our results show a high likelihood that one

lineage originated in Madagascar, and an equal likelihood

of a Malagasy or African origin for six other lineages. With

such regularities in phylogenetic and biogeographical

patterns emerging (e.g. Raxworthy et al. 2002), the

challenge is now to determine what factors may promote

dispersal. Mayflies associated with ponds and small

standing water bodies had the widest range and showed

the most recent, and presumably most frequent, trans-

oceanic exchange, adding to a growing body of evidence

that strategies for survival in evolutionarily unstable

habitats may select for greater dispersal abilities in any

taxonomic group (Ribera et al. 2001). As a predictive

framework for identifying deeply separated, endemic

lineages from those of more recent origin, habitat affinity

also could be broadly used to set conservation priorities in

the endangered fauna of Madagascar.
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