
Transaction chains: achieving serializability with low latency
in geo-distributed storage systems

Yang Zhang∗, Russell Power∗, Siyuan Zhou∗, Yair Sovran∗, Marcos K. Aguilera‡, Jinyang Li∗
∗New York University ‡Microsoft Research Silicon Valley

Abstract
Currently, users of geo-distributed storage systems face

a hard choice between having serializable transactions

with high latency, or limited or no transactions with low

latency. We show that it is possible to obtain both serial-

izable transactions and low latency, under two conditions.

First, transactions are known ahead of time, permitting

an a priori static analysis of conflicts. Second, transac-

tions are structured as transaction chains consisting of a

sequence of hops, each hop modifying data at one server.

To demonstrate this idea, we built Lynx, a geo-distributed

storage system that offers transaction chains, secondary

indexes, materialized join views, and geo-replication.

Lynx uses static analysis to determine if each hop can

execute separately while preserving serializability—if

so, a client needs wait only for the first hop to complete,

which occurs quickly. To evaluate Lynx, we built three

applications: an auction service, a Twitter-like microblog-

ging site and a social networking site. These applications

successfully use chains to achieve low latency operation

and good throughput.

1 Introduction
Many Web applications rely on geo-distributed stor-

age systems, such as Cassandra [2], Megastore [10] and

Spanner [22]. These systems hold the promise of both

high availability (by replicating data across datacenters)

and low latency (by placing data close to clients). A

useful feature of storage systems is serializable transac-

tions, which group many read/write operations to ensure

consistency despite failures and concurrency. Unfortu-

nately, existing mechanisms to provide transactions [12]

are expensive for a geo-distributed setting, incurring inter-

datacenter delays of up to hundreds of milliseconds.

Permission to make copies of part or all of this work for personal or

classroom use is granted provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components

of this work must be honored. For other uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).

SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.

ACM 978-1-4503-2388-8/13/11.

http://dx.doi.org/10.1145/2517349.2522729

Studies done at Google and Amazon show that Web

users are sensitive to latency [46]: even a 100ms increase

in latency causes measurable revenue losses. It is there-

fore important to reduce the latency of transactions as

much as possible. A common way to achieve low-latency

is to drop serializability [28] and offer relaxed consis-

tency (e.g. causal+ [39, 40], PSI [50], Red/Blue [38],

HAT [9]). Many systems with weakened consistency also

have other limitations: some systems require all data to be

replicated at all datacenters [38–40], while others [38,50]

lack a scalable design within a datacenter.

It turns out that giving up serializability for low-latency

is unnecessary. This claim is predicated on two obser-

vations. First, typical Web applications run a predefined

set of transactions, so it is possible to perform a global

static analysis of its transactions before execution, to

find opportunities to execute them quickly without vi-

olating serializability. Second, one can decompose a

general (geo-distributed) transaction into a sequence of

hops, each modifying data in only one server. With the

aid of static analysis, one can safely run these hops as

separate transactions while preserving serializability, and

return quickly to clients after the first hop (often in the

local datacenter).

Using these ideas we built Lynx, a geo-distributed stor-

age system that provides serializability with low latency.

To scale, Lynx partitions tables into many shards, each

possibly replicated in a subset of datacenters. Lynx pro-

vides a new primitive called transaction chain or simply

chain. A chain is a sequence of hops, each accessing data

on one server, such that all hops execute exactly once
or none of them do, similar to the notion of a saga [30].

Applications submit transactions to Lynx as chains; Lynx

also uses chains internally to update secondary indexes,

materialized joins, and geo-distributed replicas.

Prior to application execution, Lynx performs a global

static analysis of its transaction chains. The analysis de-

termines if it is possible to execute each chain piecewise—

that is, as a series of local transactions, one per hop—

while preserving serializability of the entire chain. The

analysis uses the theory of transaction chopping [48] to

construct a graph based on the operations within the trans-

276



actions. Lynx has two ways to enhance the opportunity

for piecewise execution. First, Lynx lets programmers

provide annotations about the commutativity of pairs of

hops that would otherwise be considered to conflict. Sec-

ond, when chains are executed piecewise, Lynx ensures

origin ordering: if chains T1 and T2 start at the same

server, and T1 starts before T2, then T1 executes before T2

at every server where they both execute. This property

eliminates many conflicts in the internal chains that Lynx

uses for updating secondary indexes and join tables.

Lynx has some limitations. First, it does not reduce

the total execution time of a chain; rather, Lynx can re-

turn control to the application after the chain’s first hop.

The first hop is often fast: it commonly executes in the

local datacenter and writes some internal metadata to a

nearby datacenter (for disaster tolerance), which adds

only milliseconds of delay. This low first-hop latency

does not benefit all applications, but we believe that it

helps many Web applications where users interact—for

instance, by sending friendship requests, posting mes-

sages on walls, etc. These operations are well served by a

chain whose first hop modifies the user’s own data, while

later hops modify other users’ data in the background.

The second limitation is that Lynx cannot execute all

chains piecewise to attain low first-hop latency: the static

analysis may force some chains to execute as distributed

transactions. The third limitation is that Lynx does not

guarantee external consistency or order-preserving seri-

alizability [32, 54], but to compensate Lynx provides the

guarantee of read-my-writes within a session [52].

Using Lynx, we built three Web applications: an auc-

tion service ported from the RUBiS benchmark [1, 7]; a

Twitter-like microblogging service; and a Facebook-like

social networking site. These applications were easy to

build using Lynx’s API, and they benefit from piecewise

chains. Experiments running on three EC2 availability

regions show that these applications achieve low latency

with good throughput, and Lynx scales well with the

number of servers.

2 Overview
Setting. Lynx is a geo-distributed storage system for

large Web applications, such as social networks, Web-

based email, or online auctions. Lynx scales by partition-

ing data into many shards spread across machines. Each

shard can be geo-replicated at many datacenters, based

on requirements of locality, durability, and availability.

Unlike other systems [38–40], Lynx does not require that

all datacenters replicate all data, so Lynx can have many

datacenters with low replication cost.

Data model and usage. Application developers define a

set of schematized relational tables [22] sharded based

on their primary key. Lynx provides general transactions

in the form of chains, and all operations are performed

���������������	�		
�����������������������������

�������	�����
���
���������

��������������������������������������������

�����������	
������	�����������������������
������������������������������������������������������
�

�	
���	�����
���
� ������

���������������������������������������

�������������!�����������������

�����������������������������
�

" #�$���� ��� �������	
�
" %�����������	����	
�
" &	������������	����	
����'� (	��)���$�*�+*��

�*����'���	,�)��+��� ��� 

Figure 1: Example schema for a simple auction service and
a chain for placing a bid.

using chains. API details are given in Section 5.1.

We illustrate how applications can use Lynx with an

example from RuBIS [1], a simple online auction service

modeled after eBay. RuBIS stores data in many tables;

two are shown in Figure 1. The Items table stores each

item on sale with its item id, current highest bid, and user

who placed that bid. The Bids table stores item ids that

received a bid, the bid amounts, and the bidders.

The RuBIS developers denormalized the schema to

duplicate the highest bid in the Items table, to improve the

performance of a common operation: display the current

highest bid price of an item. When a user places a new

bid, RuBIS must insert the bid into Bids and update the

corresponding high price in Items in the same transaction

to ensure consistency. With Lynx, programmers write

such a transaction as a chain (Figure 1, bottom).

Lynx supports derived tables—tables whose contents

are automatically derived from base tables—for speeding

up queries or safeguarding data. There are three types

of derived tables: secondary indexes, materialized join

views, and geo-replicas. For example, RuBIS has a sec-

ondary index on the item id of Bids, to quickly find the

bidding history of an item. Derived tables are themselves

sharded according to their key (secondary index key, join

key, or replicated primary key) and spread across ma-

chines. When base tables change, Lynx automatically

issues sub-chains to update the derived tables. These

sub-chains are called system chains, while user chains
are written by application developers.

Before application deployment, Lynx performs a static

analysis of all application chains to determine if Lynx

can execute each chain piecewise—one hop at a time—

while ensuring the entire chain and its sub-chains are

serializable as a single transaction.

Features. In summary, Lynx has the following features:

• Serializability. Given an application and its chains,

Lynx ensures that concurrent execution of those chains

preserve serializability.

• Low latency. For chains that can be executed piece-

wise, applications can achieve low latency by having

277



Lynx return control after the first hop, which typically

executes in the local datacenter and logs to a nearby

datacenter for disaster tolerance. To the best of our

knowledge, no prior geo-distributed storage system

provides both serializability and low latency.

• Derived tables. Automatically updated secondary in-

dexes, materialized join tables, and geo-replicas speed

up common application queries.

• Scalablity. Lynx scales with the number of machines

in a datacenter and with the number of datacenters.

Transaction chains are the fundamental mechanism

underlying Lynx; we develop them fully in the next two

sections. Section 3 describes the properties of chains.

Section 4 explains how to ensure serializability of chains.

3 Transaction chains
A transaction chain accesses data that is distributed

over many servers. A chain encodes a transaction T
as a sequence of hops T =[p1 . . . pk] with each hop pi
executing deterministically at one server, where servers

can be at different datacenters and may repeat. A hop

may have input parameters that depend on the output of

earlier hops in the chain.

It is desirable to execute a chain piecewise, which

means that hops are executed one after the other as sep-

arate transactions. Such execution is efficient, because

each hop is contained within a single server, so it can be

executed as a local transaction. Chains can also improve

perceived application latency, as an application can just

wait for a chain’s first hop to complete.

Guarantees. Chains have the following properties:

• Per-hop isolation. Each hop is serializable with respect

to other hops in all chains. This is achieved efficiently

by executing a hop as a local transaction.

• Inner ordering. Hop pi+1 never executes before hop pi.

• All-or-nothing atomicity.1 If the first hop of a chain

commits, then the other hops eventually commit as

well. (They may abort due to concurrency control,

but in that case the system retries until they commit.)

Moreover, if the first hop aborts then no hop commits.

Thus, the first hop determines the outcome of the chain.

• Origin ordering. If two chains T =[p1...] and T ′=[p′1...]
start on the same server with p1 executing before p′1,

then pi executes before p′j for every pi and p′j that

execute on the same server.

When executed piecewise, chains might interleave

their execution. Say, if a chain has hops p1, p2 and an-

other chain has hops p′1, p′2, the system may execute the

hops in the order p1, p′1, p2, p′2. Lynx determines whether

such interleavings are serializable (Section 4) and, if not,

avoids them by executing the chain as a distributed trans-

action. Thus, Lynx ensures the following:

1called simply atomicity in the database community

���� ����

���� ����

��

���� ����

���� ����

��

��	�
����������� ��	������������

������
������

Figure 2: SC-graph analysis for transaction chopping. T1

is chopped into T1,1,T1,2 and T2 into T2,1,T2,2. There is an
SC-cycle in graph (a) but not (b).

• Serializability. Chains are serializable as transactions.

Restrictions. A chain has two restrictions. First,

application-initiated aborts can occur only at the first

hop of a chain (this is needed to implement all-or-nothing

atomicity). Second, chains are static: each hop executes

at a server that is known when the chain starts (needed

to implement origin ordering). Some transactions can-

not be structured as chains. These can be executed as a

distributed transaction in Lynx.

Linked chains. Applications can link together multiple

chains so that they execute consecutively, like a chain of

chains, where each chain individually satisfies the proper-

ties above. The set of linked chains may not be serialized

as one transaction, but Lynx ensures the following atom-

icity property: if chains are linked and the first chain

starts then the other chains eventually start. Like hops in

a chain, linked chains can receive inputs from previous

chains, and all linked chains must be submitted together.

4 Providing serializability
Web applications typically have an a priori known set

of transactions, permitting a global static analysis of the

application to determine what chains can be executed

piecewise while preserving serializability. If the analy-

sis determines that executing a chain piecewise would

violate serializability, Lynx executes the chain as a dis-

tributed ACID transaction [12, 22], incurring higher la-

tency. Alternatively, the developer can remove conflicts

using annotations or linked chains, as we describe below.

In what follows, we explain how the analysis works

(§4.1), how to improve the chances for piecewise execu-

tion (§4.2), how to cope with the lack of external consis-

tency (§4.3), and what limitations chains have (§4.4).

4.1 Static analysis of chains
The analysis uses knowledge of the table schemas and

the application chains, specifically the table accessed

by each hop of each chain and the type of access (read

or write). The analysis determines what chains can be

executed piecewise while preserving serializability.

The analysis is based on the theory of transaction chop-

ping, originally developed for breaking up large trans-

278



actions into smaller pieces in centralized database sys-

tems [48]. The chopping algorithm takes a set of chopped

transactions and constructs a graph, which we call SC-
graph, where vertices represent transaction pieces and

edges represent relationships between pieces. There are

two types of edges: S-edges connect vertices of the same

unchopped transaction, C-edges connect vertices of dif-

ferent transactions if they access the same item and an ac-

cess is a write. An SC-cycle is a simple cycle containing

a C-edge and an S-edge (Figure 2). It is shown that serial-

izability is assured if the SC-graph has no SC-cycles [48].

Intuitively, an SC-cycle indicates a non-serializable inter-

leaving. For example, Figure 2(a) allows the problematic

interleaving T1,1, T2,1, T2,2, T3, T1,2.2

Naive construction of the SC-graph. To apply the the-

ory of transaction chopping in our context, a chain cor-

responds to a chopped transaction and its hops are the

pieces. Thus, in the SC-graph, S-edges connect the hops

of a chain, while C-edges mark potential conflicts be-

tween hops of different chains. Static analysis cannot

determine exactly what data items a hop accesses (which

rows); therefore, we conservatively add a C-edge be-

tween two hops of different chains if the hops access the

same table and an access is a write. Since instances of

the same chain may be in conflict (if they update data),

the SC-graph includes two instances of every chain that

updates data;3 for read-only chains, one instance suffices.

We must also consider system sub-chains caused by user

chains (recall that system chains are automatically cre-

ated to update derived tables when base tables change);

we want these sub-chains to be serialized with the orig-

inating chain. A simple idea is to combine a user chain

and its sub-chains in the SC-graph: when a user chain hop

modifies a base table, the hop is expanded into the sub-

chains that update derived tables. Later, in Section 4.2,

we improve on this simple idea.

As an example, consider the auction application from

Section 2 (Figure 1), with the three chains: Tbid for plac-

ing a bid, Titem for adding an item to be auctioned, and

Tread for browsing an item. Tbid has two hops, while the

others have one hop. For simplicity, let us ignore the

system chains. Figure 3 shows the resulting SC-graph.

There is an SC-cycle involving two instances of Tbid , so

this chain cannot safely execute piecewise.

4.2 Improving chances for piecewise execution
When we naively apply the theory of transaction chop-

ping, we find little opportunity for piecewise execution,

because SC-cycles are everywhere! Below, we consider

2This interleaving is bad because it creates a cycle in the serial-
ization graph [54], where T1 precedes T2 (as T1,1 precedes T2,1 in the

interleaving), T2 precedes T3 (as T2,2 precedes T3), and T3 precedes T1

(as T3 precedes T1,2).
3Two instances suffice, since an SC-cycle with more than two in-

stances implies an SC-cycle with only two instances.

����������
	�
�

��
���
��������

���
������������

����������
	�
�

��
���
��������

��
������
�����

����������
�����

����������
�����

�

������������

���


���
��
���
��

���
������������ �

������������

Figure 3: SC-graph for a simple auction service (Figure 1)
with three chains: Tbid , Tadd , Tread . There are two instances
of Tbid and Tadd to account for self-conflict. The graph has
an SC-cycle involving the two instances of Tbid .

����������

������	�
��� ����������

���������� ���	����� ���	�����

���������� ���	����� ���	�����

������
������

����
�	����

����
�	����

������	�
���

Figure 4: Lynx automatically generates sub-chains to up-
date derived tables X ′ and X ′′ of base table X . The sub-
chains cause an SC-cycle.

the problems and propose ways to avoid these cycles.

User chains. User chains can have spurious C-edges

because the notion of conflict is coarse-grained, being

based on table accesses. This problem is exacerbated by

self-conflicts between instances of the same chain. In

Figure 3, Tbid modifies two tables, creating an SC-cycle

on its own instances. Closer inspection reveals that the

hop “insert to Bids” inserts a row with a unique id; this

hop commutes with itself, so it does not self-conflict.

Developers can use annotations to indicate that the hop

self-commutes, which removes the C-edge between its

instances, breaking the cycle. Other systems also exploit

commutativity [38, 47, 50], but in different ways.

User chains may have unnecessary S-edges: a user

chain may have hops that need not be serialized together,

but were placed in the same chain because they require

all-or-nothing atomicity. In that case, programmers can

separate these hops into different chains and execute them

as linked chains (Section 3), which also provide all-or-

nothing atomicity but avoid S-edges.

System chains. Many self-conflicts arise among the sys-

tem sub-chains created by Lynx to update derived tables.

Figure 4 shows a one-hop user chain that modifies a base

279



table causing a system chain. Because a chain and its

resulting system chains should be serialized together as

one transaction, we consider the combined chain in the

SC-graph. This chain unfortunately causes an SC-cycle

on its two instances, because of self-conflicting hops with

updates that do not always commute (Figure 4).

We eliminate these cycles using the origin ordering
guarantee of chains. Specifically, sub-chains updating

identical rows in derived tables either commute or start

by updating the same base table row at the same server.

In the latter case, origin ordering ensures that these sub-

chains are consistently ordered and thus need not be

connected in the SC-graph. Note that origin ordering

cannot eliminate C-edges in user chains, because the

static analysis cannot determine if two user chains start

at the same server: that depends on what table shard they

access, which may be determined only at run-time.

Complete construction of the SC-graph. With the

above ideas, we modify the naive construction of the

SC-graph (Section 4.1) as follows. First, we omit sys-

tem chains and only consider user chains when adding

C-edges. A user chain may read from derived tables but

can never directly modify them. Thus, two hops from dif-

ferent (instances of) user chains have a C-edge between

them iff (1) both hops access the same base table and

an access is a write, or (2) one hop reads from a derived

table T and the other hop modifies a base table from

which T derives. Additionally, if two hops are annotated

as commutative, we do not add a C-edge between them.

Finally, chains that are linked are included as separate

chains in the SC-graph; the fact they are linked does not

affect the SC-graph.

4.3 A word on preserving order
The techniques we described do not ensure external

consistency or order-preserving serializability [32, 54].

Order-preserving serializability requires that if a transac-

tion commits before another one starts, the first appears

before the latter in the equivalent serial order. The anal-

ogous property for chains does not hold: a client may

submit chain T2 after chain T1 returns (after committing

T1’s first hop), but T2 may be serialized before T1.

There are two ways to address this issue, if necessary.

First, there is a barrier operation that blocks a client

until its outstanding chains complete. This is analogous

to memory barriers in multiprocessor systems, which

allow programmers to enforce ordering when necessary.

For example, the operation to change a user’s privacy

settings should be followed by a barrier. Doing so is akin

to enforcing application-defined explicit causality rather

than every possible causality [8]. Second, we can provide

the simple guarantee of read-my-writes [52], which in

our setting ensures that a client sees the entire effects of

her previous chains (even if they return early), a useful

property in practice. We explain how Lynx ensures this

property in Section 6.2.

4.4 Restrictions and typical usage

Transaction chains can reduce user-perceived latency

but there are some restrictions on its use. First, program-

mers must explicitly divide a transaction into a chain such

that (1) only its first hop contains a user-initiated abort

and (2) the chain is static in that the shards it accesses

at each hop are known before the chain starts executing.

This is akin to requiring transactions to have known read

and write sets, so one might apply the ideas of [53] to sys-

tematically transform a general transaction into a static

one. Second, to achieve low latency, programmers must

design the chains so that, most of the time, the application

can proceed after the chains complete their first hop (or

first few hops). As discussed earlier, returning after the

first hop may result in the loss of external consistency

and, if misused, can generate user-perceived anomalies.

Having discussed the restrictions, we describe our ex-

perience in using transaction chains for Web applications.

We focus on Web applications where users interact, which

require scalability and low latency. In such applications,

we recommend co-locating data owned by the same user

in the same datacenter (possibly with geo-replication).

To process a typical user request, one uses a transaction

chain which first modifies a user’s own data and then

updates other users’ data or global data. We give two

examples.

First, in a social networking application, suppose that

user X posts a message on the wall of a friend Y. To

execute this request, a transaction chain first modifies

X’s data by inserting X’s message in the message table,

and then updates Y’s data by inserting the message id

into Y’s wall in the wall table. As a second example, in

Figure 1 the chain for placing a bid first inserts the user’s

bid into the bid table and then changes global information

by updating the high price in the items table.

Since an application usually processes a request at the

datacenter that stores the requesting user’s data, a chain’s

first hop can complete quickly. In both examples, the

application returns control to the user after the first hop.

The lack of external consistency is partly compensated

by the optional read-my-writes guarantee of chains: in

the first example, with read-my-writes user X is guar-

anteed to see her own message when she browses Y’s

wall. However, unlike the external consistency guarantee,

if X tells Y about her message using external channels

(e.g., the phone) and Y checks his wall, Y may not see

X’s message. This is an anomaly that applications must

tolerate when taking advantage of transaction chain’s low

latency.

280



CREATE ENTITY_GROUP UserEnt {key int};

CREATE TABLE Bids IN_GROUP UserEnt {
bidder ALIAS UserEnt.key,
bid_id int AUTOINCREMENT,
seller int,
item_id int,
price float

} PRIMARY_KEY(bidder, bid_id);

Figure 5: Syntax for defining the Bids base table, whose
rows are co-located with those from other tables in the
same (UserEnt) entity group.

//a materialized view joining Bids and Users
//on Bids.bidder = Users.uid
CREATE DTABLE Bids-Users IN_GROUP UserEnt

FROM Bids, Users {
bidder ALIAS UserEnt.key <-- Bids.bidder,
bid_id <-- Bids.bid_id,
bidder_name <-- Users.name,
seller <-- Bids.seller,
} JOIN(Bids.bidder = Users.uid);

// secondary index for Bids-Users indexed by seller
CREATE DTABLE Bids-Users_seller IN_GROUP UserEnt

FROM Bids-Users {
seller ALIAS UserEnt.key <-- Bids-Users.seller,
bidder <-- Bids-Users.bidder,
bid_id <-- Bids-Users.bid_id
bidder_name <-- Bids-Users.bidder_name,
} INDEX_KEY(seller);

Figure 6: Syntax for defining derived tables. The join table
Bids-Users unites Bids and Users tables with the join key
Bids.bidder. The secondary index table Bids-Users seller
further indexes the join table on the seller column.

5 Lynx Architecture
We give an overview of Lynx’s system design. We first

explain its interface to applications (§5.1), then describe

its system architecture (§5.2).

5.1 Programming interface
Lynx’s API consists of a simple language for describ-

ing table schemas, and a client-side library for writing

chains.

Creating tables. Programmers use a SQL-like syntax to

define table schemas. Tables are partitioned by rows ac-

cording to their primary keys. Programmers can provide

hints for co-locating partitions from different tables using

entity groups [10, 22].

Figure 5 shows the Bids table schema for the auction

example of Figure 1. The CREATE TABLE. . .IN GROUP
syntax creates a table co-located with the given entity

group. The table inherits the key of the entity group as a

column, which can be renamed using ALIAS. The entity

key must be part of the table’s primary key. Here, each

row of Bids is co-located with the user placing the bid.

Figure 6 shows how to define derived tables for sec-

ondary indexes and materialized join views. Bids-Users
is a join table that unites tables Bids and Users on the

1 //chain definition
2 place_bid = new Lynx.tx_chain;
3 place_bid.add_hop('insert_bid',
4 function(ctx) {
5 var row = @Bids.insert(ctx.args.bidder,
6 ctx.args.item_id, ...);
7 ctx.bid_id = row.bid_id;
8 }
9 );

10 place_bid.add_hop('update_price',
11 function(ctx) {
12 var seller = ctx.args.seller;
13 var id = ctx.args.item_id;
14 var curr_price = @Items.lookup(seller, id).price;
15 if (price > curr_price) {
16 @Items.update(seller, id).price = price;
17 }
18 );
19 //commutativity annotation
20 Lynx.commutes(place_bid.hops['insert_bid'], @self);
21 Lynx.commutes(place_bid.hops['update_price'], @self);
22
23 //chain execution
24 place_bid.execute({
25 args : {
26 bidder : 9999,
27 seller : 8888,
28 item_id : 123,
29 price : 1.09
30 },
31 //chain is in Session associated with user id 9999
32 session : UserSession[9999],
33 return_after_first : true
34 });

Figure 7: JavaScript API for writing a user chain. The
example shows the chain for placing a bid in the auction
service.

join key Bids.bidder. Bids-Users seller is a secondary

index table for the join table on the seller column. This

table allows one to find the names of bidders who placed

bids on items sold by a given user. The <-- syntax serves

to copy a column from the base table. Currently, Lynx

supports only joins based on equality of indexed keys.

Creating and using chains. All operations are per-

formed using chains. Figure 7 shows the chain for placing

a bid using Lynx’s JavaScript API. The chain has two

hops, one to insert the bid (line 3) and another to update

the current highest bid price of the item (line 10). Each

hop has access to the chain’s context (ctx) which contains

input arguments of the chain. Lynx exposes relational

tables as auto-generated table objects whose names start

with ‘@’. This syntax simplifies the static analysis tool

that generates the SC-graph. Since ‘@’ is not allowed in

JavaScript identifiers, it is removed before execution.

Programmers can read or write base tables (e.g., line

5 and 14); derived tables are updated only by the sys-

tem. Programmers can specify commutative relationships

(lines 20–21 specify hops that self commute). When ex-

ecuting a chain, programmers can optionally indicate a

session for the chain (line 31). Lynx ensures that chains

in a session see the writes of chains in the same session

that have already returned (read-my-writes). We explain

281



how Lynx provides this guarantee in Section 6.2.

5.2 System Overview
A Lynx system consists of a number of geo-distributed

datacenters, each of which contains many machines. A

machine runs many logical Lynx servers in the same pro-

cess. This improves concurrency as having more (logical)

servers imposes fewer constraints under origin ordering.

The rows of a table are partitioned into shards based

on row keys; that is, a shard is a set of rows of a table.

The rows of a shard are replicated across the same set of

servers, as we now explain.

Geo-replication. Data shards can have geo-replicas

across data centers. Geo-replicas are configured by a

configuration service that assigns each shard to a replica
group, which consists of a set of Lynx servers spread

across datacenters. Geo-replication across data centers is

implemented by Lynx using system chains as explained in

Section 6. To avoid having conflicting updates at different

replicas, Lynx uses home geo-replicas, similar to Wal-

ter [50]: each replica group has a designated server called

the home geo-replica or home server, and the system

forwards all updates on a shard to its home geo-replica.

The home geo-replica can be chosen intelligently to be

the server where updates are most likely to occur. For

example, a Web application may have a replica group for

each user, where the home geo-replica is in a datacenter

close to the user.

Local replication and cluster storage system. Data

shards may also be replicated within a datacenter to pro-

vide fast fail-over. This replication is provided by a clus-
ter storage system that provides synchronous updates and

transparent failover; such a service is implemented using

well-known techniques (e.g., [14, 31]).

Lynx also uses the cluster storage system to syn-

chronously replicate internal metadata across buddy data-
centers. Two datacenters are buddies if they are near

enough to communicate with low latency, yet far enough

so that one datacenter is safe from a disaster that affects

the other. For example, this criterion may be met by data-

centers that are a few hundred miles apart with roundtrip

latencies of several ms, which is comparable to disk laten-

cies. Lynx relies on buddies only to geo-replicate some

internal metadata; application data can be geo-replicated

using chains across any datacenters chosen by the devel-

oper, not just buddies.

Configuration service. Lynx relies on a separate config-

uration service to maintain the mapping from each shard

to its replica group. Our design of this service follows

other systems [18, 50, 51]. Nodes consult the service to

determine the server responsible for a given shard. This

information is subsequently cached. Each server obtains

a lease for its responsible shards and rejects requests des-

����������	
�
��	��������


������

��	
�	

��

�� ��������

�
��	
������	���� ����	��������

�
��	


������


�����������

Figure 8: Lynx client library and server processes. The
client dispatches chains using RPCs. The server process
receives chains, queues them, and executes them against
a local database. The server process also implements geo-
replication, secondary indexes, and materialized join views
using system chains.

tined for other shards. The configuration service itself is

implemented via a Paxos replicated state machine.

Chain analysis. Prior to application execution, Lynx stat-

ically analyzes chains based on application code and table

schemas (§4.1). The analysis outputs SC-cycles, if any.

Programmers can use this information to add annotations

or use linked chains to break the cycles (§4.2).

6 Chain execution in Lynx
We now describe how chains work at runtime. We

give an overview of the implementation (§6.1), and then

explain the details on how Lynx ensures the various chain

properties (§6.2) and how it uses system chains (§6.3).

6.1 Overview
Chains are implemented by the Lynx client library and

server process (Figure 8). The client dispatches a chain

to its first hop, at a server storing the data accessed by

the hop. If the first hop writes data, the client chooses

the server in the shard’s home datacenter; otherwise, it

chooses a server in a nearby datacenter that has a replica.

The first server of a chain coordinates its execution

in a coordinator thread. The coordinator first stores in-

formation about the chain in its history table kept in the

cluster storage system. The history table keeps the chain

id, the chain parameters from the client, and the origin

ordering sequencers (§6.2). The coordinator may execute

the chain piecewise or as a distributed transaction.

To execute the chain piecewise, the coordinator se-

rially executes each hop of the chain, by invoking the

appropriate server (the first server is local) and waiting

for a completion acknowledgement. After the first server

executes its hop, the coordinator returns an indication

of first-hop completion to the client library. Then, if the

server executed a hop that modified data, it spawns in

parallel sub-chains to update derived tables, if any. These

sub-chains are coordinated by the server and execute like

any other chain—in particular, Lynx ensures origin order-

ing based on where the sub-chains start. The server waits

282



Property Technique
per-hop isolation local database transactions

all-or-nothing atomicity chain replay and history table

inner ordering serial execution

origin ordering pairwise sequencers

read-my-writes origin ordering and read sub-chains

linked chain atomicity super-coordinator

Figure 9: Techniques used to ensure the chain properties
using piecewise execution.

for the sub-chains to complete before sending an ack to

the coordinator of the higher-level chain.

If a chain cannot execute piecewise, the coordinator

executes it as a distributed transaction using standard

two-phase locking and two-phase commit [12, 22].

6.2 Providing chain properties
We now explain how Lynx provides the properties of

chains (§3) when chains execute piecewise. Figure 9

gives a summary. These techniques are efficient as they

require little or no coordination across servers.

Per-hop isolation. Lynx stores each shard at one server.

Because each hop of a chain accesses one shard, we can

ensure per-hop isolation by simply executing it using

a local serializable database transaction. Our current

implementation requires shards to fit on a single machine,

but it is possible to generalize this to split a shard among

several machines and substitute local transactions with

distributed transactions within a single datacenter.

All-or-nothing atomicity. If the first hop of chain com-

mits, subsequent hops are executed exactly once despite

failures. Lynx ensures this property by replaying chains

that stop due to failures, using history tables to prevent

duplicate execution, as we now explain.

Recall that a coordinator orchestrates the execution of

a chain. We must address three failure types that break

chain execution: (1) crashes of a Lynx server, (2) crashes

of the coordinator, and (3) failures of an entire datacenter.

(1) A Lynx server crashes while executing a hop. In

this case, the system recovers the server as described in

the next paragraph, and the coordinator resubmits the hop

for execution. To avoid duplicate execution, every Lynx

server keeps a history table, similar to [44]. This table

is kept in the same storage system as the server’s tables;

it records, for every hop that the server completes, its

chain id, hop number, and any output produced by the

hop to be passed forward in the chain. To be consistent,

the history table is updated using the same transaction
that updates the server tables during the hop execution.
Before executing a hop, each server checks its history

table to see whether the hop has already executed and,

if so, skips execution. This checking is also done in the

same transaction that updates the history table.

The server then notifies the coordinator that the hop is

done, attaching the hop’s output. The server deletes the

hop entry from its history table when it gets an acknowl-

edgement from the coordinator. The coordinator updates

the current progress of the chain in its history table; it

deletes the chain’s entry after the entire chain completes.

To recover a Lynx server, the system can optionally

store the server’s data in a cluster storage system within

the datacenter. In that case, recovery is simple: the system

starts a new server and reconfigures the replica group to

replace the old server with the new one. The new Lynx

server operates on the same data as the old server using

the cluster storage system.

If the Lynx server does not use the cluster storage

system, or the cluster storage system is crashed, then

recovery relies on geo-replication and reconstruction. Be-

fore using a geo-replica, the system must ensure it is

up-to-date, by restarting and waiting for the completion

of any replication sub-chains that might be coordinated

by the failed Lynx server; how this is done is explained

in (2) below. Derived tables might not be geo-replicated;

these tables are reconstructed using the base tables. Then,

the system reconfigures the replica groups to replace the

failed server with a server holding the geo-replicas or

reconstructed tables.

(2) The coordinator crashes while executing a chain.
In this case, the system restarts the coordinator at another

host. The new coordinator determines the outstanding

chains using the history table of the previous coordinator,

which is kept in the cluster storage system. To handle

datacenter failures (see below), the coordinator’s cluster

storage system is geo-replicated at buddy datacenters

(§5.2). (Note that the cluster storage of the coordinator

is separate from the cluster storage of a Lynx server—

only the former uses buddies; the latter is contained in a

single datacenter.) For each outstanding chain, the new

coordinator replays the chain from its first hop, executing

one hop at a time using the origin ordering sequencers

stored in the history table. Servers that already executed

the chain avoid duplicate execution as explained above.

(3) An entire datacenter is destroyed or becomes un-
available beyond a time threshold. In this case, the sys-

tem first recovers the Lynx servers using geo-replicas

and reconstruction, as described in (1). Then, the system

recovers from crashed coordinators, as described in (2).

Inner ordering. This property is provided by executing

hops in the order in which they appear in the chain.

Origin ordering. A naive way to provide this property

would be for coordinators to execute one chain entirely

before starting the next chain. This scheme has low con-

currency and poor performance.

Instead, we use pairwise sequencers: each server i
keeps n counters ctri→1...ctri→n, where n is the num-

283



ber of servers in the system. Server i also keep tracks

of the latest sequence number that it has processed

from each other server, done1→i...donen→i. Suppose a

chain with k hops is to execute on servers s1,s2, ...,sk.

The first server, s1, increments the respective counters

ctrs1→s1
,ctrs1→s2

, ...,ctrs1→sk for each hop of the chain

and attaches them to the chain as sequence numbers

seqs1→s1
,seqs1→s2

, ...,seqs1→sk
. Each of the servers si

waits until its counter dones1→si reaches seqs1→si
−1 be-

fore executing its corresponding hop in the chain.

This mechanism ensures origin ordering: suppose

chains C1 and C2 start at the same server i and both ex-

ecute later hops at server j. If C1 executes before C2

at server i, the sequence number seqi→ j of chain C2 is

greater than that of C1, causing C2 to execute after C1 at

server j. If a chain visits some server i multiple times, the

hops at i will be assigned consecutive sequence numbers

and thus will not be interleaved with other chains, thereby

preserving the origin ordering property.

The message overhead for enforcing origin ordering

is low: the number of sequence numbers attached to a

chain is proportional to its length. Origin order may

sometimes introduce latency overheads, but this is the

behavior we desire for consistency. Specifically, if two

chains start at the same server and follow different paths

before overlapping again at another server, the first chain

may delay the second chain.

Read-my-writes in sessions. This property ensures that

a chain in a session sees the writes of chains in the same

session that have already returned. To do so, the applica-

tion associates a session with a server, and Lynx forces

all session chains to start at that server by adding a no-op

first hop if necessary. A possible optimization in practice

is to pick a server where most session chains start any-

ways, to avoid adding the no-op hop. If a session chain

reads from a base table, then origin ordering ensures the

read-my-writes property. If a session chain reads from

a derived table, Lynx executes the read hop differently

from a regular chain: Lynx submits the read hop at the

base table, which then starts a sub-chain to read the de-

rived table. By doing so, the read of the derived table is

ordered consistently with the operations on the base table,

which in turn are correctly ordered by origin ordering. If

a derived table has two base tables (a join table), Lynx

submits the read at each base table in some arbitrary order

and keeps the result of the later read.

Atomicity of linked chains. To execute a series of linked

chains, the coordinator of the first chain serves as a super-

coordinator. The super-coordinator stores the linked

chains in its history table, for recovery, and then launches

the chains one at a time at their first hop. When the chain

completes, the super-coordinator marks completion in

the history table. If the super-coordinator fails, recovery

������������	
�������������
	
����

�����������
������������

���	

���������������
	
����

�������������
	
����

���������������
��������
������

���������������
��������

��������������

Figure 10: The chains for inserting a new row and updat-
ing an existing row’s secondary index. Base table T has a
secondary index table T Ksec.

��������������
��	
����������������	
�
��������������������������	

��	
����������������	
��������

������������
�������������	
���

�	
�������	
���
��	�������
��	
������

�����������	
���
��	�������
��	
��������

�����������	
������	
�
��������������������������	

��������������������	
������

��	
�����������������	
�
��������������������������	

��	
������������������	
��������

Figure 11: The chains for inserting a new row and updat-
ing an existing row’s join key value. Base tables LT and
RT have secondary index tables, LT Kjoin, RT Kjoin (corre-
sponding to the join key Kjoin) and a join table LT-RT.

is similar to that of a coordinator.

6.3 System chains
Recall that system chains are generated internally by

Lynx to update derived tables. There are three types of

system chains, one for each type of derived table.

Chains for geo-replication. When a hop of the chain

wishes to modify a geo-replicated base or derived table,

the hop is forwarded to the corresponding shard’s home

datacenter for execution. The responsible server at the

home datacenter generates a sub-chain to propagate the

modification to replicas at other datacenters. Because

of the origin ordering property of these sub-chains, all

replicas are updated in the same order.

Chains for secondary index tables. When a row

is inserted, deleted, or updated in a base table, the

server where the modification occurred spawns a sub-

chain to modify the index tables. (If an index ta-

ble is geo-replicated, the corresponding server at the

home datacenter generates additional sub-chains for geo-

replication.) The sub-chain has one or two hops for each
index table: if the indexed value does not change, one

hop suffices to update the index table; if the indexed value

changes, the old and new rows of the index table may

belong to different shards, in which case two hops are

needed, one to delete the old row, the other to insert the

new row. Figure 10’s top chain shows the case where

only one hop is needed.

Chains for join views. To update materialized join

views, we apply ideas from incremental join view up-

date algorithms [13], using chains to correctly update the

284



views. Figure 11 shows the sub-chains for updating the

derived table LT-RT, which joins two base tables LT and

RT on join key Kjoin. We assume that the join key Kjoin is

not the primary key of LT or RT (the case when the join

key is a primary key is simpler). Therefore, in order to

create the join view, programmers are required to add in-

dex tables (LT K join, RT K join) indexing the join key. For

updating a join view, there are two cases depending on

whether the base table modification changes the existing

value of the join key column. The top chain of Figure 11

illustrates the case when no existing value of the join key

column is changed with an insert operation to the base

table LT. In this case, the sub-chain updates both LT’s

secondary index table for the join key (LT K join) and the

join table LT-RT using a local read-write transaction. The

use of a local transaction is possible because the affected

rows of the index and join tables LT K join, RT K join and

LT-RT are co-located in the same shard. The bottom chain

of Figure 11 is generated when the existing value of the

join key column is changed. In this case, two additional

hops are required to maintain LT-RT, one to delete the

existing value, another to add the new value.

The join table may also have other index tables derived

from it. In this case, Lynx spawns parallel sub-chains

that start from the updated join table shard and update

those index tables.

The correctness of the join process is assured by two

features of the chains. First, with origin ordering, mod-

ifications on the same row of LT interleave correctly.

Second, with per-hop isolation, the local read-write trans-

action updating LT K join, RT K join, and LT-RT ensures

that LT-RT is always the join of the secondary indexes

LT K join and RT K join. This reduces the correctness of

updating the join table to the correctness of updating

secondary indexes, which is evident.

7 Implementation of Lynx
The Lynx server and client library consist of ≈5000

lines of C++ code, plus 3500 lines for a custom RPC

library. Programmers specify user chains using Lynx’s

JavaScript API; a Lynx utility reads the application table

schemas and generates JavaScript objects that program-

mers use to read and update each table. When executing

a user chain, the coordinator transfers the JavaScript code

of each hop to the appropriate server, which then caches

and executes the code using the V8 JavaScript engine.

The implementation stores tables in a custom storage

system rather than a local database system. The custom

system keeps tables in memory with transactional logging

to stable storage.

Our current prototype misses four pieces from the de-

sign. First, it lacks the configuration service, instead rely-

ing on a static configuration file to indicate what server

has what shards. Second, a Lynx server and coordinator

have their stable storage on a local disk, not a cluster stor-

age system. Third, our prototype does not yet implement

the recovery protocol (Section 6.2) for handling server or

datacenter failures. Fourth, there is no implementation

for executing a chain as a distributed transaction.

8 Applications
We implemented three applications using Lynx: a so-

cial network website (L-Social), a microblogging ser-

vice (L-Twitter), and an auction service (L-RUBiS). The

applications use secondary indexes and join views ex-

tensively, and all of their chains can execute piecewise.

This required modifying some chains slightly (while re-

taining the same behavior). In particular, a user chain

which reads a base table and its derived table creates an

SC-cycle. We addressed this by duplicating the needed

columns of the base table in the derived table, so a user

chain needs to only read the derived table.

Social networking. The L-Social application imple-

ments the basic operations of a website like Facebook

(e.g., befriending users, posting to walls). L-Social has 5

base tables: Graph, Status, Users, Wall, Activities. There

is one join table GraphActivities with a secondary index

to allow a user to read her friends’ activities quickly, with

one lookup to the secondary index.

To befriend users A and B, the application must cre-

ate two friendship edges and two new-friend activity

announcements, one for each user. A naive design uses a

chain with four user hops, two for inserting into Graph,

two for inserting into Activities. This chain creates an SC-

cycle with C-edges from each Graph insertion hop to the

one-hop read-activity chain that reads the secondary in-

dex of GraphActivities. To avoid this cycle, we break the

befriend chain into three linked chains: one chain inserts

the friendship edges, two chains each insert once into

Activities. The first chain still has an SC-cycle with the

unfriend chain and itself. We break this cycle by making

the insertion/deletion of friendship edges a commutative

operation: we use a counter column in the Graph table,

and we increment/decrement the counter to insert/delete

edges. This is similar to the counting sets in Walter [50].

When user A posts a status message, L-Social uses

a chain to insert the message into Status and add the

announcement “A has changed her status” to Activities.

Both hops commute with themselves. A similar chain is

used to post messages on walls. The join table GraphAc-
tivities allows a user to read the activities of his friends

in one hop.

A final static analysis indicates an SC-cycle: the 1-hop

read chain to show a user’s friends has an SC-cycle with

the 2-hop befriend (or unfriend) chain: the read hop has

two C-edges, to each hop of the befriend (or unfriend)

chain. We use application knowledge to determine that

this SC-cycle is spurious: since a user never befriends

285



himself, the read hop conflicts with at most one of the

hops of the befriend chain, so only one of the two C-edges

is a real conflict.

Microblogging. L-Twitter is a simple Twitter clone with

tables and schemas modeled after [36]. There are three

tables: Users, Tweets, Graph. Graph differs from L-

Social’s Graph because it captures an asymmetric fol-

lower relation.

A common Twitter operation is to show a user’s

timeline—the collection of tweets posted by users that

the user follows. Twitter’s original implementation on

a one-node MySQL server performs a join query be-

tween Graph and Tweets [36]. Twitter’s current dis-

tributed implementation no longer uses joins, but rather

manually maintains the timeline of each user in mem-

cached. L-Twitter follows the original implementation

by using a distributed join table GraphTweets (replicat-

ing only the tweet id not its text) based on the join key

Tweets.creator = Graph.followee with a secondary index

on Graph follower. By querying this index, L-Twitter

can display a user’s timeline by contacting only one

server. We chose this much simpler implementation to

demonstrate the materialized joins of Lynx.

There are two limitations in the current design of L-

Twitter. First, when user X starts to follow Y, the un-

derlying join chain inserts all of Y’s existing tweets into

X’s timeline (the secondary index of GraphTweets). It

would be better to insert only Y’s recent tweets. This

can be done adding a selection operation to the join view,

to filter out old tweets with a smaller timestamp than

the follow edge timestamp. Supporting such selection

operations in Lynx is future work. Second, when a user

with many followers tweets, there are large overheads

to update their followers’ timelines. Thus, L-Twitter’s

current push-based approach should be combined with

pull-based queries for users marked as popular [49].

Auction service. L-RUBiS is a port of the auction web-

site in the RUBiS benchmark [1, 7]. The original RUBiS

implementation is based on PHP using a local MySQL

database system. We ported the RUBiS schema to Lynx

and re-wrote its PHP functions in JavaScript. L-RUBiS

has 10 sharded tables with 13 secondary indexes in total,

where a table has at most 3 secondary indexes. We use

a join table to unite the User table, which maps uids to

usernames, and the Comments table, which records users’

comments. This table allows L-RUBiS to quickly find

usernames of users who commented on a seller.

There are two noteworthy user chains, one to process

bidding requests (discussed in §2), the other to handle

new user registration while ensuring unique usernames.

In our first design, a register-user chain checks if a cho-

sen username already exists in a secondary index of User
based on usernames; if not, the second hop inserts the

user into the User table. This chain has an SC-cycle

between two of its instances. We subsequently changed

L-RUBiS to use an additional table, Usernames, which

contains all the usernames that have ever been created.

The register-user chain first checks that the chosen user-

name is absent in Usernames (and if so inserts it there)

and in the second hop adds the user to Users. If the

chosen username is already taken, the second hop does

nothing. The chain still has an SC-cycle with itself, but

this cycle is spurious: if two register-user chains conflict

on the first hop (due to both having the same username),

then one of the chains sees that the username is already

taken in its first hop and does nothing in its second hop,

so there are no conflicts in the second hop.

9 Evaluation
We measure the performance of Lynx and its applica-

tions across geo-distributed datacenters. The highlights

are the following:

• Application operations have good throughput and low-

latency, despite geo-replication. The first hop of all

chains execute quickly, and so user-perceived latency

is only a few milliseconds.

• Lynx scales well. As we increase the number of servers

in each datacenter from 1 to 8, aggregate chain through-

put grows by a factor of more than 6.

9.1 Experimental setup
We perform experiments on Amazon EC2 using three

availability regions, East Coast, West Coast and Europe,

with the following roundtrip latencies between them:

West Coast Europe
East Coast 82ms 102ms
West Coast 153ms

Unless otherwise stated, in all experiments each re-

gion has 4 Lynx servers and 4 client machines, where a

machine is an extra-large instance with 15GB of RAM

and 4 virtual cores. The geo-replication factor is two

datacenters. We perform three runs for each experiment

and report the average. (Standard deviations were low.)

9.2 Microbenchmark
We evaluate three types of chains. In the simple-n

experiments, a client operation is a chain with n hops,

each inserting a row into a different base table. In the

secondary index experiment, a client operation inserts a

row into a table with a secondary index, resulting in a

system chain of 2 hops. In the join experiment, a client

operation inserts a row into the LT base table which has

both a secondary index table and a join table (with another

base table). In all chains, the first hop executes in the local

datacenter and the subsequent hops execute in different

remote datacenters. All chains run only C++ code at

servers.

We perform two sets of experiments, one without geo-

replication, one with geo-replication factor of two. Even

286



NO GEO-REPLICATION GEO-REPLICATION AT 2 DATACENTERS
Chain type Throughput First-hop lat. Completion lat. Throughput First-hop lat. Completion lat.

(K chains/s) (50%; 99%) (50%; 99%) (K chains/s) (50%; 99%) (50%; 99%)

simple-1 3,570 3.1ms; 3.3ms 3.1ms; 3.3ms 1,770 3.1ms; 3.6ms 84ms; 90ms

simple-2 1,630 3.1ms; 3.4ms 86ms; 88ms 872 3ms; 3.8ms 266ms; 283ms

simple-3 1,190 3.2ms; 3.3ms 253ms; 257ms 512 3.1ms; 3.8ms 607ms; 656ms

secondary index 1,220 3.1ms; 3.4ms 84ms; 88ms 590 3ms; 3.3ms 258ms; 291ms

join 808 3.1ms; 3.4ms 89ms; 99ms 453 2.8ms; 3.3ms 268ms; 299ms

Table 1: Microbenchmark throughput and latency results.

in experiments without geo-replication, data is spread

over the three EC2 regions.

Chain throughput. Table 1 shows Lynx’s throughput in

thousands of chains/s. We first examine the experiments

without geo-replication (left of table). The simple-1 ex-

periment provides a baseline aggregate throughput of

3,570K chains/s using 12 servers in 3 datacenters. We

expect the throughput of simple chains with m hops to be

≈1/m the throughput of a 1-hop chain. The experiments

confirm this. Throughput drops by over half going from

simple-1 to simple-2 because in simple-1 only clients

forward chains whereas in simple-2 servers also do that.

The system chain for updating the secondary index ta-

ble has two hops and its aggregate throughput is 1,220K

chains/s. This is lower than simple-2 because of the over-

head of checking if a table modification needs a system

sub-chain and if so, coordinating the system sub-chain.

The throughput of the join experiment is 808K chains/s,

much lower than in the secondary index experiment, even

though both chains have two hops. This is because the

second hop of the join chain requires more computation:

it reads rows from the RT table and inserts them into the

join table, all in a local transaction (Figure 11). In the

experiments, we pre-populated the RT base table so that

there are 6 rows to be read and inserted into the join table

every time a chain modifies a single row in LT.

Chain latency. Table 1 shows the median and 99-

percentile latency for completing both the first hop and

the entire chain. The experiments were done under low

load and we measured the latency of chains starting in

the West Coast. Since the first hop of a chain executes

in the local datacenter, first-hop latency is below 4 ms

(99-percentile) across workloads. This latency number

is optimistic for two reasons. First, it does not reflect

disk latency: although our server implementation syn-

chronously writes its log to disk, the disk latency is ab-

sorbed by on-disk caching which cannot be disabled in

EC2. Second, it does not reflect the delay in replicating

the chain coordinator’s log to a nearby buddy datacenter:

our prototype currently logs to the local disk as opposed

to a cluster file system.

Compared to the first hop latency, the total completion

 0
 200
 400
 600
 800

 1000
 1200
 1400

follow-user post-tweet read-timeline

A
gg

. t
hr

ou
gh

pu
t (

K
 o

ps
/s

)
Figure 12: L-Twitter operation throughput

latency is much longer, as each subsequent hop executes

in a different datacenter. For example, the median com-

pletion latency for a simple chain of length 2 (no repli-

cation) is 86ms, and it grows to 253ms when the length

is 3.

Geo-replication performance. The right part of Table 1

shows experiments where all base and derived tables are

geo-replicated at two datacenters. Geo-replication re-

duces throughput by half compared to the left results,

because it produces twice the work; and it increases com-

pletion latency due to the extra communication.

9.3 Application performance
Lynx’s applications are implemented mostly in

JavaScript, except for simple read-only one-hop chains,

which have an efficient C++ interface.

L-Twitter. We evaluate three common operations: read-
timeline for showing a user’s timeline, follow-user for

starting to follow a user, and post-tweet for posting a

tweet. We populate the database with 100,000 users,

each with 6 tweets and 6 followers on average. There are

3 datacenters, and we use different geo-replication levels

for different tables. We geo-replicate the base tables

(Tweets, Graph) at 2 datacenters, but do not geo-replicate

secondary indexes or joins (e.g., GraphTweets), which

can be reconstructed if there is a disaster.

Figure 12 shows the operation throughput of L-Twitter.

For operations that write data, the throughput depends on

how many hops the underlying chain has. The chain for

post-tweet inserts a row into Tweets, updates its replica

across datacenters, inserts 6 rows into the join table

GraphTweets (each user has 6 followers on average) and

287



Operation First-hop lat. Completion lat.
(50%; 99%) (50%; 99%)

follow-user 3.2ms; 3.5ms 174ms; 176ms

post-tweet 3.1ms, 3.4ms 252ms; 263ms

read-timeline 3.1ms, 3.3ms -

Table 2: Latency of operations in L-Twitter. All chains in
L-Twitter return after the first hop, so first-hop latency cor-
responds to the user-perceived latency. Completion latency
measures when the entire chain completes.

updates the secondary index of GraphTweets, for a total 9

hops (6 of which run in parallel). This results in an aggre-

gate post-tweet throughput of 173K tweets/s. The follow
operation also inserts 6 rows into GraphTweets (each

user has 6 existing tweets), thus having the same number

of hops as post-tweet and achieving similar throughput

(184K ops/s). For follow, all 6 updates to the secondary

index of GraphTweets have the same secondary key and

thus they could have been batched in one RPC. Lynx does

not currently have this optimization. The throughput for

reading a user’s timeline is high, at more than 1.35M

ops/s. This is because the underlying chain only needs to

read (many rows) in one server.

Table 2 shows chain latency for the L-Twitter opera-

tions. All chains return after the first hop, so L-Twitter

achieves low user-perceived latency. The completion la-

tency of post-tweet measures how long its chain takes to

update the geo-replica of Tweets, and update the join table

GraphTweets and its secondary index. The 99-percentile

latency is 263ms, meaning that a tweet quickly appears

in all followers’ timelines.

L-RUBiS. The most interesting chain in L-RUBiS is the

place-bid operation, with a user chain of 2 hops (Figure 7)

plus 4 hops of system sub-chains for geo-replication and

secondary indexes. The aggregate place-bid throughput

is 168K ops/s—3 times lower than the geo-replicated

simple-3 chain, which also has 6 hops (Figure 1). This

difference is because place-bid runs JavaScript user code

at the servers using the V8 engine, which imposes signif-

icant overhead, whereas the simple-3 chain does not.

L-Social. We evaluated a common multi-hop user chain

in L-Social, post-status. Its first user hop inserts a new

status to the Status table and the second user hop adds a

message “User X has changed her status” to Activities.

The system chains generated by the second user hop are

similar to that of post-tweet in L-Twitter. The overall

throughput for post-status is 64K ops/s.

9.4 Scaling
Lynx partitions data across many shards stored at many

servers, to scale with both the number of servers/datacen-

ter and the number of datacenters.

Figure 13 shows the aggregate chain throughput when

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

1 2 4 8

C
ha

in
 th

ro
ug

hp
ut

 (
K

 c
ha

in
s/

s)

Number of servers per datacenter (3 total datacenters)

Simple-3
Secondary index

Join

Figure 13: Aggregate chain throughput as the number of
server increases in each datacenter. The experiments run
on three datacenters with no geo-replication.

we increase the number of servers in each datacenter from

1 to 8. The experiments always run on three datacenters,

with our largest experiments having 8× 3 = 24 Lynx

servers and 24 clients. We use the simple-3, secondary

index, and join workloads (without geo-replication) as

described in Section 9.2. We see that Lynx scales well

with the number of servers. This is expected as different

Lynx chains run independently. With 8 servers/datacen-

ter, the aggregate secondary index throughput is 2.38M

chains/s—6.8 times the throughput of 0.35K chains/s for

1 server/datacenter. This is close to linear scaling.

9.5 Comparison with Cassandra/Eiger
We compare the application performance of Lynx to

Eiger [40], a geo-replicated key-value storage system

with write-only transactions and causal+ consistency,

built over Cassandra [2]. We implemented the L-Twitter

operations using Eiger’s column-family key-value data

model. Each user X has a row with four column families:

followers has a list of sparse columns for users that follow

X ; followees has the users that X follows; tweets has the

list of posts written by X ; and timeline has posts from

users that X follows. To post a tweet, user X reads the list

of followers and uses a write-only transaction to insert

the tweet and update the followers’ timelines.

The Eiger experiments use the same setup with 3 avail-

ability regions. We observe an aggregate throughput of

12K tweets/s. By comparison, L-Twitter running on Lynx

achieves 173K tweets/s. Thus, Lynx has better through-

put with serializability while Eiger offers only causal+

consistency. Admittedly, the performance difference can

be an artifact of the two systems’ implementation choices;

an apples-to-apples comparison is impossible.

Lynx uses much less storage space than Eiger. In L-

Twitter, Lynx geo-replicates base tables only once and

derived tables zero times, which suffices for disaster tol-

erance. By contrast, Eiger forces all data to be replicated

at all datacenters, causing a large space overhead.

288



10 Related work
Geo-distributed storage. Prior geo-distributed systems

face the unpleasant tradeoff between strong semantics

and low latency. Spanner provides strong semantics

with order-preserving serializable transactions [22], but

these are expensive: like its predecessor Megastore [10],

Spanner’s update transactions take many cross-datacenter

roundtrips to execute and commit. Replicated Com-

mit [41] and MDCC [37] are faster but still incur cross-

datacenter latency to execute and commit transactions.

At the other end of the tradeoff, Cassandra [2] and Dy-

namo [24] are key-value storage systems offering even-

tual consistency, while PNUTS [21] offers the slightly

stronger per-record timeline consistency. Other systems

provide stronger but still relaxed semantics to achieve

low-latency. COPS/Eiger [39, 40] offer causal+ consis-

tency where write conflicts are resolved deterministi-

cally. These systems do not support general transac-

tions and moreover COPS/Eiger require replication of

all data across all datacenters. Walter provides parallel

snapshot isolation [50] and Gemini provides Red/Blue

consistency [38]. Apart from weakened semantics, the

latter two systems do not have a scalable design within a

datacenter.

Single datacenter storage systems. Since the net-

work latency within a single datacenter is low (sub-

millisecond), it is generally agreed that the storage system

should provide strong consistency.

The late 80s saw pioneering work in distributed

database systems, such as Gamma [25], Bubba [15],

R* [42], Teradata, and Tandem [26], which aim to pro-

vide the same transactional updates and query interfaces

present in centralized database systems. These systems

pioneered distributed transactions.

Modern single-datacenter storage systems offer vari-

ants of the key-value interface (BigTable [18], H-Base [3],

MongoDB [4]). Recently, there has also been strong in-

terest in transactions, e.g. in Sinfonia [6], Percolator [43],

and H-store/VoltDB [35]. These systems provide dis-

tributed transactions using two-phase commit, which is

efficient within a datacenter. HyperDex [27] uses value-

dependent chains to update replicas consistently within

a datacenter. Value-dependent chains provide a property

similar to chain’s origin ordering.

View maintenance in database systems. There is much

work on maintaining materialized views. Incremental

maintenance schemes typically update base tables and

views in the same ACID transaction [13]. Deferred main-

tenance schemes batch changes to tables, and update

views periodically or when there is a query [20, 34, 55],

for efficiency. Deferred maintenance is often used in

data warehouses where only one update batch executes

at any time [45]. In the same spirit, LazyBase [19] op-

timizes data analytics by batching writes and updating

materialized secondary indexes in epochs.

Only a few systems offer online distributed view main-

tenance and even fewer do so in a geo-distributed setting.

BigTable now supports secondary indexes [17]. PNUTS

added support for secondary indexes and join views that

are asynchronously updated [5]. Lynx also updates de-

rived tables asynchronously, in piecewise chains. Unlike

PNUTS, Lynx uses static analysis to provide serializabil-

ity despite asynchronous updates.

Workflow Management [54]. Transaction chains resem-

ble application workflows in systems like travel planning

or insurance claim processing. An application workflow

naturally consists of many activities, each executing as

a transaction. Like Lynx, workflow systems guarantee

that all activities are eventually executed completely and

exactly once. However, these systems are designed to

manage sophisticated workflows often involving people

actions, while Lynx uses chains to efficiently execute

logical transactions while guaranteeing that entire chains

are serializable.

Transaction Decomposition. The database commu-

nity has explored various aspects in decomposing a

transaction in smaller pieces using SAGAS [30], step-

decomposed transactions [11], transaction chopping [48],

multi-database transactional management [16], and

Spheres of Control (SoC) [23, 33]. Garcia-Molina ob-

serves that if various pieces of a decomposed transaction

commute, a safe execution schedule always exists [29].

Lynx also exploits commutativity, inspired by this and

other work including Walter [50], Gemini [38], and

conflict-free replicated data types [47]. In addition to

commutativity, Lynx also provides the origin ordering

property to reduce conflicts among system chains.

11 Conclusion
Lynx provides serializability with low-latency in geo-

distributed storage systems. The key insight is to express

transactions as chains with multiple hops, and then per-

form a global static analysis of the chains, to find conflicts

and determine when chains can execute piecewise with-

out violating serializability. Chains are also useful for

implementing several features: secondary indexes, mate-

rialized join views, and geo-replication. We demonstrated

the use of Lynx in an auction service, a microblogging

service, and a social networking site.

Acknowledgments. This research was supported in part

by NSF grant CNS-1218117. We thank Nguyen Tran

and Songbin Liu, who contributed to Lynx’s design and

an earlier implementation. Many people helped us im-

prove the work through discussions and reviews, includ-

ing Frank Dabek, Robert Grimm, Wilson Hsieh and Den-

nis Shasha.

289



References
[1] http://rubis.ow2.org/index.html as of Oct 2010.

[2] Apache cassandra database. http://cassandra.
apache.org/.

[3] Hbase: Hadoop database. http://hbase.apache.org.

[4] MongoDB. http://www.mongodb.com.

[5] P. Agrawal, A. Silberstein, B. Cooper, U. Srivas-

tava, and R. Ramakrishnan. Asynchronous view

maintenance for VLSD databases. In International
Conference on Management of Data, June 2009.

[6] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,

and C. Karamanolis. Sinfonia: A new paradigm

for building scalable distributed systems. ACM
Transactions on Computer Systems, 27(3):5:1–5:48,

Nov. 2009.

[7] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil,

K. Rajamani, W. Zwaenepoel, E. Cecchet, and

J. Marguerite. Specification and implementation

of dynamic Web site benchmarks. In IEEE Inter-
national Workshop on Workload Characterization,

Nov. 2002.

[8] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein,

and I. Stoica. The potential dangers of causal consis-

tency and an explicit solution. In ACM Symposium
on Cloud Computing, Oct. 2012.

[9] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein,

and I. Stoica. HAT, not CAP: Highly available trans-

actions. In Workshop on Hot Topics in Operating
Systems, May 2013.

[10] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,

J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yush-

prakh. Megastore: Providing scalable, highly avail-

able storage for interactive services. In Confer-
ence on Innovative Database Systems Research, Jan.

2011.

[11] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. Con-

currency control for step-decomposed transactions.

Information Systems, 24(9):673–698, Dec. 1999.

[12] P. Bernstein and N. Goodman. Concurrency control

in distributed database systems. ACM Computing
Survey, 13(2):185–221, June 1981.

[13] J. Blakeley, P. Larson, and F. Tompa. Efficiently

updating materialized views. In International Con-
ference on Management of Data, May 1986.

[14] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters,

and P. Li. Paxos replicated state machines as the ba-

sis of a high-performance data store. In Symposium
on Networked Systems Design and Implementation,

Mar. 2011.

[15] H. Boral, W. Alexander, L. Clay, G. Copeland,

S. Danforth, M. Franklin, B. Hart, M. Smith, and

P. Valduriez. Prototyping Bubba, a highly available

parallel database system. Transactions on Knowl-
edge and Data Engineering, 2(1):4–24, Mar. 1990.

[16] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.

Overview of multidatabase transaction management.

The VLDB Journal, 1(2):181–239, Oct. 1992.

[17] M. Cafarella, E. Chang, A. Fikes, A. Halevy,

W. Hsieh, A. Lerner, J. Madhavan, and S. Muthukr-

ishnan. Data management projects at Google. In

International Conference on Management of Data,

June 2008.

[18] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and

R. E. Gruber. Bigtable: A distributed storage system

for structured data. In Symposium on Operating
Systems Design and Implementation, Nov. 2006.

[19] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III,

C. A. N. Soules, and A. Veitch. LazyBase: Trading

freshness for performance in a scalable database. In

European Conference on Computer Systems, Apr.

2012.

[20] L. Colby, T. Griffin, L. Libkin, I. Mumick, and

H. Trickey. Algorithms for deferred view mainte-

nance. In International Conference on Management
of Data, June 1996.

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava,

A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s

hosted data serving platform. 1(2):1277–1288, Aug.

2008.

[22] J. Corbett et al. Spanner: Google’s globally-

distributed database. In Symposium on Operating
Systems Design and Implementation, Oct. 2012.

[23] S. Davies. Data processing spheres of control. IBM
Systems Journal, 17(2):179–198, June 1978.

[24] G. DeCandia et al. Dynamo: Amazon’s highly

available key-value store. In ACM Symposium on
Operating Systems Principles, Oct. 2007.

[25] D. Dewitt, S. Ghandeharizadeh, D. Schneider,

A. Bricker, H. i Hsiao, and R. Rasmussen. The

Gamma database machine project. Transactions on
Knowledge and Data Engineering, 2(1):44–62, Mar.

1990.

[26] D. DeWitt and J. Gray. Parallel database systems:

The future of high performance database systems.

Communications of the ACM, 35(6):85–98, June

1992.

[27] R. Escriva, B. Wong, and E. G. Sirer. HyperDex:

A distributed, searchable key-value store for cloud

computing. In ACM SIGCOMM Conference, Aug.

2012.

[28] M. Franklin. Concurrency control and recovery.

The Computer Science and Engineering Handbook,

290



pages 1058–1077, 1997.

[29] H. Garcia-Molina. Using semantic knowledge for

transaction processing in a distributed database.

ACM Transactions on Database Systems, 8(2):186–

213, June 1983.

[30] H. Garcia-Molina and K. Salem. SAGAS. In Inter-
national Conference on Management of Data, May

1987.

[31] S. Ghemawat, H. Gobioff, and S.-T. Leung. The

Google file system. In ACM Symposium on Operat-
ing Systems Principles, Oct. 2003.

[32] D. K. Gifford. Information storage in a decentral-

ized computer system. Technical Report CSL-81-8,

Xerox Parc, Mar. 1982. Extended version of the

Ph.D. thesis of D. K. Gifford.

[33] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Pub-

lishers Inc., San Francisco, USA, 1993.

[34] H. He, J. Xie, J. Yang, and H. Yu. Asymmetric batch

incremental view maintenance. In International
Conference on Data Engineering, Apr. 2005.

[35] E. P. C. Jones, D. J. Abadi, and S. Madden. Low

overhead concurrency control for partitioned main

memory databases. In International Conference on
Management of Data, June 2010.

[36] N. Kallen. Big data in real time at Twitter. QCon:

The annual international software development

conference, Nov. 2010. http://www.slideshare.net/
nkallen/q-con-3770885.

[37] T. Kraska, G. Pang, M. Franklin, S. Madden, and

A. Fekete. MDCC: Multi-data center consistency.

In European Conference on Computer Systems, Apr.

2013.

[38] C. Li, D. Porto, A. Clement, R. Rodrigues,

N. Preguia, and J. Gehrke. Making geo-replicated

systems fast if possible, consistent when necessary.

In Symposium on Operating Systems Design and
Implementation, Oct. 2012.

[39] W. Lloyd, M. Freedman, M. Kaminsky, and D. An-

dersen. Don’t settle for eventual: Stronger consis-

tency for wide-area storage with COPS. In ACM
Symposium on Operating Systems Principles, Oct.

2011.

[40] W. Lloyd, M. Freedman, M. Kaminsky, and D. An-

dersen. Stronger semantics for low-latency geo-

replicated storage. In Symposium on Networked
Systems Design and Implementation, Apr. 2013.

[41] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal,

and A. E. Abbadi. Low-latency multi-datacenter

databases using replicated commit. Proceedings of
the VLDB Endowment, 6(9):661–672, July 2013.

[42] C. Mohan, B. Lindsay, and R. Obermarck. Transac-

tion management in the R* distributed database

management system. ACM Transactions on
Database Systems, 11(4):378–396, Dec. 1986.

[43] D. Peng and F. Dabek. Incremental processing of

large data sets. In Symposium on Operating Systems
Design and Implementation, Oct. 2010.

[44] D. Pritchett. BASE: An acid alternative. ACM
Queue, 6(3):48–55, May 2008.

[45] D. Quass and J. Widom. On-line warehouse view

maintenance. In International Conference on Man-
agement of Data, May 1997.

[46] E. Schurman and J. Brutlag. The user and busi-

ness impact of server delays, additional bytes, and

HTTP chunking in web search. In Velocity Web Per-
formance and Operations Conference, June 2009.

[47] M. Shapiro, N. Preguiça, C. Baquero, and M. Za-

wirski. Conflict-free replicated data types. In Inter-
national Symposium on Stabilization, Safety, and
Security of Distributed Systems, Oct. 2011.

[48] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez.

Transaction chopping: Algorithms and performance

studies. ACM Transactions on Database Systems,

20(3):325–363, Sept. 1995.

[49] A. Silberstein, J. Terrace, B. Cooper, and R. Ra-

makrishnan. Feeding frenzy: Selectively materializ-

ing users’ event feeds. In International Conference
on Management of Data, June 2010.

[50] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.

Transactional storage for geo-replicated systems. In

ACM Symposium on Operating Systems Principles,

Oct. 2011.

[51] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li,

F. Kaashoek, and R. Morris. Simplifying wide-

area application development with WheelFS. In

Symposium on Networked Systems Design and Im-
plementation, Apr. 2009.

[52] D. Terry, A. Demers, K. Petersen, M. Spreitzer,

M. Theimer, and B. Welch. Session guarantees for

weakly consistent replicated data. In International
Conference on Parallel and Distributed Information
Systems, Sept. 1994.

[53] A. Thomson and D. J. Abadi. The case for deter-

minism in database systems. Proceedings of the
VLDB Endowment, 3(1):70–80, Sept. 2010.

[54] G. Weikum and G. Vossen. Transactional informa-
tion systems: theory, algorithms, and the practice
of concurrency control and recovery. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA,

2001.

[55] J. Zhou, P. Larson, and H. Elmongui. Lazy main-

tenance of materialized views. In International
Conference on Very Large Data Bases, Sept. 2007.

291


