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1 Introduction

One of the most important challenges facing any fundamental theory of quantum gravity is

how to reconcile it with the observed dark energy in our universe. The simplest possibility

would be to look for a positive cosmological constant as the background describing our

universe. This would necessitate that de Sitter space can exist in such a quantum theory.
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It has been difficult if not impossible to construct dS spaces (even meta-stable dS) from

string theory, which is currently the only well-developed quantum gravitational theory. In

fact, the difficulty in constructing dS spaces in string theory was one of the main motivations

for the de Sitter Swampland conjecture [1], which implies that not only there are no meta-

stable dS spaces, but also that the slope of the potential satisfies |V ′| ≥ cV for some

constant c. In [1], the idea that c could itself be a function c(V ) was contemplated, but all

the known string constructions at weak coupling led to the formula with c being a constant

independent of V , which motivated the dS conjecture. There have been refinements of

this proposal suggested in [2–7]. The conjecture in [1] was mainly due to observations of

the structure of the scalar potentials one obtains in string theory, for which with current

techniques we have information only at weak couplings which corresponds to large scalar

field expectation values. What is missing in the original conjecture is an explanation of it

based on fundamental aspects of quantum gravity, such as dynamics of the black holes, as

is the case for many other Swampland conjectures. This was partially remedied in [6] where

it was argued why the large field version of the conjecture should hold based on entropy

considerations of quasi-dS spaces. Other attempts at coming up with a dS conjecture

motivated by more basic aspects of quantum gravity includes [3, 8] where quantum breaking

of dS is suggested as the main principle leading to c being proportional to V instead of

being a constant and [7] where the postulate of lack of existence of eternal inflation1 has

led to c being proportional to V 1/2. However, these are strictly weaker than what one finds

in string constructions at weak couplings where c is a constant independent of V .

It is thus natural to ask if there is any principle of quantum gravity which leads to

the dS conjecture at least in large field range but also has specific predictions for any field

range. This paper aims to propose such a principle. The principle we propose, the Trans-

Planckian Censorship Conjecture (TCC), simply put states that in an expanding universe

that could realize in a consistent quantum gravity theory, the sub-Planckian quantum

fluctuations should remain quantum and can never become larger than the Hubble horizon

and classically freeze.2 We show that TCC is weaker than the dS Swampland conjecture,

but in a way, it is more specific. For example we show that in d-dimensional spacetimes

for large field ranges with positive potential [|V ′| ≥ cV ]
∣∣
∞ with c = 2/

√
(d− 1)(d− 2).

Moreover, this value of c is compatible with all known examples in string theory. However,

as we will see TCC is weaker than dS conjecture at the interior of the field space. In

particular, the lower bound for slope |V ′|/V depends on the range of the field. Moreover,

taking into account quantum fluctuations, TCC is compatible with V ′ = 0 points as well,

as long as it is sufficiently unstable quantum mechanically. We find that in a meta-stable

dS point is compatible with TCC as long as its lifetime T is bounded by

T ≤ 1

H
log

Mp

H
(1.1)

where H is the Hubble parameter and is related to the cosmological constant by (d−1)(d−2)
2

· H2 = V = Λ in d spacetime dimensions. Also, for unstable critical points, we find a

1See however [9] for a discussion of this.
2This notion is different from the similarly named phenomenon discussed in [10, 11].
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condition similar to the refined dS conjecture which puts a bound on |V ′′|/V [6]. Moreover,

we find that for any expansionary period of the universe for matter with equation of state

w ≥ −1, measurement of H will give an upper bound to the age of the observed universe.

The upper bound is the same as the (1.1) with H being the measured value of the Hubble

parameter at time T after the expansion started.

One of the motivations for this conjecture arises from the issues encountered in the

context of studying inflationary models. One of the most significant triumphs of inflation

is the relation that it establishes between quantum fluctuations in the inflationary era and

classical macroscopic perturbations that are observable in late-time cosmology. Moreover,

it allows for field-theory computations without relying on any trans-Planckian physics.

However, it has been pointed out that this framework could fall apart if the mentioned

macroscopic fluctuations trace back to trans-Planckian wavelengths during inflation [12–

14] (see also [15, 16]). In that case, the evolution of fluctuations cannot be reliably extracted

from the effective field theory. This issue is called the ‘trans-Planckian problem’ in cosmol-

ogy literature. Even so, this was not viewed as an obstacle for having such potentials, but

only the existence of difficulty in reliably extracting the physics of sub-Planckian fluctua-

tions that cross the horizon from inflationary models for such cases. Here we are proposing

that this may never happen and such potentials belong to the Swampland!

The organization of this paper is as follows: in section 2 we formulate the conjecture

and draw some general consequences of it. In section 3 we study more detailed consequences

of this conjecture, in the long field range as well as the short field range. In section 4 we

study the consequences of TCC for meta-stable as well as unstable critical points of V .

In section 5 we present examples from string theory to test TCC. In section 6 we discuss

possible relations to the distance conjecture. In section 7 we summarize the results and

compare with the refined dS conjecture. In section 8 we present our conclusions. Some

technical computations are presented in the appendices.

2 The Trans-Planckian Censorship Conjecture (TCC)

2.1 Motivations for TCC

In a quantum gravitational theory, we do not believe that the notion of spacetime as a

continuum would make sense at distance scales smaller than Planck length. However,

in such a theory we can nevertheless have expansions in the background, which raises

the question of what happens to these scales becoming larger than Planck length. In a

consistent QG theory, the quantum fluctuations of this kind should remain quantum, in a

way not to be contradictory with a classical picture of spacetime at larger scales. However,

as is known in the context of inflationary models, when sub-Planckian quantum fluctuations

become larger than the Hubble horizon 1/H, they can become classical and freeze. This

would lead to the classical observation of a sub-Planckian quantum mode, which is a bit

strange! This is known as the inflationary trans-Planckian problem [12–16]. The traditional

view of this problem has been that either we need more information to figure out what

happens to these modes or that the structure of the quantum gravitational theory would

give the same answer as if the modes were smooth even in the trans-Planckian domain.

– 3 –
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Here we would like to propose an alternative viewpoint: that such questions should never

arise in a consistent quantum gravitational theory! That no trajectory of a consistent

quantum theory of gravity should lead to a classical blow-up of the sub-Planckian modes

to become larger than the Hubble horizon 1/H and that all the QFT’s that do lead to this

scenario belong to the Swampland.

2.2 Statement of TCC

We conjecture that a field theory consistent with a quantum theory of gravity does not lead

to a cosmological expansion where any perturbation with length scale greater than the Hubble

radius trace back to trans-Planckian scales at an earlier time. This could be formulated in

terms of initial and final scale factors, ai and af , and final Hubble parameter Hf as

af
ai
· lpl <

1

Hf
⇒
∫ tf

ti

H(t)dt < ln
Mpl

Hf
. (2.1)

Note that if we take lpl → 0 or equivalently Mpl →∞ this condition becomes trivial, as it

should with any Swampland condition. In the following we set (the reduced Planck mass)

Mpl → 1.3,4

Since the fluctuations growing bigger than the Hubble radius freeze out, if the wave-

length of sub-Planckian quantum fluctuations become larger than the Hubble-radius they

turn into classical non-dynamical fluctuations. This leads to the following equivalent state-

ment of TCC in terms of the quantum fluctuations.

An equivalent statement of TCC: Sub-Planckian quantum fluctuations

should remain quantum.

2.3 Immediate consequences

Upper bound on H. Perhaps, the most immediate consequence of the conjecture (2.1)

is that for the field theory description to not break down, H must be smaller than 1 at

all times. This is natural as the Hubble parameter is usually proportional to the energy

density which must be smaller than Planck energy density for the field theory description

to be valid.

Upper bound on lifetime. Suppose the equation of state w = p/ρ is greater than −1,

we can show that the lifetime of universe beginning from t = ti when it started expanding

could be bounded from above by its current value of Hubble parameter, Hf . Note that

3Perhaps, a more accurate statement would be to say
af
ai
<

KMpl

Hf
for some O(1) constant K. However,

unlike other Swampland conjectures which depend on some O(1) constants, the consequences of TCC are

rather insensitive to the exact value of K as it usually appears as a logarithmic correction. Therefore, in

this paper, we set K equal to 1, but one can easily restore the K-dependence in all of the results.
4Under time-reversal, the statement (2.1) of TCC for expanding universes, transforms into the following

statement for contracting universes. A field theory consistent with a quantum theory of gravity does not

lead to a cosmological contraction where any perturbation with length scale larger than the Hubble scale

(−1/H) evolve into the sub-Planckian scales at a later time. This could be mathematically formulated in

the form in reduced Planck units. ai
af

< − 1
Hi

.
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for any combination of conventional matter and radiation, cosmological constant and all of

the quintessence models the assumption w ≥ −1 holds.5 The rate of change of the Hubble

parameter in terms of the energy density ρ and the equation of state w is given by,

Ḣ = −(1 + w)
ρ

d− 2
. (2.2)

For w ≥ −1, the above equation would imply that H is monotonically decreasing. There-

fore, for every co-moving time interval [ti, tf ], we have

HfT ≤
∫ tf

ti

Hdt = ln

(
af
ai

)
, (2.3)

where T = tf − ti is the lifetime and Hf = H(tf ). Using the above inequality to bound

the l.h.s. of (2.1) leads to

T ≤ H−1
f ln

(
H−1
f

)
. (2.4)

Note that this could also be viewed as an upper bound H in terms of lifetime T . The TCC

through the inequality (2.4) provides a prediction for the current age of the universe. For

H ≈ 70(km/s)/Mpc this upper bound is ∼ 2 trillion years which is consistent with the age

of our universe.

Decelerating expansions are consistent with TCC. Following, we give a general

argument why violating TCC requires accelerating expansion or trans-Planckian energy

density H ≥ 1. The inequality (2.1) could be written as

ȧf < ai. (2.5)

Therefore, violation of TCC requires initial and final points where,

ȧf ≥ ai. (2.6)

Suppose H is smaller than the Planck scale, we know ȧi/ai = H < 1. If we use this

inequality in (2.6), we find

ȧf > ȧi. (2.7)

Therefore,
∫ tf
ti
ä = ȧf − ȧi must be positive and there has been accelerating expansion

somewhere along the way.

TCC vs. critical points. Critical points for a scalar field potentials V (Φ) are classically

forbidden. This is because if we set our initial conditions Φi and ∂tΦi such that V ′(Φi) = 0

and ∂tΦ = 0, the scalar fields will classically stay at the critical point. This would lead to an

accelerating expansion with a constant Hubble parameter which would violate TCC. This

argument is of course only true if we ignore quantum effects such as quantum fluctuations

and quantum tunneling. Such effects can push the system away from the critical points

and potentially save TCC from being violated. We will come back to this point in section 4

and will do a more detailed analysis of the consequences of TCC about critical points by

taking quantum effects into account.

5This may in principle be violated for phases involving extended objects.
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3 Consequences of TCC for scalar potentials

In this section, we find some of the consequences of TCC for scalar fields with a potential

V (φ). We assume V is positive and monotonic. As already noted non-monotonic potentials

with critical points are forbidden classically but are allowed when we take into account

quantum corrections as we will discuss in the next section. We divide our analysis in this

section into three parts. First, we study the consequences of TCC for asymptotic behavior

(long field ranges) of the single-field potentials. Next, we generalize some of these results

to multi-field models. In the end, we study the short-range predictions of the conjecture

for single-field potentials.

3.1 Long-range predictions

Using the definition of H = ȧ
a , we can rewrite the conjecture (2.1) in the form∫ φf

φi

H

φ̇
dφ =

∫ tf

ti

Hdt < − ln(Hf ). (3.1)

In d spacetime dimensions, the Friedmann equation takes the form

(d− 1)(d− 2)

2
H2 =

1

2
φ̇2 + V (φ), (3.2)

and the equation of motion takes the form

φ̈+ (d− 1)Hφ̇+ V ′ = 0, (3.3)

where V ′ indicates the derivative of V with respect to φ. Note that we are working in

the units where the reduced Planck mass (Mpl =
mpl√

8π
) is equal to 1. Since V in the

equation (3.2) is positive, we have

H

|φ̇|
>

1√
(d− 1)(d− 2)

. (3.4)

If we use the above lower bound for the integrand in the equation (3.1), we find

|φf − φi|√
(d− 1)(d− 2)

< − ln(Hf ), (3.5)

which can be rearranged in the form

Hf < e
−

|φf−φi|√
(d−1)(d−2) . (3.6)

Due to the positivity of the kinetic term in the equation (3.2), V is bounded from above

by (d− 1)(d− 2)H2/2. If we combine this upper bound with the inequality (3.6), we find6

V (φ) < Ae
− 2√

(d−1)(d−2)
|φ−φi|

, (3.7)

6One may conclude that since we can take φi → −∞ this would imply that V has to vanish. As we shall

discuss one cannot start from arbitrarily negative field value φi to reach arbirary φf , which is a necessity

for this derivation. In other words there is a smallest value of φi one has in the above equation to reach a

fixed value of φf including arbitrarily large values of φ.

– 6 –
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where, A = (d − 1)(d − 2)/2 is a constant. For definiteness let us assume V ′ < 0. We

can use the above inequality to find a lower bound for the average of −V ′/V over interval

[φi, φf ] in the field space.〈
−V ′

V

〉 ∣∣∣∣φf
φi

=
1

∆φ

∫ φf

φi

−V ′

V
dφ =

ln(Vi)− ln(Vf )

∆φ
.

If we combine the upper bound (3.7) for Vf with the above identity, we find〈
−V ′

V

〉 ∣∣∣∣φf
φi

> − B

∆φ
+

2√
(d− 1)(d− 2)

, (3.8)

where, B = − ln(Vi) + ln(A) and
〈
−V ′
V

〉 ∣∣∣∣φf
φi

is the average of −V
′

V over [φi, φf ].

One may worry about the emergence of light states at large distances in field space

expected from the Swampland distance conjecture [17]. In particular the interactions be-

tween φ and other fields cannot be ignored in this large field limit and the effective field

theory of φ ignoring the other modes would be invalid in such a limit. However, these

modifications do not affect the derivation of the inequalities (3.7) and (3.8) because all we

needed to derive these was (d−1)(d−2)H2/2 > V which is true even if we have additional

energy contributions to H. Therefore, even for values of φ where the effective field theory

breaks down due to the emergence of a tower of light states, the inequalities (3.7) and (3.8)

are still valid. By taking the limit φi and φf →∞ in the eq. (3.8), we find(
|V ′|
V

)
∞
≥ 2√

(d− 1)(d− 2)
, (3.9)

where (
|V ′|
V

)
∞

:= lim inf
φi→∞

lim inf
φf→∞

〈
−V ′

V

〉 ∣∣∣∣φf
φi

. (3.10)

Thus the inequalities (3.7) and (3.9) are valid for every value of φ, even when the effective

field theory breaks down due to the emergence of a tower of light particles. We now study

the family of exponential potentials in more details as they frequently appear in the context

of string theory. Let V ∝ e−λφ.

d

dφ

(
V

φ̇2

)
=

1

φ̇

d

dt

(
V

φ̇2

)

=
V ′

φ̇2
− 2

(
φ̈

φ̇2

)(
V

φ̇2

)

=
V ′

φ̇2

(
1 + 2

(
V

φ̇2

))
+

2(d− 1)H

φ̇

(
V

φ̇2

)

= −
(
V

φ̇2

)√
1 + 2

(
V

φ̇2

)(
λ

√
1 + 2

(
V

φ̇2

)
− 2

√
d− 1

d− 2

)
, (3.11)

– 7 –
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where in the third line we used the equation of motion (3.3), and in the fourth line we used

the Friedmann equation (3.2). We can rewrite the equation (3.11) in the form

x′ = −x
√

1 + 2x

(
λ
√

1 + 2x− 2

√
d− 1

d− 2

)
, (3.12)

where x := (V/φ̇2) and x′ represents the derivative of x with respect to φ. The parameter

x is related to the equation of state parameter, w, as

w(x) =
2

1 + 2x
− 1. (3.13)

If λ > 2
√

(d− 1)/(d− 2), the right hand side of the equation (3.12) is always negative

and x decays exponentially to 0 as a function of φ. For λ < 2
√

(d− 1)/(d− 2), the right

hand side of the (3.12) has a positive root at xc = 2(d−1)λ−2/(d−2)−1/2. By checking the

signs one can see that x = xc is an attractor solution and x will converge to xc. Plugging

H from the equation (3.2) into (3.1), leads to the following form for the trans-Planckian

censorship conjecture.√
2x+ 1

x(d− 1)(d− 2)
V (φf )

1
2 = Hf < e

−
∫ φf
φi

H
φ̇
dφ

= e
−
∫ φf
φi

√
1+2x

(d−1)(d−2)
dφ
. (3.14)

If we look at the above inequality in the limit φ → ∞ where x goes to xc = 2(d− 1)λ−2/

(d− 2)− 1/2, we find

V (φ) ≤ Ae−
4

(d−2)λ
(φ−φi), (3.15)

where A = xc(d− 1)(d− 2)/(2xc + 1). Since V ∝ e−λφ, also decays exponentially, we have

λ ≥ 4

(d− 2)λ
→ λ ≥ 2√

d− 2
. (3.16)

This inequality could be expressed in terms of xc and w as

xc <
d− 2

2

w(xc) >
2

d− 1
− 1. (3.17)

Note that for λ > 2/
√
d− 2, in the attractor solution, aH/ai goes to zero and because of

the fast convergence of the solution to the attractor solution, it is always bounded from

above by an O(1) number. Thus, the conjecture (2.1) holds for exponential potentials with

decay rate λ > 2/
√
d− 2.

Following we find the upper bound for w in order to have inflation (ä > 0) and we

compare it to (3.17) in arbitrary dimensions,

q =
(d− 3)ρ+ (d− 1)p

(d− 1)(d− 2)H2
, (3.18)

– 8 –
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where q = − äa
ȧ2 is the deceleration parameter, p = 1

2 φ̇
2−V is the pressure and ρ = 1

2 φ̇
2 +V

is the energy density. For ä to be positive, we must have

xc > xinf =
d− 2

2
, (3.19)

which can be expressed in terms of the equation of state as

w < winf =
2

d− 1
− 1. (3.20)

This is exactly the same value as (3.17). For exponential potentials, it seems that TCC is

equivalent to not having long-field-range accelerating expansion. This relation is consistent

with the general result that we proved in section 1 that violation of TCC necessitates

accelerating expansion.

Note that in the above analysis we ignored the effects of the creation of light states

which emerge as the field values roll to infinity. These effects would modify both the

Friedmann equation (3.2) and the equation of motion (3.3). In this regard (3.9) is more

robust because it allows for the emergence of a tower of light modes.

3.2 Generalization to multi-field models

In this section we study the applicability of our results to multi-field models where the

fields take value in an n-dimensional manifold M. Let {φj}nj=1 be coordinates for a local

patch and the metric induced by the kinetic term of the Lagrangian onM to take the form

ds2 = Gijdφ
iφj in this coordinate system. For a spatially constant field configuration, the

Friedmann equation takes the form

(d− 1)(d− 2)

2
H2 =

Gij∂tφ
i∂tφ

j

2
+ V (φ). (3.21)

Let s be the Affine parametrization of the solution trajectory such that

Gij∂sφ
i(s)∂sφ

j(s) = 1. (3.22)

We can rewrite (3.21) in terms of s as

(d− 1)(d− 2)

2
H2 =

1

2

(
ds

dt

)2

+ V (φ(s)). (3.23)

This is exactly the same as the Friedmann equation in the single field case which we used

to derive (3.7) with φ being replaced with s. Note that we did not need TCC to hold for

all initial conditions to derive (3.7), we only needed TCC to hold for one initial condition.

Therefore, the results (3.7) holds for the multi-field case as well,

V (s) < Ae
− 2√

(d−1)(d−2)
ds(φi,φf )

, (3.24)

where A = (d − 1)(d − 2)/2 and ds =
∫ φf
φi

ds is the canonical length of the solution path

from φi to φf . Let d(φ, φf ) be the canonical length of the geodesic connecting the two

points, then we have d ≤ ds. Therefore, we can replace ds in (3.24) with d to get

V (s) < Ae
− 2√

(d−1)(d−2)
d(φi,φf )

. (3.25)

– 9 –
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The above inequality holds for any two points φi and φf that can be connected through a

solution to the equations of motion such that the potential remains positive along the path.

The derivation of (3.9) from (3.7) extends without any modifications to the multi-field case

and gives (
|V ′|
V

)
∞
>

2√
(d− 1)(d− 2)

, (3.26)

where
(
|V ′|
V

)
∞

is defined as lim infsi→∞ lim infsf→∞

〈
−V ′(φ(s))
V (φ(s))

〉
[si,sf ]

where s is the canon-

ical Affine parameter for an arbitrary path with infinite length in M.

Note that the inequality (3.25) is only applicable to a pair of points (φi, φf ) which are

connected by a classical solution. Following, we further explore this relationship between

the points in M.

One can define a causal structure on the moduli space based on which initial conditions

can evolve into other ones in an expanding universe. Suppose x and y are two points in

the moduli space M, we say x causally precedes y, if for some φ̇2
i < O(1) the initial field

configuration φ = x can evolve into φ = y. We show this by x ≺ y. The condition

φ̇2
i < O(1) makes sure that the field theory description does not break.

Due to the dissipative nature of the Friedmann equations, this causal structure is non-

commutative. Generally, to go from a point with a lower potential to a point with a higher

potential, we might need a trans-Planckian initial condition φ̇ to overcome the potential

difference in the presence of dissipation. In fact, by assuming our energy density must be

sub-Planckian (H < 1), which is a much weaker assumption than the TCC, we can find an

upper bound on the field range that the field φ can climb up a potential hill.

Suppose φ(t) is climbing up a positive monotonically increasing potential V from φi
to φf , we find an upper bound on ∆φ = φf − φi.

φ̈ = −(d− 1)Hφ̇− V ′

< −(d− 1)Hφ̇

< −
√

2(d− 1)V

d− 2
φ̇

< −
√

2(d− 1)V (φi)

d− 2
φ̇. (3.27)

Integrating the above inequality leads to

∆φ̇+

√
2(d− 1)V (φi)

d− 2
∆φ < 0. (3.28)

Since φ̇i <
√

(d− 1)(d− 2)/2 (this results from H < 1), we find

∆φ <
d− 2

2

√
1

V (φi)
. (3.29)
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Note that the above upper bound only depends on V (φi). We can use TCC differently to

derive another upper bound which depends on Vf , the final value of the potential. From

the equation (3.25), we know that an initial field value cannot be too far, because other

wise the upper bound in (3.25) would be less than Vf . This gives

∆φ <

√
(d− 1)(d− 2)

2
ln

(
A

Vf

)
. (3.30)

In fact, this has the same nature as the inequality (3.29) since typically going back

in the solution requires climbing up a potential hill. This obstruction for extending the

solution in the field space only in the past direction happens because of the dissipation in

our equations. If two points do not satisfy the inequality (3.30) for any order of them, they

are causally unrelated. This could mean that there is a potential barrier between them

that is high enough such that climbing it in the presence of dissipation would need trans-

planckian initial conditions. Situations like this can naturally happen for two points in

opposite asymptotic regions of the Moduli space, as the potential is highest in the interior

and decays exponentially at infinity.

We can use this result to obtain a bound on the asymptotic gradient of the potential.

We divide the moduli space into two parts, the interior MI that contains all the local

maxima of V and the asymptotic region M∞ which is located far enough from MI with

respect to the canonical distance given by the metric defined on M. Since MI contains

the critical points, the causal paths initiated from MI can cover all of the moduli space

includingM∞. SupposeM∞ can be covered by causal paths {γα}α∈I (with respect to the

causal structure defined in 3.2) such that

• they all initiate in MI .

• the path γα is parametrized by the Affine parameter sα.

We call every α ∈ I an asymptotic direction of the moduli space (figure 1). We define(
|∇IV |
V

)
α

:= lim inf
sα,i→∞

lim inf
sα,f→∞

〈
|∂sαV (γ(sα))|
V (γ(sα))

〉
[sα,i,sα,f ]

, (3.31)

where on the right hand side 〈 〉[sα,i,sα,f ] is the average over [sα,i, sα,f ]. This roughly rep-

resents the ratio |V ′|/V along the asymptotic direction (∂sαγ(sα)) going outward from the

interior. We also define(
|∇V |
V

)
α

:= lim inf
sα,i→∞

lim inf
sα,f→∞

〈
|∇V (γ(sα))|
V (γ(sα))

〉
[sα,i,sα,f ]

, (3.32)

which roughly represents the limit of |∇V |/V as we go to infinity in the asymptotic direction

α. From the above definitions we know(
|∇V |
V

)
α

≥
(
|∇IV |
V

)
α

. (3.33)
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Figure 1. The curves γα are causal curves that initiate in the interior region MI and collectively

span the asymptotic region M∞.

On the other hand, from the inequality (3.26), for every α we have(
|∇IV |
V

)
α

≥ 2√
(d− 1)(d− 2)

. (3.34)

Combining (3.33) and (3.34) leads to(
|∇V |
V

)
α

≥ 2√
(d− 1)(d− 2)

, (3.35)

which has the same form as the dS Swampland conjecture [1] but is for the asymptotic

region of the moduli space.

3.3 Short-range predictions

In this section, we prove several inequalities from TCC for the short-field-range behavior

of monotonically decreasing positive potentials.

Obstruction of flatness. The trans-Planckian censorship conjecture clearly forbids a

flat potential (V ′ = 0) as it can lead to accelerated expansion with a fixed Hubble parame-

ter. In our first result in this subsection, we find an inequality which puts an upper bound

on the length of the field range over which |V ′| is smaller than a constant. Suppose |V ′|max

is the maximum of |V ′(φ)| over φ ∈ [φi, φf ], we have,

dφ̇2

dφ
= 2φ̈ ≤ 2|V ′| ≤ 2|V ′|max, (3.36)
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where we used the (3.3) for the first inequality. For the initial conditions φ̇ = 0 and φ = φi,

integrating the above inequality gives

φ̇(φ) =

√∫ φ

φi

dφ̇2(φ′)

dφ′
dφ′ ≤

√
2|V ′|max∆φ, (3.37)

where ∆φ = φ− φi. Using the above inequality in the TCC leads to

ln

(√
(d− 1)(d− 2)

2V (φ)

)
≥ − ln(H)

>

∫ φf

φi

H

φ̇
dφ

≥
∫ φf

φi

√
1

(d− 1)(d− 2)|V ′|max

√
V (φi)

φ− φi
dφ

=

√
V (φi)∆φ

4(d− 1)(d− 2)|V ′|max
, (3.38)

where in the first and third lines we used H2(d − 1)(d − 2)/2 ≥ V , in the second line we

used the TCC, and in the third line we used (3.37). We can rearrange the above inequality

into the form (
|V ′|max

Vmax

)
>

(φf − φ)

4(d− 1)(d− 2)
ln

(√
(d− 1)(d− 2)

2V (φf )

)−2

. (3.39)

We used the monotonicity to replace V (φi) with Vmax. Note that V ′ and V are not evaluated

at the same point in (3.39). However, for regions where the potential is stable (V ′′ > 0),

both V and V ′ attain their maximum at the same point φ = φi, and the l.h.s. in (3.39)

becomes a local quantity.

The integration in the statement of TCC makes it a global criterion in terms of the

potential. In fact, it is very challenging to obtain a local statement about the potential

from TCC, which is why the small field range inequalities are weaker than their long-field-

range counterpart derived in the previous subsection. We now provide the results of some

numerical analysis which supports this observation.

Let C(φf ) := Hf
af
ai

. For the conjecture to be true, C must be bounded from above

by an O(1) constant for any physically allowed initial condition (one that Vi and |φ̇i| are

both less than 1). The maximum of C over a field range roughly measures the amount of

violation of the conjecture.

Suppose λ is the decay rate of an exponential potential, we showed for λ < 2√
d−2

, the

conjecture gets violated at infinity. Below, are the results of investigating the consistency

of exponential potentials with the conjecture for all field ranges

1) For any value of λ < 2√
d−2

, even though the conjecture is violated at infinity, it seems

that the conjecture holds for any initial condition over field range ∆φ ∼ O(1), which

– 13 –
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by violation we mean C > 1. Surprisingly, this is true even for decay rates as small

as λ ∼ 10−3 that are in contradiction with the conjecture at large field values.

2) For decay rates λ > 2√
d−2

which the conjecture holds at the limit φ → ∞, it seems

that it also holds for all field values. More specifically, in 4 dimensions, there are

no physically allowed initial conditions that would result in a C > 1 for any λ >√
2 + 0.01.

Conclusions:

1) For exponential potentials, it seems that the conjecture is always satisfied for small

field values (∆φ < O(1)) and their consistency with the conjecture is determined

based on their large-φ behavior. In other words, the conjecture becomes more non-

trivial at large field values.

2) The conjecture does not restrict the value of |V ′|/V over very small field ranges.

We can have potentials with arbitrarily small λ that satisfy the conjecture for any

physically permissible initial conditions over sufficiently small field ranges ∆φ �
O(1). Therefore, this conjecture does not rule out the quintessence models with

small decay rates as long as they only last for ∆φ < O(1). In particular, we have

checked that the models discussed in [18, 19] where 0 < λ ≤ 0.6 are compatible with

TCC because the field ranges in those models are sufficiently smaller than Planck.

Accelerating roll. In this part, using a different assumption, we find an inequality very

similar to (3.39) for small field regime behavior of the potential. Suppose we have a rolling

scalar field with positive φ̈ over a field range [φi, φf ]. The equation of motion (3.3) implies

(d− 1)Hφ̇ < |V ′|. (3.40)

This inequality leads to ∫ φf

φi

H

φ̇
dφ >

∫ φf

φi

(d− 1)H2

|V ′|
dφ

≥
∫ φf

φi

2

d− 2

V

|V ′|
dφ

=
2

d− 2

〈
V

|V ′|

〉
∆φ, (3.41)

where in the first line we used (3.40) and in the second line we used H2 ≥ 2V
(d−1)(d−2)

from (3.2). Using the above result, in addition to H ≥
√

2V
(d−1)(d−2) in (3.1), one can show

2

d− 2

〈
V

|V ′|

〉
∆φ ≤ ln

√
(d− 1)(d− 2)

2V
, (3.42)

where
〈

V
|V ′|

〉
is the average of V

|V ′| over [φi, φf ].
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Strongest consequence of TCC for short-field-range behavior of V . We finish

this subsection by discussing an inequality that is proved in the appendix A. For every pair

of non-negative numbers c1 and c2 such that c2
2(2 + c2

1) < (d− 2)/(d− 1), we find

min

(
V (φ)

|V ′(φ)|
c1, c2

)
A1(c1, c2, φ) < ln

(
A2√

V (φ+A3(c1, c2, φ))

)
, (3.43)

where the identities (A.27), (A.25), and (A.16), provide the definitions of functions A, B

and C. In the derivation of (3.43), we have not weakened the inequalities for obtaining

simpler looking result. That comes at the expense of complexity of our final result which

makes it hard to physically interpret for an arbitrary potential. If one is interested in

the consistency of a specific class of potentials with TCC, by restricting to that class, the

inequality might take a much simpler form. In the appendix A, we discuss how this is the

case for convex potentials. Moreover, unlike the original conjecture which must be checked

for every initial conditions, (3.43) only depends on the potential and could be checked

numerically more easily. The (3.43) is derived by estimating the initial condition that is in

most tension with the conjecture and looking at the TCC for that initial condition.

4 Critical points of V and quantum instabilities

4.1 Metastable dS

We show that the trans-Planckian censorship conjecture implies that the universe cannot

get stuck in a local minimum for V (φ) for an infinite amount of time. We find an upper

bound on the lifetime τ by which every classical local minimum must decay into another

state. Therefore, according to the trans-Planckian censorship conjecture, the potential

cannot have a positive minimum, or in other words, inf V ≤ 0.

For meta-stable dS we have Λ = (d− 1)(d− 2)H2
Λ/2. Using (2.4) we find

τ <
1

HΛ
ln

(
1

HΛ

)
, (4.1)

In a quantum theory of gravity, even though dS spaces seem to be impossible to attain as

a vacuum, it is not implausible that sufficiently short-lived transient quasi-dS like phases

could appear, and TCC allows this. The Hubble time of such a background provides a

natural time scale and it is reasonable to expect that the lifetime of such an unstable state

to be roughly proportional to this characteristic time scale. Indeed, if our universe is stuck

in a metastable minimum with V = Λ ≈ 2.9 × 10−122, the TCC predicts an upper bound

of τ < 2.4 trillion years on the lifetime of our universe. Thus also in such a case TCC gives

an explanation of the coincidence problem: not only the age of our universe is related to

Hubble time, but its lifetime also cannot exceed the Hubble time, up to log corrections.7

7There is an interesting similarity between the upper bound on the dS lifetime predicted by TCC and

the scrambling time associated to dS space where we use the scrambling time given by [20]

τscrambling ∝
lnS

T
,
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Note that all the above analysis only applies to local minima with positive values of

V . For example, for a Harmonic potential V (φ) = φ2, from numerical analysis we found

that the TCC is satisfied over a field range [−0.9Mpl, 0.9Mpl]. As the field oscillates about

the local minimum within this range, the Hubble friction is strong enough that the field

does not get stuck in high V for too long. In other words, thanks to the massless graviton,

the energy of φ gets channeled to the gravity sector fast enough that it does not violate

the conjecture.

4.2 Unstable dS

In this subsection, we show that for a potential with an unstable local maximum, |V ′′|
cannot be small over a large field interval. In other words, over any field interval around

the local maximum, there is a lower bound for |V ′′| so that the quantum fluctuations could

push the field away from the extremum point. Otherwise, the field could stay close to the

local maximum for a long enough time that leads to a violation of TCC. First, we provide

a more heuristic argument to demonstrate what would go wrong with a quadratic potential

over a long field range. Afterward, we give a rigorous argument to prove a sharp inequality

from TCC.

Suppose we have a quadratic potential given by

V (φ) =
V ′′(φ0)

2
(φ− φ0)2 + V (φ0), (4.2)

where V ′′(φ0) < 0. In [7], for the case of d = 4, it was shown that a gaussian probability

distribution centered at φ = φ0 solves the Fokker-Planck equation describing the evolution

of quantum fluctuations. That result could be easily generalized to the following solution

for any dimension d > 2.

Pr[φ = φc; t] ∝
exp

[
− (φc−φ0)2

2σ(t)2

]
σ(t)

, (4.3)

where

σ(t) ∝
H

d
2

(
e

2|V ′′(φ0)|t
(d−1)H − 1

)1/2

√
|V ′′(φ0)|

. (4.4)

Note that the expectation value of H remains constant and equal to
√

2V (φ0)/((d−1)(d−2)).

If the field range over which (4.2) holds is large enough, the above equation would hold

for large t. As t goes to infinity, σ(t) would exponentially grow like e|V
′′(φ0)|t/[(d−1)H]. This

leads to a lifetime of (d− 1)H/|V ′′(φ0)|. Comparing this with the upper bound (4.1) gives

|V ′′(φ0)|
V (φ0)

≥ 2

d− 2
ln

(√
(d− 1)(d− 2)

2V

)−1

. (4.5)

where T and S denote temperature and entropy. We see that the upper bound for the lifetime of dS space

τdS ∼ τscrambling with the substitutions TdS = H
2π

and SdS ∼ 1/H2. We thank J. Maldacena for pointing

out this connection.
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This heuristic argument tells us that either the field range over which the potential is

quadratic is bounded from above, or |V ′′|/V is bounded from below. Following we give a

similar, bu rigorous, statement. Suppose V (φ) is a positive potential such that V ′(φ0) = 0

and for every φ ∈ [φ0,∆φ], we have V ′(φ) < 0 and |V ′′| ≤ |V ′′|max. If

∆φ ≥
B1(d)B2(d)

3
4V

d−1
4

max V
3
4

min ln
(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V ′′|max ln
(
B3(d)√
Vmin

)2 ,

then

|V ′′|max

Vmin
≥ B2(d) ln

(
B3(d)√
Vmin

)−2

, (4.6)

where Vmax = V (φ0) and Vmin = V (φ0 + ∆φ) are respectively the maximum and the

minimum of V over φ ∈ [φ0,∆φ], and B1(d), B2(d), and B3(d) are O(1) numbers given byä

B1(d) =
Γ
(
d+1

2

) 1
2 21+ d

4

π
d−1

4 ((d− 1)(d− 2))
d−1

4

,

B2(d) =
4

(d− 1)(d− 2)
,

B3(d) =

√
(d− 1)(d− 2)

2
. (4.7)

This criteria tell us that if |V ′′| is small enough over a long enough field range, then |V ′′|/V
is bounded from below by a logarithmic function in V . This result is very similar to

the refined Swampland dS conjecture with a logarithmic correction. For details of the

derivation of this result and its application to quadratic potentials see appendix B.

5 Examples from string theory

5.1 KKLT and LVS scenarios

Even though the KKLT and LVS scenarios have not yet been fully realized in a concrete

string model, it would be interesting to check what the consequences of them may be in

the context of the TCC. As we shall see below, even though the asymptotic slope of the

potentials are in agreement with TCC, the lifetimes of meta-stable dS in these scenarios are

incompatible with TCC. Therefore assuming TCC, either these scenarios are not realizable

in string theory, or if they are, there should be other decay channels not considered in the

literature which would give it a far shorter lifetime.

For the basic KKLT scenario for a highly warped IIB compactification with anti-D3-

branes and NS and RR fluxes the potential for the radial modulus looks like [21]

V (φ) ≈ aA

2
e
−ae
√

2
3φ−2

√
2
3
φ

(
aA

3
e

√
2
3
φ−ae
√

2
3φ

+Ae−ae
√

2
3φ

+W0

)
+De−

√
6φ, (5.1)
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where φ is the canonical radial modulus, W0 is the value of the tree-level superpotential,

a,A and D are constants depending on the details of the model.

At large field values, the potential (5.1) is dominated by the last term and hence decays

as e−
√

6φ. This is consistent with (3.35) which followed from TCC.

For values of D within a specific interval, the potential (5.1) can result in a metastable

dS. In [21] the lifetime of such a state was found to be of order τ ∼ exp(c/V ) for some

O(1) constant c. By comparing this result to (2.4), one can see it significantly violates the

trans-Planckian censorship conjecture for small values of V (such as the current value of the

cosmological constant). Therefore, although the TCC does allow a short-lived metastable

dS, it seems that KKLT scenario which allows long-lived meta-stable state is in conflict

with it.

Another scenario for obtaining meta-stable dS is the LVS [22] where the F-term scalar

potential takes the form

VF ∝

(
KSS̄ |DSW |2 +Kab̄DaWD̄b̄W̄

V2

)
+

(
Ae−2aτ

V
− Be−aτW0

V2
+
C|W0|2

V3

)
, (5.2)

where KIJ̄ is the Kähler metric of the internal manifold, D is the Kähler covariant deriva-

tive, and W is the superpotential. It was argued that by fine-tuning the coefficients A, B,

and C, we can have a scenario in which the above potential has a positive local minimum

with the energy of the order of Λ ≈ V−3 and lifetime of the order of e
1
Λ [23]. This lifetime

is similar to the lifetime computed in the KKLT scenario which we studied in the previous

subsection and is likewise in contradiction with TCC.

Note that at large volumes, the potential (5.2) decays like exp
(
−3
√

3
2 φ̂
)

where φ̂ =√
2/3 ln(V) is the canonical radial modulus. This decay rate is greater than

√
2/3 and

hence is consistent with the inequality (3.35) which was a consequence of TCC.

5.2 O(16) × O(16) Heterotic

For non-supersymmetric Heterotic string theory constructed by twisting the E8 × E8, in

10 dimensions, there is a cosmological constant in the string frame [24]. That constant

changes into an exponential potential for the dilaton when we go to the Einstein frame.

In that case, the decay rate is 5/
√

2 [1], which is greater than the lower bound 1/(3
√

2)

provided by the inequality (3.35) as a consequence of TCC in 10 dimensions.

It was shown in [1] that if we compactify this theory down to d dimensions, we have

the following lower bound on |∇V |/V .

|∇V |
V
≥ min

(
2

√
3d− 5

d− 2
,

4
√

2√
(10− d)(d− 2)

)
. (5.3)

For every d ≥ 2, the above lower bound is greater than (or equal to) the lower bound (3.35)

that follows from the TCC. Therefore, the asymptotic behavior of the potential in these

theories is consistent with TCC.

The cosmological constant in the 10-dimensional theory comes from the one-loop am-

plitude which is suppressed by a factor of g2
s compared to the tree-level amplitude. If the
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correction was suppressed by the factor of gαs instead, after going to the Einstein frame we

would have gotten an exponential potential with a decay rate of (9 − 2α)/
√

2. This could

violate TCC for α > 13/3. Therefore, even though the TCC is formulated in terms of the

low energy effective field theory, it is seemingly sensitive to details of the underlying theory

of quantum gravity such as the power of gs in the leading order string theory perturbative

corrections.

5.3 No-go theorems in Type II theories

It was shown in [25], that upon compactifying IIA with D6 and O6 planes on a Calabi-Yau

threefold, in large volume and weak coupling regime, each one of the planes contributes an

exponential term in dilaton and volume moduli to the scalar potential. By maximizing the

|V ′|/V among different directions in the plane of dilaton and radial moduli, it was shown

that |∇V |/V is greater than
√

54/13.

The above analysis was generalized in [26] to different Dp-branes and Oq-planes to

prove a set of no-go theorems for classical dS vacua. Based on that work, a set of lower

bounds for |∇V |/V were calculated in [1]. All of the obtained lower bounds are greater

than (or equal to)
√

2/3 and therefore are consistent with the lower bound (3.35) that

follows from the TCC. Interestingly, for the case of O6-branes without any D6-branes, the

lower bound obtained in [1] for |∇V |/V is exactly equal to
√

2/3. A similar analysis was

done in [27] for a family of 4 dimensional supergravity solutions with Op and Dp branes

discussed in [28], and all the lower bounds obtained for |∇V |/V were greater (and in some

cases equal to)
√

2/3. The number
√

2/3 for |∇V |/V also shows up in the context of

studying the relation between the dS swampland conjecture and dS vacua [29].8

5.4 Energy conditions

If we ignore the α′ and gS corrections, in the absence of branes and orientifolds, it was shown

in [1] that the strong and null energy conditions lead to the lower bounds of respectively

λSEC = 2
√

D−2
(D−d)(d−2) and λNEC = 2

√
D−d

(D−2)(d−2) on |V ′|/V for a D-dimensional theory

compactified down to d dimensions. Both of these lower bounds are greater than (3.35)

and therefore automatically consistent with the long-field-range prediction of TCC.

6 TCC versus distance Swampland conjecture

It is natural to expect that TCC is related to the distance conjecture [17]. In fact, we

would imagine that if we have a tower of particles at large field values, the scale of the

potential they generate is V ∼ md. From the inequality (3.7), we know that TCC bounds

the potential by V < A exp

(
− 2∆φ√

(d−1)(d−2)

)
. This leads to the prediction that

md < Ae
− 2∆φ√

(d−1)(d−2) → m < Ae
− 2∆φ

d
√

(d−1)(d−2)

8In [29] it was argued that the Bunch-Davies vacuum is problematic and an alternative vacuum was

proposed which depends on a UV cutoff Λ < Mpl. It was shown that if such a background gets realized

in an inflationary model with potential V , the |V ′|/V should be related to Λ by |V ′|/V '
√

2/3(Λ/Mpl).

Interestingly, for Λ 'Mpl, the above identity reproduces the lower bound (3.35) obtained from the TCC.
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which thus suggests a lower bound 2

d
√

(d−1)(d−2)
on the exponent in the distance conjecture.

It would be interesting to check this in various examples.

7 TCC versus dS Swampland conjecture

The results (3.39) and (3.42) for positive potentials resemble the dS Swampland conjecture,

but they are weaker for small values of potential due to a logarithmic correction. However,

the inequality (3.35), which only applies to the asymptotic regions of the moduli space, has

the same form as the dS Swampland conjecture. The occurrence of logarithmic corrections

seems to be a hallmark of TCC in the interior of the moduli space and it would be very

interesting to further study the nature of these corrections.

For potentials with a positive critical point, the inequality (4.6) is very similar to the

refined dS conjecture [6]. It says that if |V ′′| is smaller than |V ′′|max over a large enough field

range, then |V ′′|max/Vmin must be bounded from below by a constant up to a logarithmic

correction in V . It is remarkable that the consequences of the TCC naturally resemble

the criteria of the refined dS Swampland conjecture up to logarithmic corrections in the

short-field-range and have the same form as the dS Swampland conjecture for the long-

field range. Even though the logarithmic corrections make the inequality weaker, lack of

unknown O(1) constants in TCC makes it an analytically powerful Swampland conjecture.

Given that the consequences of TCC are very similar to that of refined dS conjecture

but weaker for shorter field ranges and stronger for longer field ranges, either one, both, or

neither could be true. It is natural to ask what are the consequences in each case. If TCC

is not correct, we have nothing to say in this paper! So let us assume TCC is correct. In

this case, there are two possibilities: either refined dS conjecture is true or not. If it is true

then, we have learned from TCC that the asymptotic value of the slope that appears in

the dS conjecture is fixed to be c∞ = 2/
√

(d− 1)(d− 2). Of course, this would not imply

the dS conjecture value for c has to be this value, since the slope may vary in different

regions. Indeed given the cosmological observations of the present cosmology we know that

c < c∞ =
√

2
3 [18]. If both conjectures are true, the restrictions on V in the interior of the

field space are those imposed by refined dS conjecture as TCC is weaker in the interior.

However, the possibility that only TCC is correct is also an interesting possibility: TCC

already explains the strongest evidence for the refined dS conjecture, which is the structure

of the asymptotic regions of field space (see in particular [6]). Moreover, it is more specific

for the value of c in this region. Since the interior of field space is not easily accessible in

weak coupling computations, it is natural to view that TCC is providing a window into

this strongly coupled region. One other achievement of the dS conjecture is that it gives

an explanation of the coincidence problem of why the dark energy is related to Hubble

scale [18], whereas this would be lost if long-lived meta-stable dS were possible. However,

as we have noted even though TCC allows metastable dS, its lifetime is necessarily bounded

by Hubble time up to small log corrections. Therefore, the coincidence problem, whether

the present cosmology is quintessence like or dS like, would be perfectly well explained in

the TCC setup. Moreover, the c∞ obtained from TCC is beautifully consistent with all

the known constructions in string theory. So it seems that if only TCC is correct we still
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maintain all the nice features of dS conjecture and we, in addition, have a possible first

principle explanation based on Planckian physics of why a dS type Swampland conjecture

may be true.

8 Conclusions

The consequences of the trans-Planckian censorship conjecture are consistent with other

Swampland conjectures such as the dS conjecture and the distance conjecture. For short-

field-ranges, the TCC has weaker consequences than the refined dS conjecture. However, in

the limit φ→∞ it provides an explicit lower bound for the slope of log V . Although TCC

does not rule out the possibility of a metastable dS space, it provides a robust and natural

upper bound on the lifetime of a dS space. In general, the TCC seems to be a highly

well-motivated physical criterion which is not very sensitive to the shape of the potential

over very small field ranges. The analytically proven consequences of TCC in this work

could be readily checked for an arbitrary potential for the purpose of model building.

It is natural to consider the cosmological implications of TCC for the early universe

cosmology and in particular inflationary models. As discussed in [30], TCC places strong

restrictions on inflationary models, but it does not rule out scenarios with quasi-static or

contracting initial phases such as string gas cosmology [31] or various bouncing scenar-

ios [32–34].
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A A strong short-field-range inequality

In this appendix, we aim to understand what is the strongest short-field-range statement

that TCC would imply for an arbitrary monotonically decreasing positive potential. The

conjecture must hold for any physically allowed initial condition (one that φ̇i < O(1) and

Vi < O(1)). To deduce a strong inequality from TCC, we focus on an initial condition

that seems to challenge (3.1) the most. As φ̇ appears in the denominator of the l.h.s., a

natural guess for the initial conditions with the most tension with the TCC would be small

φ̇i. From (2.2) one can find that H decreases at a rate proportional to φ̇2. Thus, small φ̇i
could result in an inflationary universe with a slowly-varying Hubble parameter. If φ̇ does

not grow fast enough, the
af
ai

inflates exponentially leading to a violation of (2.1). With

that in mind, we try to obtain an inequality from TCC for small initial field derivative φ̇i.
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Suppose φ̇i > 0 is small enough such that φ̈i given by the (3.3) is positive. Let φ∗ be

the smallest φ > φi where φ̈ vanishes (later in the appendix we will prove that such a field

value exists and we will provide an upper bound for it). Using (3.4), we find

φ̈ = −V ′ − (d− 1)Hφ̇ < −V ′ −
√
d− 1

d− 2
φ̇2. (A.1)

Since φ̇ is increasing in the interval [φi, φ
∗], we can use the above inequality to find

dφ̇

dφ
=
φ̈

φ̇
<

φ̈

φ̇i
≤
−V ′ −

√
d−1
d−2 φ̇

2
i

φ̇i
. (A.2)

By integrating the above inequality, we find the following upper bound on φ̇ for every

φ ∈ (φi, φ
∗].

φ̇ <
V (φi)− V (φ)

φ̇i
−
√
d− 1

d− 2
φ̇i(φ− φi) + φ̇i. (A.3)

Plugging the above upper bound on φ̇ into the equation of motion (3.3) and using the

inequality H < Hi, where Hi is the initial Hubble parameter, we find

φ̈ > φ̈i + (−V ′(φ) + V ′(φi))− (d− 1)Hi

(
V (φi)− V (φ)

φ̇i
−
√
d− 1

d− 2
φ̇i(φ− φi)

)
. (A.4)

By setting φ to φ∗, at which φ̈ vanishes, we find

(d− 1)Hi

(
V (φi)− V (φ∗)

φ̇i
−
√
d− 1

d− 2
φ̇i∆φ

)
− (−V ′(φ∗) + V ′(φi)) > φ̈i, (A.5)

where ∆φ = φ∗ − φi. According to the mean value theorem, there is a point φ1 ∈ [φ, φ∗]

such that

(d− 1)Hi

(
V (φi)− V (φ)

φ̇i

)
− (V ′(φi)− V ′(φ∗)) = ∆φ

[
(d− 1)Hi

(
−V ′(φ1)

φ̇i

)
+ V ′′(φ1)

]
.

(A.6)

We can rewrite the inequality (A.5) in terms of the values of V ′ and V ′′ at φ1 as

∆φ >
−(d− 1)Hiφ̇i + |V ′(φi)|

(d− 1)Hi

(
|V ′(φ1)|
φ̇i

−
√

d−1
d−2 φ̇i

)
+ V ′′(φ1)

, (A.7)

where we used the equation of motion (3.3) to substitute φ̈i for the numerator of the right

hand side. Suppose φ̇ is small enough such that

φ̇i ≤ c1

√
V (φi) & φ̇ ≤ c2

|V ′(φi)|√
V (φi)

& φ̇i
V ′′(φ1)

|V ′(φ1)|
≤ c3

√
V (φi), (A.8)
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for some non-negative numbers c1, c2, and c3 satisfying c2
2(2+c2

1) < (d−2)/(d−1), we have

φ̇i ≤ c1

√
V (φi)→ Hi ≤

√
2 + c2

1

(d− 1)(d− 2)

√
V (φi), (A.9)

φ̇i ≤ c2
|V ′(φi)|√
V (φi)

→ −(d− 1)Hiφ̇i + |V ′(φi)| ≥ |V ′(φi)|

1− c2

√
(d− 1)(2 + c2

1)

d− 2

 ,

(A.10)

φ̇iV
′′(φ1) ≤ c3

√
V (φi)|V ′(φ1)| → V ′′(φ1) ≤ c3

√
V (φi)|V ′(φ1)|

φ̇i
, (A.11)

where we used the Friedmann equation (3.2) in derivation of (A.9), and we used (A.9) in

the derivation of the (A.10). Since φ̇i > 0 we have

(d− 1)Hi

(
|V ′(φ1)|
φ̇i

−
√
d− 1

d− 2
φ̇i

)
+ V ′′(φ1) < (d− 1)Hi

|V ′(φ1)|
φ̇i

+ V ′′(φ1). (A.12)

By multiplying (A.9) by (d− 1)|V ′(φ1)|/φ̇i and summing it up with (A.11) we find that

(d− 1)Hi
|V ′(φ1)|
φ̇i

+ V ′′(φ1) ≤

c3 +

√
(d− 1)(2 + c2

1)

d− 2

√V (φi)|V ′(φ1)|
φ̇i

. (A.13)

If we combine this with (A.12), we find

(d−1)Hi

(
|V ′(φ1)|
φ̇i

−
√
d−1

d−2
φ̇i

)
+V ′′(φ1) <

c3+

√
(d−1)(2+c2

1)

d−2

√V (φi)|V ′(φ1)|
φ̇i

.

(A.14)

Dividing (A.10) by the above inequality leads to

−(d−1)Hiφ̇i+|V ′(φi)|

(d−1)Hi

(
|V ′(φ1)|
φ̇i
−
√

d−1
d−2 φ̇i

)
+V ′′(φ1)

>
1−c2

√
(d−1)(2+c21)

d−2

c3+
√

(d−1)(2+c21)
d−2

(
|V ′(φi)|
|V ′(φ1)|

)
φ̇i√
V (φi)

≥
1−c2

√
(d−1)(2+c21)

d−2

c3+
√

(d−1)(2+c21)
d−2

(
|V ′(φi)|

maxφ∈[φi,φ∗](|V ′(φ)|)

)
φ̇i√
V (φi)

= c2f(c1, c2, c3)g(φ̇i)
φ̇i√
V (φi)

, (A.15)

where f(c1, c2, c3) and g(φ̇i) are given by

f(c1, c2, c3) =
1− c2

√
(d−1)(2+c21)

d−2

c2

(
c3 +

√
(d−1)(2+c21)

d−2

)
g(φ̇i) =

|V ′(φi)|
maxφ∈[φi,φ∗](|V ′(φ)|)

. (A.16)
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Using the assumption φ̇ ≤ c2|V ′(φi)|/
√
V (φi) we can lower the right hand side of (A.15)

to get

−(d− 1)Hiφ̇i + |V ′(φi)|

(d− 1)Hi

(
|V ′(φ1)|
φ̇i

−
√

d−1
d−2 φ̇i

)
+ V ′′(φ1)

> f(c1, c2, c3)g(φ̇i)
φ̇2
i

|V ′(φi)|
. (A.17)

By combining the above inequality with (A.7) we find

∆φ > f(c1, c2, c3)g(φ̇i)
φ̇2
i

|V ′(φi)|
. (A.18)

For every φ ∈
[
φi, φi +

f(c1,c2,c3)g(φ̇)φ̇2
i

|V ′(φ̇i)|

]
we have

|V (φ)− V (φi)|
φ̇i

≤ φ− φi
φ̇i

max
φ∈
[
φi,φi+

f(c1,c2,c3)g(φ̇)φ̇2
i

|V ′(φ̇i)|

](|V ′(φ)|)

≤ φ− φi
φ̇i

max
φ∈[φi,φ∗]

(|V ′(φ)|)

≤ f(c1, c2, c3)g(φ̇i)
φ̇i

|V ′(φ̇i)|
max

φ∈[φi,φ∗]
(|V ′(φ)|)

= f(c1, c2, c3)φ̇i, (A.19)

where in the first line we used the mean value theorem, in the second line we used (A.18),

and in the third line we used the (A.16), the definition of g(φ̇i). Using the inequalities we

have derived, we find

φ̇i
√

2f(c1, c2, c3)g(φ̇i)

|V ′(φi)|
√

(d− 1)(d− 2)(f(c1, c2, c3) + 1)

=

∫ φi+f(c1,c2,c3)g(φ̇i)
φ̇2
i

|V ′(φi)|

φi

√
2

(d−1)(d−2)

(f(c1, c2, c3) + 1)φ̇i
dφ

≤
∫ φi+f(c1,c2,c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

φi

√
2

(d−1)(d−2)

|V (φ)−V (φi)|
φ̇i

−
√

d−1
d−2 φ̇i(φ− φi) + φ̇i

dφ

≤
∫ φi+f(c1,c2,c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

φi

√
2

(d−1)(d−2)

φ̇
dφ

=

∫ φi+f(c1,c2,c3)g(φ̇i)
φ̇2
i

|V ′(φi)|

φi

1√
V (φ)

√
2V (φ)

(d−1)(d−2)

φ̇
dφ

≤ 1√
V
(
φi + f(c1, c2, c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

) ∫ φi+f(c1,c2,c3)g(φ̇i)
φ̇2
i

|V ′(φi)|

φi

√
2V (φ)

(d−1)(d−2)

φ̇
dφ
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≤ 1√
V
(
φi + f(c1, c2, c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

) ∫ φi+f(c1,c2,c3)g(φ̇i)
φ̇2
i

|V ′(φi)|

φi

H

φ̇
dφ

<
1√

V
(
φi + f(c1, c2, c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

) ln

 1

H
(
φ+ f(c1, c2, c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

)


≤ 1√
V
(
φi + f(c1, c2, c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

) ln


√

(d−1)(d−2)
2√

V
(
φ+ f(c1, c2, c3)g(φ̇i)

φ̇2
i

|V ′(φi)|

)
 ,

(A.20)

where in the third line we used (A.19), in the fourth line we used (A.3), in the sixth

line we used the monotonicity of V , in the seventh and the ninth lines we used V ≤
H2(d−1)(d−2)/2, and in the eighth line we used the TCC. Below we list the assumptions

we made to derive the inequality (A.20).

φ̇i ≤ min

(
c1

√
V (φi), c2

|V ′(φi)|√
V (φi)

)
,

and

φ̇i max
φ∈[φi,φ∗]

(
V ′′(φ)

|V ′(φ)|

)
≤ c3

√
V (φi). (A.21)

Following we find an upper bound for φ∗ in terms of φi, φ̇i and V (φi) so that by replacing

φ∗ in the criteria (A.21) we change them into criteria that only depend on the initial

conditions.

Hi > Hi −H(φ∗)

= −
∫ φ∗

φi

Ḣ

φ̇
dφ

=

∫ φ∗

φi

φ̇

d− 2
dφ

≥ φ̇i
d− 2

(φ∗ − φi), (A.22)

which can be rearranged into the form

φ∗ <
(d− 2)Hi

φ̇i
+ φi. (A.23)
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By replacing φ∗ in (A.21) with this upper-bound, our criteria change into

φ̇i ≤ min

(
c1

√
V (φi), c2

|V ′(φi)|√
V (φi)

)
,

and

φ̇i max
φ∈
[
φi,

(d−2)Hi
φ̇i

+φi

]
(
V ′′(φ)

|V ′(φ)|

)
≤ c3

√
V (φi). (A.24)

We can view the last inequality as an inequality for c3 rather than a criterion for φ̇i. More-

over, it seems that to get the most non-trivial result from the inequality (A.20), we should

pick the largest φ̇ possible. We can choose φ̇ such that φ̇i = min

(
c1

√
V (φi), c2

|V ′(φi)|√
V (φi)

)
and then we can pick c3 accordingly as follows to make sure that all of the criteria are

satisfied.

φ̇i = min

(
c1

√
V (φi), c2

|V ′(φi)|√
V (φi)

)
,

c3 = max

0, φ̇i max
φ∈
[
φi,

(d−2)Hi
φ̇i

+φi

]
(
V ′′(φ)

|V ′(φ)|

) . (A.25)

From this point on, we take the above identities as definitions of φ̇i and c3. Note that

for a given potential V (φ), c3, and φ̇i are now functions of φi, c1 and c2. Therefore

from now on, we show them as c3(c1, c2, φi) and φ̇(c1, c2, φi). By plugging (A.25) into

the inequality (A.20), we find the following two-parameter family of inequalities for non-

negative pair of numbers (c1, c2) where c2
2(2 + c2

1) < (d− 2)/(d− 1). For every φ we have

min

(
V (φ)

|V ′(φ)|
c1, c2

)
A1(c1, c2, φ) <

√
V (φ)

V (φ+A3(c1, c2, φ))
ln

(
A2√

V (φ+A3(c1, c2, φ))

)
,

(A.26)

where,

A1 =
f(c1, c2, c3(c1, c2, φ))g(φ̇(c1, c2, φ))

√
2√

(d− 1)(d− 2)(1 + f(c1, c2, c3(c1, c2, φ)))
,

A2 =

√
(d− 1)(d− 2)

2
,

A3 = f(c1, c2, c3(c1, c2, φ))g(φ̇i(c1, c2, φ))

min

(
c1

√
V (φ), c2

|V ′(φ)|√
V (φ)

)2

|V ′(φ)|2
. (A.27)

The inequality (A.26), although complicated, is very strong. It is almost local in the sense

that it mostly depends on the values of V and its derivatives at point φ, and provides a
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good way to see if an arbitrary potential violates TCC. This inequality does not depend

on initial conditions since we used TCC for the initial conditions that seem to challenge

TCC the most to find it. This feature makes it easy to be applied to an arbitrary potential

numerically or a class of potentials analytically. For example, for convex potentials (A.26)

takes much simpler form since g(c1, c2, φ) = 1. Note that in the case which c2 is large

enough such that V/|V ′| comes out of the min function on the l.h.s. of (A.26), we get an

inequality very similar to the dS conjecture except an extra logarithmic term. In fact, most

of the local results that we find from TCC share this feature.

B Unstable critical points

In this appendix we prove the inequality (4.6) which can be stated as in the following form.

Suppose φ0 is a critical point (local maximum) of V (φ), such that V ′ < 0 and |V ′′(φ)| ≤
|V ′′|max over the field range φ0 ≤ φ ≤ φ0 + ∆φ. Then, either

∆φ <
B1(d)B2(d)

3
4V

d−1
4

max V
3
4

min ln
(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V ′′|max ln
(
B3(d)√
Vmin

)2 , or
|V ′′|max

Vmin
≥ B2(d) ln

(
B3(d)√
Vmin

)−2

, (B.1)

where Vmax = V (φ0) and Vmin = V (φ0 + ∆φ) are respectively the maximum and the

minimum of V over φ ∈ [φ0,∆φ], and B1(d), B2(d), and B3(d) are O(1) numbers given by

B1(d) =
Γ
(
d+1

2

) 1
2 21+ d

4

π
d−1

4 ((d− 1)(d− 2))
d−1

4

,

B2(d) =
4

(d− 1)(d− 2)
,

B3(d) =

√
(d− 1)(d− 2)

2
. (B.2)

To show the above result, we prove the following one parameter family of inequalities

for 0 ≤ c ≤ 1.

∆φ <
c1/2

1− c2
B1(d)

V
d−1

4
max

|V ′′|
1
4
max

or
|V ′′|max

Vmin
≥ c2B2(d) ln

(
B3(d)√
V min

)−2

. (B.3)

One can check that by setting c equal to min

(
1, ε+

√
|V ′′|max ln

(
B3(d)√
Vmin

)2

VminB2(d)

)
and taking the

limit ε→ 0+, we can recover the statement (B.1).

Proof of (B.3). We start by assuming that first inequality in the (B.3) is violated, and

will prove that for TCC to hold, the second inequality must be true. Violation of the first

inequality implies

∆φ ≥ c1/2

1− c2
B1(d)

V
d−1

4
max

|V ′′|
1
4
max

. (B.4)
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We treat the problem semi-classically in the sense that we demand the TCC to hold for all

classical evolutions with initial conditions

φ(t = 0) = φ0 + δφi & φ̇(t = 0) = δφ̇i, (B.5)

where δφi =
√
〈(φ− φ0)2〉 and δφ̇i =

√〈
φ̇2
〉

. In the appendix C we study the quantum

fluctuations to find the lower bound on the product δφiδφ̇i. Later, we will optimize our

choice of initial conditions among all those that satisfy that uncertainty principle. Until

then, we express all of our results in terms of arbitrary initial conditions δφi and δφ̇i.

From the equation of motion (3.3), we have

φ̈ ≤ φ̈+ (d− 1)Hφ̇ = −V ′ ≤ |V ′′|max(φ− φ0), (B.6)

where in the last inequality we used the mean value theorem. If we use the mean value

theorem again, we find

φ̈ ≤ |V ′′|max(φ− φ0) ≤ |V ′′|maxtφ̇max + δφi|V ′′|max, (B.7)

where φ̇max(t) = maxt′∈[0,t]{φ̇}. If we integrate this inequality from t′ = 0 to t′ = t, using

φ̇max(t′) ≤ φ̇max(t) we find

φ̇ ≤ |V
′′|max

2
t2φ̇max + |V ′′|maxδφit+ δφ̇i. (B.8)

Since the right hand side is monotonic in t, and the left hand side is equal to φ̇max for some

t′ ∈ [0, t], we have

φ̇max ≤
|V ′′|max

2
t2φ̇max + |V ′′|maxδφit+ δφ̇i. (B.9)

Suppose c is a positive number smaller than 1, for t ≤
√

2/|V ′′|maxc, the above inequality

gives us

φ̇max ≤
|V ′′|maxδφit+ δφ̇i

1− |V
′′|maxt2

2

≤ |V
′′|maxδφit+ δφ̇i

1− c2
. (B.10)

From φ̇ ≤ φ̇max we find

φ̇ ≤ |V
′′|maxδφit+ δφ̇i

1− c2
. (B.11)

Integrating this inequality gives

φ− φ0 ≤
|V ′′|maxt

2δφi
2(1− c2)

+
δφ̇it

1− c2
+ δφi. (B.12)

Using t ≤ c
√

2/|V ′′|max again, we find

φ− φ0 ≤
(

1 +
c2

1− c2

)
δφi +

δφ̇i
1− c2

c
√

2√
|V ′′|max

=
2

1− c2
δφi + δφ̇i

c
√

2

(1− c2)
√
|V ′′|max

. (B.13)
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The above inequality is true for all t ≤ c
√

2/|V ′′|max such that φ(t) ≤ φ0 + ∆φ. If the

right hand side in (B.13) is less than ∆φ, that would mean φ is in [φ0, φ + ∆φ] for every

t ≤ c
√

2/|V ′′|max. We show that initial conditions could be optimized to make sure that

this happens without violating the uncertainty principle (C.7) δφiδφ̇i ≥
Γ((d+1)/2)Hd−1

i

2πd−1/2 .

For the initial conditions

δφ =
c

1
2 Γ
(
d+1

2

) 1
2 H

d−1
2

2
3
4π

d−1
4 |V ′′|

1
4
max

,

δφ̇ =
Γ
(
d+1

2

) 1
2 H

d−1
2 |V ′′|

1
4
max

c
1
2 2

1
4π

d−1
4

, (B.14)

the uncertainty principle gets saturated and the right hand side of (B.13) becomes equal to

B1(d)
c1/2

1− c2

V
d−1

4
max

|V ′′|
1
4
max

, (B.15)

where we used the Friedmann equation (d−1)(d−2)H2
i /2 = Vmax. According to (B.4), the

above expression is less than ∆φ. Therefore, for these initial conditions, φ ∈ [φ0, φ0 + ∆φ]

for every t ≤ c
√

2/|V ′′|max. If we set t = c
√

2/|V ′′|max, from (2.4) we find

c

√
2

|V ′′|max
≤ − 1

H
ln(H)

≤

√
(d− 1)(d− 2)

2Vmin
ln


√

(d−1)(d−2)
2√

Vmin

 , (B.16)

which can be rearranged into

|V ′′|max

Vmin
≥ c2B2(d) ln

(
B3(d)√
Vmin

)−2

, (B.17)

which is our desired result.

Now we use the inequality (B.1) that we just proved to obtain a result for quadratic

potentials. Suppose the quadratic potential V (φ) has local maximum V (φ0) = V0 and

second derivative −|V ′′| over a field range
[
φ0, φ0 +

√
2(1−c)V0

|V ′′|

]
for some 0 ≤ c ≤ 1. This

field range corresponds to the potential range [Vmin, V0] where Vmin = cV0. Let k be positive

number smaller than 1. We can weaken the (B.1) by multiplying the right hand side of the

second inequality by k as

∆φ <
B1(d)B2(d)

3
4V

d−1
4

max V
3
4

min ln
(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V ′′|max ln
(
B3(d)√
Vmin

)2 , or
|V ′′|max

Vmin
≥ kB2(d) ln

(
B3(d)√
Vmin

)−2

.

(B.18)
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If the second inequality gets violated, we get an upper bound on |V ′′| in terms of V . Plug-

ging this upper bound in the first inequality in (B.18) would weaken the above statement to

∆φ <
B1(d)B2(d)

3
4V

d−1
4

max V
3
4

min ln
(
B3(d)√
Vmin

) 1
2

(1− k)VminB2(d)
, or

|V ′′|max

Vmin
≥ KB2(d) ln

(
B3(d)√
Vmin

)−2

.

(B.19)

By plugging ∆φ =
√

2(1−c)V0

|V ′′| and Vmin = cV0 into the above inequalities we find either

|V ′′|
V0

>
2(1−k)2(1−c)c 1

2B2(d)
1
2

B1(d)2
V

2−d
2

0 ln

(
B3(d)√
cV0

)−1
, or

|V ′′|max

V0
≥ kcB2(d) ln

(
B3(d)√
cV0

)−2
.

(B.20)

In other words,

|V ′′|
V0
≥ min

(
kcB2(d) ln

(
B3(d)√
cV0

)−2

,
2(1− k)2(1− c)c

1
2B2(d)

1
2

B1(d)2
V

2−d
2

0 ln

(
B3(d)√
cV0

)−1
)
.

(B.21)

We can optimize the above inequality by setting k = 1+D(V0, d)−
√
D(V0, d)2 + 2D(V0, d)

where

D(V0, d) =
c

1
2B2(d)

1
2B1(d)2V

d−2
2

0

4(1− c)
ln

(
B3(d)√
cV0

)−1

, (B.22)

so that the two expressions in the min(, ) become equal to each other. This gives

|V ′′|
V0
≥ (1 +D(V0, d)−

√
D(V0, d)2 + 2D(V0, d))cB2(d) ln

(
B3(d)√
cV0

)−2

. (B.23)

Note that the right hand side only depends on V0. This is a potential dependent lower

bound on |V ′′|/V0 for quadratic potentials defined over a potential range [cV0, V0] for some

number 0 ≤ c ≤ 1.

C Uncertainty principle

In this appendix we derive the uncertainty inequality for δφδφ̇ where δφ =
√
〈(φ− φ0)2〉

and δφ̇ =

√〈
φ̇2
〉

. Note that since we study the evolution of a Hubble patch, the field

values that we work with are not the local field values φ(x), instead they are averaged over

a (d− 1)-ball of radius 1/H.

If we quantize a scalar field in a generic background, using a foliation Σ(t) such that Σ’s

are Cauchy surfaces, for every xd−1 ∈ Σ(t) and every function f on Σ(t), the commutation

relations would look like,∫
Σ(t)

f(x′d−1)[φ̂(xd−1), ∂µφ̂(x′d−1)]daµΣ(x′d−1) = if(xd−1), (C.1)
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where aµ is the area vector with respect to the background metric. Suppose the metric

take the form

ds2 = dt2 − gΣ(t)dx2
d−1. (C.2)

The equation (C.1) would take the form∫
Σ(t)

√
gΣf(x′d−1)[φ̂(xd−1), ∂tφ̂(x′d−1)]dx′d−1 = if(xd−1), (C.3)

which can be written as

[φ(x), φ̇(x′)] = iδµΣ(x− x′), (C.4)

where δµΣ is the Dirac delta distribution on Σ with respect to the measure µΣ induced

by gΣ. If we define φ̄, and
¯̇
φ to be the average of φ and φ̇ respectively over M ⊂ Σ with

respect to µΣ, integrating (C.4) over {(x, x′) ∈M ×M} leads to

[φ̄,
¯̇
φ] =

i

µΣ(M)
. (C.5)

If we take M to be a (d−1)-ball of Hubble radius 1/H in a spatially flat FRW background,

we find

[φ̄,
¯̇
φ] =

i

πd−1/2

Γ((d+1)/2)

(
1
H

)d−1
, (C.6)

which would result in the uncertainty principle

δφiδφ̇i ≥
Γ((d+ 1)/2)Hd−1

2πd−1/2
. (C.7)
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