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Abstract—Effectively managing concurrent execution is one of the biggest challenges for future distributed cyber physical systems
(DCPSs), and especially for wireless sensor/actor networks (WSANs) as a realization of DCPSs. For safety reasons concurrency
needs to be tamed to prevent unintentional nondeterministic executions, on the other hand, for real-time guarantees concurrency needs
to be boosted to achieve timeliness. We propose a transactional, optimistic concurrency control framework for WSANs that enables
understanding of a system execution as a single thread of control, while permitting the deployment of actual execution over multiple
threads distributed on several nodes. By exploiting the atomicity and broadcast properties of singlehop wireless communication, we
provide a lightweight implementation of our transactional framework on the motes platform. We analyze the framework through a
parametric probabilistic model. This model allows calculation of theoretical bounds on consistency under various conditions. Our model
identifies effects of parameters on consistency and facilitates parameter tuning for application needs and environment constraints. We
support our theoretical results by discrete event simulations as well as an actual implementation on tmote invent motes.

✦

1 INTRODUCTION

T RADITIONALLY wireless sensor networks (WSNs) act
mostly as data collection and aggregation networks

and do not possess a significant actuation capability [1],
[2]. However, as WSNs become increasingly more in-
tegrated with actuation capabilities, they have the po-
tential to fulfill the distributed cyber physical systems
vision [3], [4], [5]. Such networks, named wireless sen-
sor/actor networks (WSANs), will be instrumental in
process control systems (such as vibration control of the
assembly line platforms or coordination of regulatory
valves), multi-robot coordination applications (such as
robotic highway construction markers [6], where robot-
cones move in unison to mark the highway for the
safety of workers), and in resource/task allocation in
multimedia WSNs (such as video-based coordinated
surveillance/tracking of suspected individuals in an ur-
ban setting).

WSANs need a radically different software than WSNs
do. In contrast to WSNs, where a best-effort (eventual
consistency, loose synchrony) approach is sufficient for
most applications and services, consistency and coordi-
nation are essential requirements for WSANs because
in many WSAN applications the nodes need to consis-
tently take a coordinated course of action to prevent
a malfunction. For example, in the factory automation
scenario inconsistent operation of regulator valves may
lead to chemical hazards, in the robotic highway markers
example a robot with an inconsistent view of the system
may enter in to traffic and cause an accident, and in the
video tracking scenario failure to coordinate the handoff
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consistently may lead to losing track of the target.

Due to the heavy emphasis WSANs lay on consistency
and coordination, we believe that concurrent execution,
or more accurately, nondeterministic execution due to
concurrency will be a major hurdle in programming of
distributed WSANs. Since each node can concurrently
change its state in distributed WSANs, unpredictable
and hard-to-reproduce bugs may occur frequently. Even
though it is possible to prevent these unintentional and
unwanted nondeterministic executions by tightly con-
trolling interactions between nodes and access to the
shared resources [7], [8], [9], if done inappropriately, this
may deteriorate a distributed system into a centralized
one and destroy concurrency, which is necessary for
providing real-time guarantees for the system.

To enable ease of programming and reasoning in WSANs
and yet allow concurrent execution, we propose a transactional
programming abstraction and framework, namely TRANS-
ACT: TRANsactional framework for Sensor/ACTor networks.
TRANSACT enables reasoning about the properties of
a distributed WSAN execution as interleaving of sin-
gle transactions from its constituent nodes, whereas, in
reality, the transactions at each of the nodes are run-
ning concurrently. Consequently, under the TRANSACT

framework, any property proven for the single threaded
coarse-grain executions of the system is a property
of the concurrent fine-grain executions of the system.
(This concept is known as “conflict serializability” [10]
in databases and as “atomicity refinement” [11], [12]
in distributed systems.) Hence, TRANSACT eliminates
unintentional nondeterministic executions and achieves
simplicity in reasoning while retaining the concurrency
of executions.

TRANSACT is novel in that it provides an efficient and
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lightweight implementation of a transactional frame-
work in WSANs. Implementing transactions in dis-
tributed WSANs domain diverges from that in the
database context significantly, and introduces new chal-
lenges. In contrast to database systems, in distributed
WSANs there is no central database repository or an
arbiter; the control and sensor variables, on which the
transactions operate, are maintained distributedly over
several nodes. As such, it is infeasible to impose control
over scheduling of transactions at different nodes, and
also challenging to evaluate whether distributed transac-
tions are conflicting. On the other hand, we observe that
singlehop wireless broadcast has many useful features
for facilitating distributed transaction processing. Firstly,
broadcasting is atomic (i.e., for all the recipients of a
broadcast, the reception occurs simultaneously), which
is useful for synchronizing the nodes in singlehop for
building a structured transaction operation. Secondly,
broadcasting allows snooping of messages without extra
overhead, which is useful for conflict detection in a
decentralized manner. By exploiting the atomicity and
broadcast properties of singlehop wireless communica-
tion in WSANs, TRANSACT overcomes this challenge
and provides a lightweight implementation of transac-
tion processing. Since imposing locks on variables and
nodes may impede the performance of the distributed
WSAN critically, TRANSACT implements an optimistic
concurrency control solution [13]. Thus, the transactions
in the TRANSACT framework is free of deadlocks (as
none of the operations is blocking) and livelocks (as at
least one of the transactions needs to succeed in order
to cancel other conflicting transactions).

TRANSACT enables ease of programming for WSANs
by introducing a novel consistent write-all paradigm that
enables a node to update the state of its neighbors in a
consistent and simultaneous manner. Building blocks for
process control and coordination applications (such as,
leader election, mutual exclusion, cluster construction,
recovery actions, resource/task allocation, and consen-
sus) are easy to denote using TRANSACT (see Figure 3).
In this paper we use the resource/task allocation prob-
lem as a running example in our analysis, implemen-
tation, and simulation sections. This problem is inher-
ent in most WSANs applications, including the process
control, multi-robot coordination, and distributed video-
based tracking applications we discussed above. We
primarily focus on singlehop coordination applications
in this paper—albeit, in a multihop network setting. We
discuss how to leverage on the singlehop transactions in
TRANSACT to provide support for constructing multihop
coordination applications in Section 2.4.

Outline of the paper. We present the TRANSACT

framework in Section 2. In Section 3 we analyze the prob-
ability of conflicting transactions among a set of concur-
rent transactions, and also investigate the consistency of
the transactions to the face of message loss. In Section 4,
using Tmotes and TinyOS, we give an implementation of
the TRANSACT framework for solving the resource/task

allocation problem. In Section 5 we present simulation
results, using Prowler [14], over a multihop network for
the resource/task allocation problem. Finally, we discuss
related work in Section 6, and conclude in Section 7.

2 TRANSACT FRAMEWORK

Overview. In TRANSACT an execution of a nonlocal
method is in the form of a transaction. A nonlocal
method (which requires inter-process communication)
is structured as read[write−all], i.e., read operation
followed, optionally, by a write-all operation. Read oper-
ation corresponds to reading variables from some nodes
in singlehop, and write-all operation corresponds to
writing to variables of a set of nodes in singlehop. Read
operations are always compatible with each other: since
reads do not change the state, it is allowable to swap the
order of reads across different transactions. A write-all
operation may fail to complete when a conflict with an-
other transaction is reported. A conflict is possible if two
overlapping transactions have pairwise dependencies.
We achieve a distributed and local conflict detection and
serializability by exploiting the atomicity and snooping
properties of wireless broadcast communication. If there
are no conflicts, write-all succeeds by updating the state
of the nodes involved in a consistent and simultaneous
manner. When a write-all operation fails, the transac-
tion aborts without any side-effects: Since the write-all
operation—the only operation that changes the state—is
placed at the end of the transaction, if it fails no state is
changed and hence there is no need for rollback recovery
at any node. An aborted transaction can be retried later
by the caller application.

As outlined above, the key idea of concurrency control
in TRANSACT can be traced to the optimistic concur-
rency control (OCC) in database systems [13]. TRANS-
ACT exploits the atomicity and broadcast properties of
singlehop wireless communication to give an efficient
decentralized implementation of OCC. Conflict detection
and reporting mechanism is decentralized in TRANSACT.
Moreover, in TRANSACT the commit for the write-all
operation is time-triggered to ensure that the write-all
operation (if successful) is committed simultaneously
at all the nodes involved in the transaction. The time-
triggered commit mechanism leverages on the atomicity
of the write-all broadcast and achieves the commit to oc-
cur simultaneously at all the nodes despite the lossy na-
ture of the communication channel. Finally, while OCC
insists on transactions to be order-preserving, TRANSACT

requires only conflict-serializability and hence allows
more concurrency. We discuss this in more detail in
Section 6.

2.1 Read and Write-all operations

Singlehop wireless broadcast communication provides
novel properties for optimizing the implementation of
distributed transactions :
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1. A broadcast is received by the recipients simultaneously
2. Broadcast allows snooping.

Property 1 follows from the characteristics of wire-
less communication: the receivers synchronize with the
transmission of the transmitter radio and the latency in
reception is negligible (limited only by the propagation
speed of light). As such Property 1 gives us a powerful
low-level atomic primitive upon which we build the
transactions. Using Property 1, it is possible to order
one transaction ahead of another 1, so that the latter
is aborted in case of a conflict. Using Property 1, we
can define a transaction as a composition of an atomic
read operation followed by an atomic write operation, as
Tj = (Rj ,Wj). Atomicity of read operation is satisfied by
the atomicity of broadcast. Each node involved in a read
operation prepares its reply at the reception of the read
broadcast. Atomicity of the write operation is satisfied by
a time-triggered commit taking the write-all broadcast as
a reference point.

We use Property 2, i.e., snooping, for detecting con-
flicts between transactions without the help of an arbiter
as we discuss below.

Implementation of Read operation : Since read oper-
ations are compatible with other read operations, it is
possible to execute read operations concurrently. More-
over, exploiting the broadcast nature of communication
the node initiating the transaction can broadcast a read-
request where all variables to be read are listed.

Implementation of Write-all operation : The write-
all broadcast performs a tentative write (a write to a
sandbox) at each receiver. Each receiver replies back with
a small acknowledgment message. If after the broadcast,
the writer receives a conflict-detected message (we dis-
cuss how below), the write-all operation fails, and the
writer notifies all the nodes involved in the write-all to
cancel committing. This is done by a broadcasting of a
cancellation message, and the writer expects a cancel-ack
from each node to avoid an inconsistency due to loss
of a cancellation message. The cancellation process may
be repeated a few times until the writer gets a cancel-
ack from each node involved in the write-all (the above
scheme can be used for avoiding collision of cancel-acks).
The commit is time-triggered: If after the write-all, the
writer node does not cancel the commit, the write-all
is finalized when the countdown timer expires at the
nodes. Since write-all is received simultaneously by all
nodes, it is finalized at the same time at all the nodes –if
it completes successfully.

Detecting conflicts : The read operations are compatible
with respect to each other, so swapping the order of any
two concurrent read operations results into an equivalent
computation. A read operation and a write operation

1. Property 1 does not rule away collisions nor asserts that a broad-
cast message should be reliably received by all the intended nodes; it
just asserts that for all the nodes that receive the message, the reception
occurs simultaneously. We relegate the discussion of how we cope with
message losses and collisions to Section 2.3.

at different and overlapping transactions to the same
variable are incompatible, so it is disallowed to swap
the order of two such operations. In such a case, a
dependency is introduced from the first to the second
transaction. Similarly, two write operations to the same
variable are incompatible with each other. For example
in Figure 1 if a read-write incompatibility introduces a
dependency from t1 to t2, and a write-write incompat-
ibility introduces a dependency from t2 to t1, then we
say that t1 and t2 are conflicting. This is because, due to
the dependencies the concurrent execution of t1 and t2
do not return the same result as neither a t1 followed by
t2 nor a t2 followed by t1 execution. In this case, since
t2 is the first transaction to complete, when t1 tries to
write, t1 is aborted due to the conflict.

j

k
t2.write−all(l.x)

t1.read(l.x) t1.write−all(l.x)

read−write dependency

write−write dependency

Fig. 1. Conflicting transactions

Formally, we denote a transaction Tj by a tuple
(Rj ,Wj) where Rj is the read-set of Tj and Wj is the
write-set for Tj . For any two transactions Tj and Tk, we
define the following dependencies:

• Drw(Tj , Tk) ≡ Rj ∩Wk 6= ∅ and executions of Tj and
Tk overlap,

• Dww(Tj , Tk) ≡ Wj ∩ Wk 6= ∅ and write-all broadcast
of Tj precedes that of Tk.

We say that there is a conflict between Tj and Tk iff :

Drw(Tj , Tk)∧ Drw(Tk, Tj)

∨ Drw(Tj , Tk)∧ Dww(Tk, Tj)

That is, Tj and Tk conflict with each other if there is
a pairwise read-write dependency between Tj and Tk,
or there is a read-write dependency from Tj to Tk and a
write-write dependency from Tk to Tj . When a conflict is
detected between Tj and Tk, the transaction whose write-
all post-dates the other is informed about this conflict via
a conflict-detected message, and is aborted.

conflict_msg

t1:write−all(l’.x)

t2:write−all(l.y,l’.x)

t1:read(l.y)

Execution order:

l’

k

l

j

t1:write−all t2:write−all

t2:write−all
t1:read

Fig. 2. Snooping for detecting conflicts

To enable low-cost detection of conflicts, we exploit
snooping over broadcast messages. Figure 2 demon-
strates this technique. Here j is executing transaction t1
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which consists of read(l.y);write−all(l′.x) operations that
operate on its 1-hop neighbors, l and l′. Simultaneously,
another node k within 2-hops of j is executing transac-
tion t2 which write−all(l.y, l′.x). In this scenario l′ is
the key. When t1 reads l, l′ learns about the pending t1
transaction via snooping. When t2 writes to l′, l′ takes
note of the simultaneous write to l.y (since that infor-
mation appears at the write-all message) and notices the
read-write dependency between t1 and t2. Later, when
t1 writes tentatively to l′.x, l′ notices the write-write
dependency between t2 and t1. Thus, l′ complains and
aborts t1. If there are multiple nodes written by t1, the
affected nodes may schedule transmission of the conflict-
messages in a collision-free manner by taking the write-
all broadcast as a reference point.

For some scenarios, dependency chains of length
greater than two are also possible. Thus, we also enforce
acyclicity for such dependency chains via aborting a
transaction if necessary. An example of a dependency
chain of length three with a cycle is: t1:(read y, write-
all x), t1:(read z, write-all y), and t3:(read x, write-all z).
Catching such cycles among transactions in singlehop
is achieved by a straightforward modification to the
conflict detection rule we described above. With the
modification, the snoopers search for any potentially
long dependencies in their snooping table in order to
detect conflicts as we discuss in Section 3.1.

2.2 TRANSACT examples

bool leader election(){
X= read(“*.leader”); //read from all nbrs
if (X = {⊥}) then {

return write-all(“*.leader=”+ID); }
return FAILURE; }

bool consensus(){
VoteSet= read(“*.vote”);
if(|V oteSet| = 1) then //act consistently

return write-all(“*.decided=TRUE”);
return FAILURE;}

bool resource allocation(candidateSet) {
X= read(“∀x : x ∈ candidateSet : x.allocated”);
X ′= select a subset of {x|x.allocated = ⊥ ∧ x ∈ X}
if(X ′ 6= ∅) then

return write-all(“∀x : x ∈ X ′ : x.allocated=”+ID);
return FAILURE;}

Fig. 3. Sample methods in TRANSACT

In Figure 3, we give some examples of TRANSACT

methods for different tasks to illustrate the ease of
programming in this model. Each method is written as
if it will be executed in isolation as the only thread
in the system, so it is straightforward to describe the
behavior intended. For example, in the leader election

method, an initiator j reads the leader variables of all
its singlehop neighbors, and on finding that none of
them has set a leader for themselves, announces its
leadership and sets their leader variables to point to
j. During concurrent execution another initiator k may
be executing in parallel to j, and isolation assumption
fails. However, since either j or k performs the write-all
before the other, TRANSACT aborts the other transaction
re-satisfying isolation assumption for these conflicting
transactions through conflict-serializability. E.g., if j per-
formed write-all earlier than k, k’s write-all will trigger
conflict detections (read-write dependency from k to j,
followed by a write-write dependency from j to k) and
cancellation of k’s transaction.

Similarly for the consensus method, the initiator–
assuming isolation– reads vote variables of the neigh-
bors, and on finding an agreement on the same vote,
sets the decided variable of all neighbors so that the
vote is finalized. If due to concurrent execution a node
k changes its vote during a consensus method execution
of an initiator j, then j’s write-all will lead to a conflict-
report from k and abortion of j’s transaction.

Finally, the resource allocation method is similar to the
leader election. The initiator reads availability of nodes
in the candidateSet, and selects a subset of the available
nodes, and recruits them for its task. Again TRANSACT

ensures that concurrent execution of this method at
several initiators do not lead to any data race conditions
and inconsistencies.

TRANSACT methods return a boolean value denoting
the successful completion of the method. If the method
execution is aborted due to conflicts with other trans-
actions or message losses, it is the responsibility of the
caller application to retry.

2.3 Fault-tolerance

Even when singlehop neighbors are chosen conserva-
tively to ensure reliable communication (we may con-
sider an underlying neighbor-discovery service to this
end—one that may potentially be implemented as a
TRANSACT method), unreliability in broadcast commu-
nication is still possible due to message collisions and
interference. Here, we describe how TRANSACT tolerates
unreliability in wireless communication via utilizing ex-
plicit acknowledgments and eventually-reliable unicast.

Occasional loss of a read-request message or a reply
to a read-request message is detected by the initiator
when it times-out waiting for a reply from one of the
nodes. Then, the initiator aborts the transaction before
a write-all is attempted. In this case, since the initiator
never attempted the write-all, no cancellation messages
are needed upon aborting. Retrying the method later,
after a random backoff, is less likely to be susceptible to
message collisions due to similar reasons as in CSMA
with collision avoidance approaches [15].

Similarly, loss of a write-all message is detected by the
initiator node when it times-out on an acknowledgment



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

from one of the nodes included in the write-all. The
initiator then aborts its transaction by broadcasting a
cancellation message as discussed above in the context
of conflict-resolution.

For the loss of a conflict-detected or cancellation mes-
sage we depend on the eventual reliability of unicast
messages. Upon detection of a loss via timeout on an
acknowledgement, if a conflict-detected or cancellation
message is repeated a number of times, it should be
delivered successfully to the intended recipient. It fol-
lows from the impossibility of solving the “coordinated
attack problem” [16], [17] in the presence of arbitrarily
unreliable communication that the above assumption
is necessary even for solving a most basic consensus
problem in a distributed system. We argue that such an
eventually-reliable unicast assumption is realistic under
reasonable network loads as the MAC protocols [18], [19]
can resolve collisions via carrier-sense and back-offs. Our
implementation and simulation results also validate this
assumption.

2.4 Discussion

Limitations. Due to the unreliable nature of wireless
communication, a streak of message losses may lead
to an inconsistency in TRANSACT. TRANSACT relies on
acknowledgments to ensure delivery of write and can-
cel messages. For conflict detection messages multiple
snooper nodes are expected to help. Nevertheless, even
with multiple repetitions, delivery of these messages to
some involved nodes can fail, leading to inconsistencies.
Similarly, a node failure that occurs during an active
transaction can cause an inconsistency through induc-
ing persistent message loss. For instance, failure of the
initiator node after it broadcasts a write-all may lead to
an inconsistent commit.

When transactions involved in a dependency chain are
dispersed through a multihop region, it becomes difficult
to detect potential cycles. We note that the likelihood
of cycles over long dependency chains encompassing
multiple hop neighborhoods are quite low due to the
short execution duration of our transactions. An effective
detection algorithm for multihop dependency chains re-
quires network-wide queries which would be extremely
costly. In our current work we are investigating the
frequency of such chains and possible remedies.

Multihop extensions to TRANSACT. It is easy to lever-
age on TRANSACT’s singlehop transactions to provide
support for constructing multihop programs. To this end,
our strategy is to use TRANSACT to implement higher-
level coordination abstractions, such as Linda [20] and
virtual node architecture [21].

In Linda, coordination among nodes is achieved
through invocation of in/out operations using which
tuples can be added to or retrieved from a tuplespace
shared among nodes [20], [22], [23], however, maintain-
ing the reliability and consistency of this shared tu-
plespace to the face of concurrent execution of in and out

operations at different nodes is a very challenging task.
Through its serializable singlehop transaction abstrac-
tion, TRANSACT can achieve consistent implementation
and maintenance of the tuplespace.

Virtual node architecture [21] is another high-level
programming abstraction for distributed nodes. It pro-
vides an overlay network of fixed virtual nodes (VNs)
on top of a mobile ad hoc network to abstract away
the challenges of unpredictable reliability and mobility
of the nodes. Each VN is emulated by the physical
nodes residing within a singlehop of the VN’s region
at a given time. The network of VNs serve as a fixed
backbone infrastructure for the mobile ad hoc network
and allows existing routing and tracking algorithms for
static networks to be adopted for these highly dynamic
environments. Existing VN layer proposals assume re-
liable communication channels and use a round-robin
approach to achieve consistent replication of the state
of the VN over the physical nodes [21]. Our TRANSACT

framework provides a lightweight singlehop transaction
abstraction for implementing VNs consistently over re-
alistic communication channels.

3 ANALYTICAL RESULTS

3.1 Transaction Serialization

A set of transactions are serializable if and only if their
dependency graph is acyclic [10]. In the TRANSACT

framework, depending on the arrival order of read and
write operations, incompatibilities create dependencies.
Here we outline our approach for identifying these
dependencies in order to maintain serializability.

Consider two transactions Ti = (Ri,Wi) and Tj =
(Rj ,Wj). Note that without any incompatibilities, these
transactions are always serializable. For investigating in-
compatibilities, without loss of generality we assume Ri

comes before Rj . Then, we have the following execution
orders for the atomic read and write operations:

• Ri,Wi, Rj ,Wj : In this case the dependencies be-
tween transactions are irrelevant since Ti completes
before Tj and they are not actually concurrent.

• Ri, Rj ,Wi,Wj : In this case if there is read-write
incompatibility between Ti and Tj , we introduce
a dependency from Ti to Tj . If there is read-write
incompatibility between Tj and Ti, we insert a de-
pency from Tj to Ti. Finally if there is write-write
incompatibility between Ti and Tj , we introduce a
dependency from Ti to Tj .

• Ri, Rj ,Wj ,Wi: This is only slightly different from
previous scenario. Read-Write incompatibilities cor-
respond to same dependencies. Write-Write incom-
patibility, on the other hand, causes a dependency
to be inserted from Tj to Ti.

The dependencies between all concurrent transaction
pairs are tracked through TRANSACT execution. We con-
struct the dependency graph with nodes as transactions
and directed edges to represent dependence relations.
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No transaction that would cause a cycle in this depen-
dency graph is allowed to commit.

3.2 Concurrency in Transactions

Since it is impossible to model all applications for
TRANSACT, we use a simple transaction model to an-
alyze the effect of concurrency in creating data race
conditions and conflicts. In our model a transaction reads
from a random subset of the TRANSACT variables and
writes to a random subset of its read-set. This model
is suitable for modeling some resource/task allocation
problems.

Given n variables involved in two concurrent transac-
tions, we define three cases:

• Independent: The write-sets of these transactions are
distinct from the read-sets of the other. Essentially
these transactions are independent. We denote prob-
ability of such transactions with Pi(n).

• Dependent: These transactions have a one-way de-
pendency due to incompatibilities. We denote the
probability of these transactions with Pd(n).

• Conflicting: These transactions can not be run in
parallel because they have two-way dependencies
between each other. No serial ordering is possible
for these transactions. The probability of these trans-
actions is Pc(n).

In order to calculate these probabilities we first calcu-
late the probability of incompatibilities. The probability
of a Read-Write incompatibility (PRW (n)) depending on
the number of shared variables can be calculated as
follows:

PRW (n) =

n
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For this subset of j elements we calculate the intersection
probability with another random subset corresponding
to the second read-set.

Similarly Write-Write incompatibility can be derived.
This time we also need to choose the second write-set
so the expression is a bit longer:
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Using these probabilities, Pi(n) can be calculated as
follows:

Pi = (1 − PWW )(1 − PRW )2

While calculating Pd we need to consider arrival times
of write messages. We assume the arrivial times are ran-
dom with uniform distribution. Thus only 50% of Write-

Write incompatibilities cause a conflict with a Read-Write
incompatibility:

Pd = PWW (1 − PRW )2 + PWW (1 − PRW )PRW +

2(1 − PWW )(1 − PRW )PRW

The conflict probability is given by:

Pc = PWW P 2

RW +PWW (1−PRW )PRW +(1−PWW )P 2

RW
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Fig. 4. Probabilities of being independent, dependent or
conflicting given the number of shared variables between
two transactions
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Fig. 5. Probabilities of being independent, dependent
or conflicting given the probability of sharing an element
between read or write sets of two transactions

Figure 4 summarizes the predictions of this model.
With a single resource there will definitely be conflicts
and with increasing number of variables we first observe
less conflicts (around 3 and 4 variables) and with more
variables conflict probability approaches to 1. With this
model independent transactions have very low proba-
bility and conflicts are common.
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Parameter Description

m number of distinct nodes in transaction
P package loss probability.
r number of nodes successfully received the read

message
w number of nodes successfully received the write

message
rr number of successful read response messages

delivered to the initiator
wa number of write acknowledgment messages de-

livered to the initiator
cd number of conflict detection messages delivered

to the initiator
cc number of cancel confirmation messages deliv-

ered to the initiator
c number of nodes that received at least one

cancel message
k maximum number of cancel repeats

TABLE 1
Parameters used in consistency model.

Figure 5 on the other hand shows the predicted
probability of conflicts and incompatibilities given the
probability of intersection. Even with relatively low
probabilities having independent transactions has low
probability and conflicts are highly probable.

3.3 Transaction Consistency

While the previous sections discussed the correctness of
TRANSACT with the reliable communication assumption,
here we investigate the consistency of a transaction (that
is the agreement on the result of a transaction by all
participants) under message loss scenarios.

In a real deployment there are message losses due to
collisions with the messages of other ongoing transac-
tions in the vicinity and also due to interference with
802.11 systems. However, for the sake of simplicity we
shoehorn all these factors into a single one, and model
message losses with uniform, independent random dis-
tributions. We quantify the parameters effecting Transact
consistency as shown in Table 1.

We model a single transaction independent of the con-
current transactions and classify its outcome as success,
fail, or inconsistency. Note that a failed transaction is
more preferable than an inconsistent transaction since in
the case of a failed transaction, the application is made
aware of the failure and can thus take corrective action
(such as restarting the transaction).

We analyze the consistency of a transaction, in two
cases depending on whether the transaction is conflicting
or not. When the transaction is conflicting, a conflict de-
tection is required, whereas when the transaction is non-
conflicting, the time based commit ensures a consistent
commit.

Figure 6(a) gives the flowchart used for determining
the consistency of a transaction in the non-conflicting
case. If the initiator does not receive all the read re-
sponses, the transaction fails consistently as a write
command has not been issued yet. On the other hand,

Probability Description

Pr=m Probability of the number of successful read
message deliveries being equal to m. Pr=m =
(1 − P )m

Prr=m Probability of the number of successful read
response message deliveries being equal to m.
Prr=m = Pr=m(1 − P )m

Pw=m Probability of the number of successful write
message deliveries being equal to m. Pw=m =
(1 − P )m

Pwa=m Probability of the number of successful read
response message deliveries being equal to m.
Pwa=m = Pw=m(1 − P )m

Pcd>0 Probability of the number of successful conflict
detection message deliveries being greater than
0. Pcd>0 = 1 − P

m

Pcancel Probability of consistent cancellation of the
transaction. This requires all nodes involved in
transaction receiving at least one cancel mes-
sage out of k messages. Pcancel = (1 − P

k)m

TABLE 2
Basic probabilities used in consistency model.

after a write broadcast, the possibility of inconsistency
arises as the cancel procedure may lead to inconsistent
states.

The flowchart for the cancel procedure is given in
Figure 6(c). After each cancel message, the number of
cancel confirmation messages are checked. While the
initiator detects missing cancel confirmations, the cancel
message is repeated up to k times. In the end, if c,
the number of nodes that receive at least one of the
cancel messages, is less than m, the number of nodes
involved in transaction, then an inconsistency arises.
Else, even if the cancel confirmation messages are lost,
cancel procedure still leads to consistent cancellation of
the transaction.

In the presence of conflicts, determining the transac-
tion consistency is slightly more complicated as shown
in Figure 6(b). In addition to the cancel procedure re-
lated inconsistencies, loss of conflict detection messages
can also cause inconsistency. For conflict detection we
assume all nodes involved in the transaction except the
initiator to be able to detect conflicts. Note that when
the initiator can detect conflicts the performance would
be better since there would be no risk of losing conflict
detection messages.

Using these flowcharts we can calculate the consis-
tency of a transaction under a given message loss prob-
ability. To this end, we first calculate the probabilities of
taking each branch in the flowcharts. The basic proba-
bilities used in these calculations are listed in Table 2.

We denote the probability of a successful commit
of the transaction with Psucc. We use Pfail for the
probability of the proper termination of the transaction
with a fail condition and Pinc for the probability of
inconsistent commits. For the case of a non-conflicting
transaction these probabilities can easily be derived from
the flowchart in Figure 6(a) as follows:



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

 

Cancel 

Procedure 

NO 

YES rr<m 

 

wa<m 

 

FAIL 

 

SUCCESS 

 

YES 

NO 

(a) Transaction without conflict

 

Cancel 

Procedure 

NO 

YES rr<m 

 

wa<m 

 

FAIL 

 

YES 

NO 

cd>0 

 

YES Cancel 

Procedure 

INCONSISTENCY 

 

NO 

(b) Transaction with conflict

NO 

YES cc<m 

 

c=m 

 

FAIL 

 

INCONSISTENCY 

 

YES 

NO 

Send Cancel 

 

Repeat 

Left? 

 

FAIL 

 YES 

NO 

(c) Cancel procedure

Fig. 6. Flowcharts used in the consistency analysis.

Psucc = Prr=mPwa=m

Pfail = (1 − Prr=m) + Prr=m(1 − Pwa=m)Pcancel

Pinc = Prr=m(1 − Pwa=m)(1 − Pcancel)

An interesting point to note here is that when the
packet loss probability is relatively high, the transaction
can be terminated early due to missing read responses.
Therefore high packet loss rates do not necessarily mean
high inconsistencies.

For the case of a conflicting transaction, we follow
a similar procedure to calculate the probabilities of the
outcomes:

Psucc = 0

Pfail = (1 − Prr=m) + Prr=m(1 − Pwa=m)Pcancel +

Prr=mPwa=mPcd>0Pcancel

Pinc = Prr=m(1 − Pwa=m)(1 − Pcancel) +

Prr=mPwa=mPcd>0(1 − Pcancel)

Prr=mPwa=m(1 − Pcd>0)

Using the formulas we derived above and varying the
parameters of the model, we investigate the consistency
of transactions in TRANSACT. We first, fix number of
nodes to 4 and investigate the effects of the maximum
number of cancel repetitions as shown in Figure 7.
Increasing the number of cancel retries have the expected
effect of reducing inconsistency in all cases.

Increasing the number of nodes involved in a trans-
action yields some surprising results as we illustrate in
Figure 8. We see a sharp increase in the inconsistency
for conflict cases when a single node is involved. The
reason behind this increase is the increased risk of loss
of conflict detection message. Figure 9, gives a more
detailed look on the sources of inconsistencies. As shown
in this figure, conflict detection related inconsistencies
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Fig. 7. Inconsistency of TRANSACT versus the maximum
number of cancel retries.

are the dominant reason for inconsistency in single node
case. Poor conflict detection performance in single node
transactions is a weakness in the protocol. A possible
solution can be repeating conflict detection messages
when the expected number of nodes that can contribute
to the conflict detection is low. Another interesting effect
of the increased number of nodes in a transaction is the
reduced probability of inconsistency. This is reasonable
as increasing number of nodes reduces the probability of
proper read response collection. Since only transactions
which send the write message can cause inconsistencies,
increasing number nodes lead to reduced amount of
inconsistencies.

We investigate the effects of message loss probabil-
ity on the consistency of a transaction in Figure 10.
TRANSACT exhibits good performance even under large
probability of packet losses. The increased inconsistency
when considering a small number of nodes is a result
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Fig. 9. Sources of inconsistency in TRANSACT versus the
number of nodes involved in transaction.

of conflict detection process. Note that when the packet
loss probability increases, most of the transactions are
aborted at the read response state, so the inconsistency
actually reduces with large number of participants and
large packet loss probabilities.

In real use-case scenarios, failed transactions are often
repeated until successful completion is achieved. This
naturally increases the probability of inconsistencies for
the non-conflicting transactions. Figure 11 depicts such
a scenario when the transactions are repeated until a
successful (or inconsistent) completion. High message
loss probabilities with large number of participants lead
to unacceptable inconsistency probabilities. In this figure
we use 3 repetitions of cancel message, which leads to
high inconsistencies in large networks. Since in non-
conflicting transactions only inconsistency is caused by
the cancel procedure, the consistency can be improved
by increasing cancel repetitions as shown in Figure 12.
Here the message loss probability is fixed at 0.2. Number
of cancel repetitions is thus an essential parameter for
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Fig. 10. Inconsistency of TRANSACT versus package loss
probability.
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Fig. 11. Inconsistency of non-conflicting repeated trans-
action in TRANSACT versus package loss probability.

consistency of transact and provides a trade off between
performance and consistency.

4 IMPLEMENTATION RESULTS

We developed an implementation of TRANSACT over T-
mote Invent and T-mote Sky motes [24] in the form of
a TinyOS component, called TRANSACT. The TRANSACT

component keeps the state of the ongoing transactions
and abstracts communication and state maintenance de-
tails from the application developer by exporting an
interface with split phase semantics [25]. Our TRANSACT

implementation is close to 1500 lines of NesC code, and
is available at http://ubicomp.cse.buffalo.edu/transact.

Test application. In order to test the reliability and feasi-
bility of transactions in our TRANSACT implementation,
we also implemented a resource/task allocation applica-
tion similar to the one we presented in Section 2.2.

In this application, nodes try to obtain control of
shared resources for their individual tasks. We call the
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nodes that try to initiate transactions initiators and the
nodes that maintain the variables as resources. Initially,
each initiator is assigned a random subset of the resource
nodes to read, and a random subset of their read-sets to
write to—in order to allocate those resources. Initiators
cannot complete their tasks with partial resources. The
application code is aware of the transaction status and
the failed transactions are repeated until success is re-
ported by TRANSACT. That is, an initiator keeps retrying
until it can allocate the resources it requested.

Experiments. We use a total of 12 motes. One of
these motes is reserved for synchronization and book
keeping and referred to as the basestation. We developed
a custom Java application to automate the starting of
the experiments and collecting of the results through
serial communication with the basestation. Each data
point in our graphs is calculated over 50 runs of the
corresponding configuration. At the end of each run we
check the variables in the resource nodes for correctness.
We call a run successful if the resultant values in the
resource motes are the correct and consistent values.

We synchronize the initiators through a synchroniza-

tion message broadcasted from the basestation, and
this way start all the transactions at the same instant.
Since all nodes are within singlehop, the MAC layer
is able to prevent message collisions via carrier-sensing
and backoff in relatively low contention configurations,
however message losses become common as we increase
the number of initiators and resources to stress-test our
TRANSACT implementation. We experiment with fairly
large number of initially synchronized concurrent trans-
actions to provide a worst-case scenario performance
analysis for TRANSACT.

Figure 13 shows the settling times (the time between
the first and last message transmitted in a run) using
various configurations of the resource allocation appli-
cation. In this figure, the bars represent median duration
of 50 runs and error bars correspond to 80% confidence
interval. An important observation from the figure is the
general increase in the settling time with the increas-
ing number of initiators. As the number of concurrent
transactions are increased, more conflicts and collisions
are reported, leading to aborted and retried transactions,
and hence, an increased settling time.

From Figure 13 we observe that increasing the number
of resources—while keeping everything else constant—
affects the settling time in a manner predicted by our
analysis in Section 3.2. We find that having a single
resource leads to the worst completion time for the 3
and 4 initiator cases. This result is due to the following.
Since no transaction is allowed to have empty read or
write sets, when there is a single resource, this causes
all the transactions to read from and write to the same
resource. As there is no concurrency possible among
these conflicting transactions, we observe a performance
loss. When using 2 or 4 shared resources, conflicts among
initiators are less likely, so the settling time for 2 and 4
resources are less than that with a single resource even
though more nodes are involved in a transaction in the 2
and 4 resources case. This result is very consistent with
the probability of conflicting transactions presented in
Figure 4.

In order to provide more context for the settling
time durations of our transactions we like to mention
that a message transmission takes around 3msecs on
CC2420 radios without any CSMA backoffs. Thus a fast
unreliable read of a single resource followed by a write
operation takes at least 10msecs to complete. Note that
this bare-bones best-case time do not allow any par-
allelism among multiple initiators. In our experiments
we fix the transaction durations to a very conservative
length throughout all the configurations in order to
accommodate concurrent transactions. Also as we have
mentioned above, our performance results are meant to
be worst-case completion times with fairly large number
of initially synchronized concurrent transactions, which
leads to several conflicts and collisions.

Another important parameter we investigate in our
experiments is the consistency of the transactions in
TRANSACT. We verify the consistency of transactions
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by querying the resulting resource states after each run
via the basestation. Figure 14 shows these results. The
results are in agreement with the probabilistic model
predictions, where increasing the number of concurrent
transactions are expected to increase message loss proba-
bility. The increase message losses lead to more conflicts.
The inconsistency of single resource case is close to 7 re-
sources case, former caused by conflict detection failures
and latter related to cancel procedure. It is important
to note that in these experiments cancel messages are
not repeated. Repeating cancel messages could improve
consistency in these cases. As a summary of this set of
experiments we can conclude that TRANSACT provides
consistency and reliability across different number of
initiators and resources.

5 SIMULATION RESULTS

In order to perform larger-scale experiments, we
implemented TRANSACT over the WSN simulator
Prowler [14], which simulates the radio transmis-
sion/propagation/reception delays of Mica2 motes, in-
cluding collisions in ad-hoc radio networks, and the
operation of the MAC layer. We have modified Prowler
to account for the transmission rates of the faster Tmote
CC2420 radios (instead of the default Mica2 CC1000
radios), so that our simulation results are closely aligned
with our Tmotes implementation results.

Our experiments are performed on a 10x10 grid of
100 nodes, where each node has 8 neighbors. Each data
point in our graphs is calculated over 50 runs of the
corresponding configuration. At the beginning of each
run, the initiator nodes are randomly selected to perform
a resource allocation task, by reading from a random set of
their neighbors and then writing to some random subset
of their read-sets. Our simulations stress-test TRANSACT

by iterating through an increasing number of initiators in
the network (from 5 initiators upto 20 initiators denoted
along the X-axis). All the initiators start their transactions
in the beginning of the run, with only the CSMA mech-
anism to arbitrate between their messages. An aborted
transaction is retried by the initiator.

In our simulations, we compare TRANSACT with 4
other transactional protocols: Reliable, eventually reliable,
unreliable, and locking. The first 3 protocols gradually
leave out more mechanisms of TRANSACT and pro-
vide lesser guarantees for transaction executions. Reli-
able protocol waives the conflict-detection mechanism in
TRANSACT, but may still cancel a transaction if write-
acks are not received from all participants. Ev-reliable
forgoes the transaction cancellation from the reliable, and
replaces this with re-transmission of the write-all in case
of missing write-acks. Unreliable waives even the write-
ack mechanism of ev-reliable type, and performs a bare-
bones write operation. Finally, for the locking protocol,
we implemented a version of strict two-phase locking [10].
In addition to the release of the locks by the initiator
upon a commit, we also implemented leases on the locks
to prevent any indefinite locking of a resource in case
the release-lock messages get lost. These five protocols are
summarized in Table 3.
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Figure 15 shows the settling times (the time between
the first and last message transmitted in a run) for
each protocol. Unreliable is naturally the fastest. As
the reliability requirements of the transaction protocols
increase, we observe a corresponding increase in the
settling times. The conflict serializability mechanism of
TRANSACT imposes only a little overhead over reliable,
whereas the overhead associated with the locking pro-
tocol is huge. This is because TRANSACT allows more
concurrency than locking as we discuss in Section 3.2.
While TRANSACT can execute dependent transactions in
parallel (provided that they are not conflicting), locking
can execute only independent transactions in parallel.
Since Figure 4 shows that the probability of independent
transactions are very low for the resource/task allocation
application, locaking protocol ends up executing transac-
tions one after the other rather than in parallel. Thus, as
the number of initiators increase settling time for locking
increases quickly.

In Figure 15, as the contention due to the num-
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Protocol Writes Acks Consistent Writes Conflict-Serializabilty

unreliable × × ×
ev-reliable

√ × ×
reliable

√ √ ×
locking

√ √ √
TRANSACT

√ √ √

TABLE 3
Transactional protocols we consider

ber of initiators increase, the settling times for all of
the protocols are affected. With 20 initiators almost all
nodes in the network are involved in transactions, either
as participants or as snoopers. Since only the CSMA
mechanism arbitrates among these concurrent initiators,
message losses due to hidden terminal problems become
common occurrences in this multihop setting. We ob-
serve that hidden terminal problems start to degrade the
performance seriously for the reliable, TRANSACT, and
locking protocols, as we increase the number of initiators
in the network.
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Fig. 16. Conflict detection in TRANSACT

Figure 16 demonstrates the effectiveness of TRANSACT

in detecting conflicting transactions. In order to construct
this graph, we have generated extensive logs for read,
write, cancel, snooping operations at the nodes, and later
ran a script on the simulation logs from each node to
determine the actual number of conflicts, and use this
as a reference to compare with the number of conflict
detections reported by the snoopers. As seen in the bar
graphs, the conflicts detected and aborted by TRANSACT

are close to the actual number of conflicts. The difference
between the actual and detected number of conflicts is
due to loss of messages which drops the effectiveness
of snoopers’ conflict detection abilities. The difference
between the number of conflicts detected and aborted is
due to the loss of the conflict-notification and writeall-
cancel messages.

Figure 17 shows the average number of inconsis-
tent writes. Thanks to the cancel mechanism, reli-
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able and TRANSACT protocols achieve very few write-
inconsistencies compared to ev-reliable. Write inconsis-
tency in ev-reliable protocol arises due to the loss of write
message at some participants. In reliable and TRANSACT,
a write inconsistency may be only due to the failure to
abort a write operation before its commit timer expires.

6 RELATED WORK

Concurrency control in TRANSACT diverges from that
in the database context significantly as we discuss in
the Introduction. Recently, there has been a lot of work
on transaction models for mobile ad hoc networks [26],
[27], [28], [29], [30], [31], however, these work all assume
a centralized database and an arbiter at the server,
and try to address the consistency of hidden read-only
transactions initiated by mobile clients.

Software transactional memory (STM) [32] is a concur-
rent programming scheme with multiple threads. In STM
conventional critical sections for controlling access to
shared memory are replaced by transactions. In TRANS-
ACT, there is no shared memory as the variables are
distributed among nodes.

Although TRANSACT is closer to an optimistic concur-
rency control (OCC) approach than a locking approach,
there are significant differences between the semantics of
transactions in TRANSACT and that in OCC protocols of
database systems. TRANSACT relaxes the order preserv-
ing properties of OCC and provides more concurrency.
For example, in Figure 5, TRANSACT allows transactions
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labeled as dependent to be executed concurrently as
they still can be ordered in a conflict-free serialization
schedule. OCC protocols on the other hand introduce
some order among transactions through explicit trans-
action numbers [13], which prevents approximately half
of the dependent transactions in Figure 5 from executing
concurrently.

Several programming abstractions have been pro-
posed for sensor networks [33], [34], [35], [36]. Kairos [33]
allows a programmer to express global behavior ex-
pected of a WSN in a centralized sequential program
and provides compile-time and runtime systems for
deploying and executing the program on the network.
Hood [34] provides an API that facilitates exchang-
ing information among a node and its neighbors. In
contrast to these abstractions that provide best-effort
semantics (loosely-synchronized, eventually consistent
view of system states), TRANSACT focuses on providing
a dependable framework for WSANs with well-defined
consistency and conflict-serializability guarantees.

A cached sensor transform (CST) that allows simu-
lation of a program written for interleaving semantics
in WSNs under concurrent execution is introduced in
[37]. CST advocates a push-based communication model:
Nodes write to their own local states and broadcast so
that neighbors’ caches are updated with these values.
This is not directly equivalent to writing neighbor’s
state, due to complications arising from concurrency
and not being able to directly hear writes from 2-hop
neighbors to a 1-hop neighbor. CST imposes a lot of
overhead for updating of a continuous environmental
value (e.g., a sensor reading changing with time) due to
the cost of broadcasting the value every time it changes.
In contrast to the CST model, TRANSACT uses pull-
based communication, and hence it is more efficient
and suitable for WSANs. CST targets WSN platforms
and supports only a loosely-synchronized, eventually-
consistent view of system states. TRANSACT is more
amenable for control applications in distributed WSANs
as it guarantees consistency even in the face of message
losses and provides a primitive to write directly and
simultaneously to the states of neighboring nodes.

7 CONCLUDING REMARKS

We presented TRANSACT, a transactional, optimistic
concurrency control framework for WSANs. TRANSACT

provides ease of programming and reasoning in WSANs
without curbing the concurrency of execution, as it
enables reasoning about system execution as a single
thread of control while permitting the deployment of
actual execution over multiple threads distributed on
several nodes. TRANSACT offers a simple and clean
abstraction for writing robust singlehop coordination
and control programs for WSANs, which can be used as
building blocks for constructing multihop coordination
and control protocols. We believe that this paradigm
facilitates achieving consistency and coordination and

may enable development of more efficient control and
coordination programs than possible using traditional
models.

In future work, we plan to employ TRANSACT for im-
plementing a multiple-pursuer/multiple-evader track-
ing application over a 200 node WSN, using sev-
eral iRobot Roomba-Create robots interfaced with the
motes [38] as pursuers and evaders. Using TRANSACT,
we will implement the consistency critical components
of the in-network tracking service, such as evader asso-
ciation and handoff, updating of the distributed tracking
directory/structure, and maintenance and recovery of
the tracking structure in the face of node failures and
displacements. In addition, the pursuer robots will uti-
lize TRANSACT to implement collaborative stalking and
cornering of an evader, as well as group membership
and intruder assignment among the pursuers.

We also plan to integrate verification support to
TRANSACT in order to enable the application developer
to check safety and progress properties about her pro-
gram. Since TRANSACT already provides conflict serializ-
ability, the burden on the verifier is significantly reduced.
Hence, for verification purposes it is enough to consider
a single-threaded coarse-grain execution of a system rather
than investigating all possible fine-grain executions due
to concurrent threads. Another advantage TRANSACT

provides is the simplistic format of the methods, which
facilitates translation between TRANSACT methods and
existing verification toolkits, such as model checkers [39],
[40].
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