
Transaction Chopping: Algorithms and

Performance Studies

DENNIS SHASHA

Courant Institute, New York University

FRANC(3IS LLIRBAT, ERIC SIMON, and PATRICK VALDURIEZ

Projet Rodin, [NRIA Rocquencourt

Chopping transactions mto pieces is good for performance but may lead to nonserializable

executions. Many researchers have reacted to this fact by either inventing new concurrency-con-

trol mechanisms, weakemng serializability, or both. We adopt a different approach We assume a

user who

—has access only to user-level tools such as (1) choosing among isolation degrees 1–4, (2) the

ability to execute a portion of a transaction using multiversion read consistency, and (3) the

ability to reorder the m structions in transaction programs; and

—knows the set of transactions that may run during a certain interval (users are likely to have

such knowledge for on-line or real-time transactional applications)

Given this Information, our algorithm finds the finest chopping of a set of transactions TranSet

with the following property: If the pieces of the chopping execute serializable, then TranSet

executes serla ha bly, This permits users to obtain more concurrency whale preserving correct-

ness. Besides obtaining more mt,ertransaction concurrency, chopping transactions in this way

can enhance intratransactlon parallelism.

The algorithm is inexpensive, running in 0( n x (e + m)) time, once conflicts are identified,

using a naive implementation where n is the number of concurrent transactions m the interval,

e is the number of edges in the conflict graph among the transactions, and rrL is the maximum

number of accesses of any transaction. This makes it feasible to add as a tuning knob to real

systems.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance—sirn ulatlon;

H 24 [Database Management]: Information Systems—concurrency; transaction processing;

1.6.8 [Simulation and Modeling]: Computing Methodolo~es—discrete euent

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Locking, multidatabase, serializability, tuning

A preliminary version of thm paper appeared in the i+oceedmgs of the ACM SIGMOD Intern a-

tzoncd Conference, held in San Diego, California, May 1992, under the title “Simple Rational

Guidance for Chopping Up Transactions.”

This work was supported by U.S. Office of Naval Research NOO014-91-J-1472 and NOOO14-92-J-

1719, and U.S. National Science Foundation grants IRI-89-01699 and CCR-9103953. Much of

this work was done while D. Shasha visited INRIA during the academic year 1991-1992.

Authors’ addresses: D. Shasha, Courant Institute, New York University, New York, NY 10012; F

Lhrbat, E. Simon, and P. Valduriez, Projet Rodin, INRIA Rocquencourt.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice IS

given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

C 1995 ACM 0362-5915/95/0900–0325 $03.50

ACM TransactIons on Database Systems, Vol. 20, No. 3, September 1995, Pages 325-363,



326 . D, Shasha et al.

1. MOTIVATION

The database research literature has many excellent proposals describing

new concurrency-control methods. ‘I’he proposals (some of which are described

in Section 8 and others that are cited in Krithi 1995) aim to help database-

management system (DBMS) designers to build better concurrency-control

methods into their systems. However, the fact remains that the vast majority

of commercial database systems use two-phase locking to enforce serializabil-

ity and less restrictive locking methods to enforce degree 2 isolation (i. e.,

write locks obey two-phase locking; read locks may be released immediately

after the read of the locked resource completes—this is the normal imple-

mentation of degree 2 isolation). Some other systems offer multiversion read

consistency. So, it is of significant practical interest to find ways to reduce

concurrent contention given just those mechanisms.

Performance consultants and tuning guides suggest a simple way: “Shorten

transactions or use less restrictive locking methods whenever you can. Serial-

izability is an overly conservative constraint in any case.” Database adminis-

trators and users follow this advice. The trouble is that problems can then

crop up mysteriously into applications previously thought to be correct,

Example 1. Inventory and Cash. Suppose that an application program,

named purchase, processes a purchase by adding the value of the item to

inventory and subtracting the money paid from cash. The application specifi-

cation requires that cash never be made negative, so the transaction will roll

back (i.e., undo its effects) if subtracting the money from cash will cause the

cash balance to become negative.

To improve performance, the application designers divide the two steps of

purchase(i, p), that is, purchase item i for price p, into two transactions:

T’I: if ( p > cash) then rollback else inventory[ i ] = inventory[ i ] + p;

!I’2: cash = cash – p;

They find that the cash field occasionally becomes negative, Consider the

following scenario: There is $100 in cash available when a first application

program begins to execute. The item to be purchased costs $75. So, the first

transaction commits. Then some other execution of this application program

causes $50 to be removed from cash. When the first execution of the program

commits its second transaction, cash will be in deficit by $25.

So dividing the application into two transactions can result in an inconsis-

tent database state. Once seen, the problem is obvious, though no amount of

sequential testing would have revealed it. Most concurrent testing would not

have revealed it either, since the problem occurs rarely. Still, this comes as no

surprise to concurrency-control aficionados. A little surprising is how slightly

the example must be changed to make everything work well.

E~ample 2. Variant on Inuentory and Cash. Suppose that we rearrange

the purchase application to check the cash level and decrement it in the first

step if the decrement will not make it go negative. In the second step, we add

ACM TransactIons on Database Systems, Vol 20, No 3, September 1995



Transaction Chopping . 327

the value of the item to inventory. We make each step a transaction:

T1: if ( p > cash) then rollback else cash := cash – p;

T2: inventory[ i 1 = inventory[ i 1 + p;

Using this scheme, cash will never become negative, and any execution of

purchase applications will appear to execute as if each purchase transaction

executed serially.

Remark Concerning System Failures and Mini batching. Suppose a system

failure occurs after the first transaction but before the second transaction

completes. The recovery subsystem will have no way to know that it must

execute the second transaction. To solve this problem, the application must

record its progress in each inventory–cash transaction and then complete the

transaction from its recorded point upon recovery. This idea is reminiscent of

the minibatchirzg technique in industrial transaction processing [Gray and

Reuter 1992]. For example, suppose that a batch transaction sequentially

scans and updates 100 million records and executes in isolation. For perfor-

mance and recoverability reasons, it may be a good idea to decompose that

batch transaction into sequential “minibatch” transactions, each of which

updates 1 million records and then writes the number of millions updated, On

recovery, the application reads the last committed value of the number of

millions updated and continues from there.

In the inventory–cash scenario, we do something analogous: Each transac-

tion piece writes into a special table the item i, price p, and piece number.

Recovery requires reexecuting the second pieces of inventory transactions

whose fh-st pieces have finished. In general, one must write enough informa-

tion to complete the transaction in the case of failure. Minibatching will be

required anytime a transaction chopped into k pieces has writes in one of the

first k – 1 pieces. The alert reader may now wonder whether this special

table will be a concurrency bottleneck. To avoid that problem, we can create

several special tables, possibly one per user.1

Our goal is to help practitioners shorten lock times by chopping transac-

tions into smaller pieces, all without sacrificing serializability. For the pur-

poses of this paper, we do not propose a new concurrency-control algorithm,

because we assume the user is tuning on top of a purchased DBMS (this

assumption may be relaxed in future work). We do, however, assume that the

user knows the set of transactions that may run during a certain interval of

time. The user may also choose to release read locks early (e.g., the default in

Sybase) or to use multiversion read consistency (e.g., the default in ORACLE).

We consider this to be an important point about tuning research, as con-

trasted with classical research in database internals: “The tuner cannot

1Current research on this subject has identified efficient algorithms that use the log to save the

context of applications instead of using separate tables [ Salzberg and Tombroff 1994] This

research entails changing the internal algorithms of the DBMS, so we consider it out of the

purview of this paper.

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995



328 . D. Shasha et al,

change the system. But can use his or her knowledge to change the way an

application runs on the system by rewriting it and by adjusting a few critical

tuning knobs.”

Surprisingly, the results are quite strong and compare favorably with some

of the semantic concurrency-control methods proposed elsewhere. The algo-

rithm is efficient. Given conflict information, the algorithm runs in 0( n x (e

+ m)) time using a naive implementation, where n is the number of concur-

rent transactions in the interval, e is the number of edges in the conflict

graph among the transactions, and m is the maximum number of accesses of

any transaction,

2. ASSUMPTIONS

To use this technique, the database user must have certain knowledge:

—The database system user (here, that means an administrator or a sophisti-

cated application developer ) can characterize all of the transaction pro-

grams2 that may run in some time interval. The characterization may be

parameterized. For example, the user may know that some transaction

programs update account balances and branch balances, whereas others

check account balances. However, the user need not know exactly which

accounts or branches will be updated. The characterization may also

include information such as that certain transaction programs always

access a single record or that no two instances of some transaction program

will ever execute concurrently. The more such information, the merrier.

—The goal is to achieve the guarantees of serializability—without paying for

it. That is, the user would like either to use degree 2 isolation or to use

multiversion read consistency even though the transaction has modifica-

tion statements, or to chop transaction programs into smaller pieces. The

gaarantee should be that the resulting execution be equivalent to one in

which each original transaction instance executes alone (i.e., serializable).

—The user knows where rollback statements occur. Suppose that the user

chops up the code for a transaction program T into two pieces TI and T2

where the T1 part executes first. If the Tz part executes a rollback

statement after TI commits, then the modifications done by T1 will still be

reflected in the database. This is not equivalent to an execution in which T

executes a rollback statement and undoes all of its modifications. Thus, the

user should rearrange the code so rollbacks occur early. We will formalize

this intuition later with the notion of rollback-safety.

—If a failure occurs, it is possible to determine which transaction instances

completed before the failure and which ones did not (by using some variant

of the minibatching technique illustrated in the Remark of Example 2).

zThe word transaction can mean two things in the literature: a program text that states when

transactions begin and end, and a running instance of that program text. We make the

distinction between these two notions (calhng them transaction program and transaction

msfa rzce, resp.) where it is not clear from context.

ACM TransactIons on Database Systems, Vol. 20, No 3, September 1995



Transaction Chopping . 329

Suppose there are n transaction instances Tl, TT,... ,T~ that can execute

within some interval. Assume, for now, that each such transaction instance

results from a distinct program. Chopping a transaction instance can then be

done by modifying the unique program that only this transaction instance

executes. We reexamine this assumption in Section 4.

Throughout this paper we consider transaction programs with simple

control structures: sequences, loops, and if-then-else statements. As defined

by Aho et al. [1986], a reducible flow graph can be associated with a

transaction program. We shall say that a database access s “precedes” a

database access s in a transaction instance if there is an edge from s to s’ in

the reducible flow graph of the transaction program. Intuitively, this means

that if database accesses s and s’ both execute, then s precedes s’. Database

accesses s and s’ may derive from the same instructions in the program text,

but s’ may be associated with a later iteration of a looping construct (e.g., a

while or for loop).

A chopping partitions each T, into pieces c,,, C:,,,. , , c,,. That is, every

database access performed by T, is in exactly one piece,

A chopping of a transaction program T is said to be rollback-safe if either

T has no rollback statements or all of the rollback statements of T are in its

first piece. Furthermore, all of the statements in the first piece must execute

before any other statement of T. This prevents a chopped transaction in-

stance from committing some of its modifications and then rolling back.3 A

chopping is said to be rollback-safe if the chopping of each of its transaction

programs is rollback-safe.

Execution Rules (for the pieces of a chopping)

(1) When pieces execute, they obey the precedence relationship defined by

the transaction program,4

(2) Each piece will execute according to some concurrency-control algorithm

that ensures serializability and will commit its changes when it ends.5

(3) If a piece is aborted due to a lock conflict, then it will be resubmitted

repeatedly until it commits.

(4) If a piece is aborted due to a system failure, it will be restarted.

(5) If a piece is aborted due to a rollback statement, then pieces for that

transaction instance that have not begun will not execute.

‘This definition of rollback-safety is slightly overly restrictive for the sake of presentation. It

would be sufficient for all rollback statements to be in the first piece that has modification

statements, as opposed to necessarily the first piece that has any database access. Such a

definition would complicate the presentation, however.

4 If piece s should precede piece s’, then s should complete before s’ begins.

5Extensions of this work to nonserializable environments or to multidatabase settings will find it

necessary to relax this assumption. Normally, the result of the change will be to say that each

piece should execute according to some correctness criterion of interest, e.g., epsilon serializabil-

ity or multidatabase serializability. The challenge will be to show that each transaction obeys the

correctness criterion.

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995



330 . D. Shasha et al

3. WHEN IS A CHOPPING CORRECT?

WJe will characterize the correctness of a chopping with the aid of an

undirected graph whose vertices are pieces and whose edges consist of the

following two disjoint sets:

(1,)

(2)

C-edges—C stands for conflict. Two pieces p and p’ from different

original transaction instances conflict if reversing their order of execution

will change either the resulting state or the return values. Formally, p

and p’ conflict if there is some state s such that executing pp’ on s yields

either a different resulting state or different return values when com-

pared with executing p’p on s. Thus, conflict is the same as noncommu-

tativity. If we do not know the semantics of p and p’, we will say that

they conflict if there is some data item x that both access and at least one

modifies, This is called a syntactic conflict. Knowing the semantics can,

however, be helpful. For example, additions to inventory are commutative

(i.e., do not conflict) with other additions to inventory, even though two

such additions are in syntactic conflict. The more the user knows about

his or her application, the fewer conflicts he or she will need to identify. If

there is a conflict, draw an edge between p and p’, and label the edge C.

S-edges—S stands for sibling. Two pieces p and p’ are siblings if they

come from the same original transaction T. In this case, draw an edge

between p and p’, and label the edge S.

We call the resulting graph the chopping graph. (Note that no edge can have

both an S and a C label.)

We say that a chopping graph has an SC-cycle if it contains a simple cycle

that includes at least one S-edge and at least one C-edge.G We say that a

chopping of Tl, Tz, , . . . T. is correct if any execution of the chopping that

obeys the execution rules is equivalent to some serial execution of the original

transaction instances.

Equivalence is defined using the serialization graph formalism of Bernstein

et al. [ 1991] as applied to pieces. Formally, a serialization graph is a directed

graph whose nodes are transaction instances and whose directed edges

represent ordered conflicts. That is, T - T’ if some piece of T precedes and

conflicts with some piece of T’. Following Bernstein et al. [ 1991], if the

serialization graph resulting from an execution is acyclic, then the execution

is equivalent to a serial one. Furthermore, Bernstein et al. proved the

following fact:

Fact. (~) If all transaction instances use two-phase locking, then all those

that commit produce an acyclic serialization graph.

THEOREM 1. A chopping is correct if it is rollback-safe and its chopping

graph contains no SC-cycle.

bRecall that a “simple cycle” consists of (1) a sequence of nodes nl, nz, . . . . n~ such that no node

is repeated; and (2) a collection of associated edges: There M an edge between n, and n,+ ~ for

1- i < h and an edge between nk and nl; no edge is included twice

ACM TransactIons on Database Systems, Vol. 20, No 3, September 1995



Transaction Chopping . 331

PROOF. Call any execution of a chopping for which the chopping graph

contains no SC-cycles an SC-acyclic execution of a chopping. We must show

that

(1) any SC-acyclic execution yields an acyclic serialization graph on the given

transaction instances TI, Tz, . . ., Tn and, hence, is equivalent to a serial

execution of committed transaction instances; and

(2) the transaction instances that roll back in the SC-acycIic execution would

also roll back if properly placed in the equivalent serial execution.

For (1) we proceed by contradiction. Consider an SC-acyclic execution of a

chopping of TI, Tz, . . ., T.. Suppose there were a cycle in the serialization

graph of TI, TZ, ..., T. resulting from this execution. That is, T, ~ T, ~ . . .

-+ T~. Identify the pieces of the chopping associated with each transaction

instance that are involved in this cycle: p 4 p’ a . . . —)p“, Both p and p“

belong to transaction instance T,. Pieces p and p“ cannot be the same, since

each piece uses two-phase locking by the execution rules, and the serializa-

tion graph of a set of committed two-phase locked transaction instances is

acyclic by fact (~). Since p and p“ are different pieces in the same transaction

instance T,, there is an S-edge between them in the chopping graph. Every

directed edge in the serialization graph cycle corresponds ‘co a C-edge in the

chopping graph since it reflects a conflict. So, the cycle in the serialization

graph implies the existence of an SC-cycle in the chopping graph, a contradic-

tion.

For (2) notice that any transaction instance T whose first piece p rolls

back in the SC-acyclic execution will have no effect on the database, since the

chopping is rollback-safe. We want to show that T would also roll back if

properly placed in the equivalent serial execution. Suppose that p conflicts

with and follows pieces from the set of transaction instances WI, . . . . W~. Then

place T immediately after the last of those transaction instances in the

equivalent serial execution. In that case, the first reads of T will be exactly

those of the first reads of p. Since p rolls back, so will T. ❑

Theorem 1 shows that the goal of any chopping of a set of transactions

should be to obtain a rollback-safe chopping without an SC-cycle. We now

present a few examples of chopping to train the reader’s intuition. The x’s,

y’s, and z‘s here are specific and distinct data instances. Later we discuss the

common case of programs parameterized by bind variables. For the purposes

of these examples, we assume nothing about the application except that 1%

stands for read and W for write, So our notion of conflict is entireIy syntactic.

Chopping Graph, Example 1. Suppose there are three transaction in-

stances that can abstractly be characterized as follows n

‘n: R(x) w(x) R(y) w(y)

T2: R(x) W(x)

‘r% R(y) w(y)

ACM Transactions on Database Systems, Vol. 20, No 3, September 1995



332 . D, Shasha et al,

s
Tll T12

FIg 1. Graph without an SC-cycle for chopping example 1 c c

T2 T3

Fig 2. SC-cycle in chopping example 2

s

f s ~

Till — T112— T12

\/
c c P

T2
T3

Breaking up T’1 into

Tll: R(x) w(x)

T12:R(y) ~(y)

will result in a graph without an SC-cycle (see Figure 1’).

chopping Graph, Example 2. With the same T2 and T3 as above, break-

ing up 7711 further into

Till: R(x)

T112: w(x)

will result in an SC-cycle (see Figure 2).

Chopping Graph, Example 3. Now, consider an example in which there

are three types of transaction programs:

(1) a transaction program that updates a single depositor’s account and the

depositor’s corresponding branch balance,

(2) a transaction program that reads a depositor’s account balance, and

(3) a transaction program that compares the sum of the depositors’ account

balances with the sum of the branch balances.

For purposes of concreteness, consider the following transaction programs.

Suppose that depositor accounts Dll, D12, and D13 all belong to branch 131;

depositor accounts D21 and D22 both belong to B2. Here are the transaction

texts (RW means a read followed by a write):

‘II (upclate account): RW(D11) RW(B1)

T2 (update account): RW(D13) RW(B1)

‘1’3 (update account): RW(D21) RW(B2)

T4 (balance): R(D12)

T5 (balance): R(D21)

T6 {comparison): R(D11) R(D12) R(D13) R(Bl~ R(D21) R(D22)

I%(B2)

ACM !ll-ansactlons on Database Systems, Vol. 20, No 3, September 1995



Transaction Chopping . 333

c
Tl — T2

/’”

~ T3

c /

c T4 T5 (-J
Fig. 3. Absence of an SC-cycle after chopping balance

transaction.

T61
s

T62

Tll

<: ~y’ Fig.4. Dividing Tl into two transactions.

Let us see first whether the balance comparison transaction T6 can be broken

up into two transactions:

T61: R(D1l) R(D12) R,(D13) R@l)

T62: R(D21) R(D22) R(B2)

The absence of an SC-cycle shows that this is possible (see Fig-are 3). Note

that this could be generalized to u updates, b balance transactions, and 1

comparison. Each balance transaction would conflict with some update trans-

action. Each update transaction would conflict with exactly one piece of the

branch-by-branch chopping of the comparison transaction. So, there would be

no cycles.

Chopping CA-aph, Example 4. Taking the transaction population from the

previous example, now consider dividing T1 into two transactions giving the

following transaction population (see Figure 4):

Tll: RW(D1l)

T12: RW(131)

T2: RW(I113) RW(BI)

T3: RW(D21) RW(B2)

T4: R(D12)

T5: R(D21)

T6: R(D1l) R(D12) R(D13) R(B1) R(D21) R(D22) R(B2)

This results in an SC-cycle.

Remark about Order-Preservation. The choppings we offer are serializ-

able, but not necessarily order-preserving serializable. Consider the following

example:

Tl: R(A) R(B)

T2: RW(A)

T3: RW(B)

ACM Transactions on Database Systems, Vol 20, No 3, September 1995



334 . D. Shasha et al.

The chopping graph remains acyclic if we chop up TI into the transaction

R.(A) and the transaction R(B). This would allow the following execution:

R(A) RW(A) RW(13) R(B)

This is equivalent to T3, Tl, T2 and so is serializable. It is not, however,

order-preserving serializable, because T2 completed before T3 began yet

appears to execute after T3 in the only equivalent serial schedule.

4. FINDING THE FINEST CHOPPING

On the way to discovering an algorithm for finding the best possible chop-

ping, we must answer two basic questions:

(1) Can chopping a piece into smaller pieces break an SC-cycle?

(2) If a chopping of transaction T alone does not create an SC-cycle and a

chopping of transaction T’ alone does not create an SC-cycle, can chop-

ping both create one?

As it happens, the answer to both questions is negative under a natural

notion of conflict. This will allow us to find an efficient optimization proce-

dure. In the first subsections of this section, we assume that the execution of

a chopped transaction follows the initial ordering of operations defined in the

corresponding transaction program. In the last subsection, we explain how to

accomplish this. This will lead us to a discussion of the problem of reorganiz-

ing transaction programs to make chopping more effective.

4.1 Separability Results about Choppings

For the purposes of the following two lemmas, please remember that we

assume that there is a one-to-one correspondence between transaction in-

stances and the transaction program. The results will allow us to relax this

overly restrictive assumption later:

LEMMA 2. If a set of chopped transaction instances contains an SC-cycle,

then any further chopping of any of the transaction instances will not render it

acyclic.

PROOF. Let p be a piece of a transaction instance T to be further chopped,

and let the result of the chopping be called pieces(P). If p is not in an

SC-cycle, then chopping p will have no effect on the cycle. If p is in an

SC-cycle, then all distinct subpieces q and q’ of p will be linked to one

another by S-edges, and if p is connected by an S-edge to p’, then q and q’

will both be linked to p’. There are now four cases:

(1) There are two C-edges touching p from the cycle, and both edges touch

piece q in pieces( p). Then q takes the place of p in the SC-cycle that p

was in before.

(2) There are two C-edges touching p from the cycle: One touches piece q,

and the other touches piece q’ in pieces(p), respectively. Then the SC-cycle

contains q and q’, and these two are linked with an S-edge.

ACM TransactIons on Database Systems, Vol 20, No 3, September 1995



(3)

(4)

Transaction Chopping . 335

There is one C-edge and one S-edge touching p, Suppose the C-edge

touches q in pieces(p). Then, q takes the place of p in the SC-cycle that

p was in before.

If there are two S-edges touching p, then these edges will touch each

piece of pieces(p) so several SC-cycles are created where there was just

one before. ❑

The Enclosing ConfZict Assumption holds in some application, if whenever

operation o conflicts with operation o’ then o will conflict with any collection

of operations containing o’. This assumption holds in the case where the only

conflict information is syntactic (i.e., where a write on a data item conflicts

with a read or a write on that item). In models in which one has value-inde-

pendent semantic information, this assumption holds provided we never chop

semantically nonconflicting operations into smaller ones. For example, if we

know that increments commute with one another and with decrements, then

we should not chop increments or decrements into their component reads or

writes. (Chopping an increment z into a read and write would result in a

situation where the read conflicts with another increment i’ even though i

does not conflict with i’.) We call these minimal operations with semantic

commutativity properties primitive accesses.

~EMiMA 3. Suppose that, in some chopping chop ~, two pieces, say, p and p’,

of transaction instance T are in an SC-cycle and that the Enclosing Conflict

Assumption holds. Then p and p’ will also be in an SC-cycle in chopping

chopz, where chopz is identical to chop ~ with regard to transaction instance

T, but in which no other transaction instance is chopped (i.e., all other

transaction instances are represented by a single piece).

PROOF. Since p and p’ come from T, there is an S-edge between them in

both chop ~ and chopz. Since they are in an SC-cycle, there exists at least one

piece p“ of some transaction instance T’ in that cycle. Merging all pieces of

T’ into a single piece (i.e., 2“) can only shorten the length of the cycle. The

reason is that the C-edge that used to touch a piece of T’ will now touch T’

itself. If there had been S-edges in the cycles between pieces in T’, they would

now be removed. (We need the Enclosing Conflict Assumption for this argu-

ment. Without the assumption, it might occur that a conflict with a piece of

T’ would not necessarily induce a conflict with T’ itself.) The argument

applies to every transaction instance other than T having pieces in the cycle.

❑

Figure 5 illustrates the graph collapsing suggested by this lemma. Putting

the three pieces of T3 into one will leave T1 in a cycle and so will chopping T3

further.

Lemmas 2 and 3 lead directly to a systematic method for chopping transac-

tions as finely as possible. Consider again the set of transaction instances

{TI,TZ,..., T~}. We will take each transaction instance Ti in turn. We call

{c,, CZ,..., c~} a private chopping o!i T,, denoted private, if

(1) {CI, C2,..., Ck} is a rollback-safe chopping of T,; and

ACM Transactions on Database Systems, Vol 20, No. 3, September 1995.



336 . D. Shasha et al,

s
Tll

/

T12

c
\’

Fig. 5 Graph collapsing, illustrating Lemma

3.

T3~ T32
s

T33

s

(2) there is no SC-cycle in the graph whose nodes are

{T1,..., T1, c,,c2,2, ck, TL+,,L,,,..., T,}, that is, the graph of all other

transaction instances plus the chopping of T,.

TmOIWVI 4. Provided the Enclosing Conflict Assumption holds, the chop-

ping consisting of {private(TI), primate . . . . . . private(T~ )1 is rollback-safe

and has no SC-cycles.

PROOF. Rollback-safety: The chopping is rollback-safe because all of its

constituents are rollback-safe.

No SC-cycles: If there were an SC-cycle that involved two pieces of

private(7’, ), then Lemma 3 implies that the cycle is still present even if all

other transaction instances are not chopped. But that contradicts the defini-

tion of private(T, ). ❑

4,2 Algorithm FineChop

Theorem 4 implies that, if we can discover a fine-granularity private for

each T,, then we can just take their union. Formally, the finest chopping of T,

(whose existence we will prove) is

—a private chopping of T,;

—if piece p is a member of this private chopping, then there is no other

private chopping of T, containing p ~ and pz, where p ~ and p ~ partition p

and neither is empty.

This suggests the following algorithm:

procedure chop (2’1, . . . . T. )

for each T,

Fine, := finest chopping of T, with respect to unchopped instances of the

other transactions.

end for;

the finest chopping is

{Finel, Finez, . . . . Finenj

We now give an algorithm to find the finest private chopping of T. The basic

idea of this algorithm is to chop T initially into pieces consisting of single

primitive accesses. After this, the algorithm finds the connected components

of these pieces according to C-edges with respect to the other unchopped

transactions. Each connected component becomes a piece. Any finer chopping

would result in SC-cycles. If you find the algorithm confusing, try reading the

example that immediately follows it.

ACM TransactIons on Database Systems, Vol 20, No. 3, September 1995



Transaction Chopping . 337

Algorithm FineChop

initialization:

if there are rollback statements then

p ~ = all database writes of T that may occur before or concurrently

with any rollback statement in T

else

p ~ := set consisting of the first primitive database access

end

P := {{ x} Ix is a primitive database access not in p ~} U {p ~};

Merge pieces assuming P = {pi, ..., p,} of transaction T:

Let the set AllButT be the set of all transaction except T.

Consider the graph whose nodes consist of P and AllButT;

the edges are the conflict edges (C-edges) defined on the

nodes.

Construct the connected components of the graph induced by the C-edges.

update P based on the following rule:
for each connected component P.l, P,2,.. ., Pek, if the k pieces of P have the
property that el < ez < .. . < eh < r, then put all aCCeSSeSof pel, pez, ..., pek

into pel and then remove p,2, ..., p,h.

The net effect is that each connected component is replaced by a represen-

tative node.

call the resulting partition FineChop(T )

Figure 6 shows an example of a fine-chopping of transaction instance T5

given a certain set of conflicts and assuming that statements can be re-

ordered in any order. Since there are no rollback statements, each piece

starts off being a single access. Assuming no rollback statements, T5 can be

“fine-chopped” into {{a}, {b, d, f}, {c}, {e}}. Indeed, it may seem surprising that

three noncontiguous pieces {b, d, f’} can be merged; in fact, such merging

sometimes entail further merging as we discuss in Section 4.3. The main

point is that no finer chopping is possible. If {b, d, f} were subdivided further,

there would be an SC-cycle in the chopping graph.

Remark on Efficiency. The expensive part of the algorithm is finding the

connected components of the graph induced by C on all transaction instances

besides T and the pieces in P. We have assumed a naive implementation in

which the connected components are recomputed for each transaction in-

stance T at a cost of 0( e + m) time in the worst case, where e is the number

of C-edges in the transaction graph and m is the size of P. Since there are n

transactions, the total time is O(n(e + m)). In the syntactic conflict model

finding the conflicts can be done in time proportional to sorting all of the

variables touched by the transaction programs.

Remark on Code Analysis. We now explain how to obtain the set P of

primitive database accesses used in Algorithm FineChop from the analysis of

a transaction program. This is straightforward for loop-free code: Construct a

one-to-one correspondence between the database accesses of the transaction

execution instance and the database operations in the transaction program.

For loops, each iteration of the loop is a separate set of database accesses; so

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995.



338 . D. Shasha et al,

/$-’”k
1 T3

c

Fig. 6 Free-chopping of transaction instance T4

T5
c c c

c

j p ,-

b
0 of

a c e

two iterations may be in the same or different pieces. In most cases, either all

of the iterations will be in one piece or all will be in different pieces.

Remark on Shared Code. Until now we have assumed that there is a

one-to-one correspondence between transaction instances and transaction

programs. The assumption made our discussion easier, but it is time to drop

it. In the general case (one or more transaction instances for the same

transaction program), we construct the input to Algorithm FineChop as

follows: If we know that no two instances of a given transaction program will

execute concurrently, we will represent that transaction program once in

Algorithm FineChop; otherwise, we will represent that transaction program

twice in the algorithm (see Figure 10 for an example). The reason twice is

enough is that if there is a cycle in the SC-graph when multiple instances of a

transaction program T are present, but not when there is only one such

instance, then that cycle must touch two or more accesses of T. In that case,

because of the symmetry of C-edges, two instances of the same program text

are sufficient to reveal the SC-cycle.

Moreover, since Algorithm FineChop is also symmetric, the two copies of T

will be chopped in the same way, so all instances of the transaction program

will be chopped in the same way. In sum, we chop programs, and they result

in chopped instances. We enclose two copies of the transaction program in

Algorithm FineChop only if two or more instances of the transaction may

execute concurrently.

Now consider the purchase transaction program of Example 1. Recall that

this transaction is as follows:

(1) if (p > cash) {rollback};

(2) else inventory[ i 1 ‘= inventory[ i ] + p;

(3) cash := cash – p;

The initialization step of Algorithm FineChop yields the pieces:

P 1: Read cash (from line l);

P2: Write inventory (from line 2);

P3: write cash (from line 3).

ACM TransactIons on Database Systems, Vol 20, No. 3, September 1995



Transaction Chopping . 339

m
1

c

\

c
Fig. 7. Graph induced by C-edges.

6 0 0
P1 P2 P3

Suppose we have another purchase transaction T. Then the graph induced by

the C-edges is shown in Figure 7. Pieces p ~ and p~ will be merged. Observe

that this chopping does not depend on the number of concurrent purchase

transactions considered while running Algorithm FineChop.

THEOREM 5. FineChop(T) is the finest chopping of T.

PROOF. We must prove two things: FineChop(T) is a private chopping of

T, and it is the finest one.

—FineChop(T) is a private chopping of T

(1) Rollback-safety: by inspection of the algorithm. The initialization step

creates a rollback-safe chopping. The merging step can only cause p ~ to

become larger.

(2) No SC-cycles: Any such cycle would involve a path through the conflict

graph between two distinct pieces from FineChop(T). The merging step

would have merged any two such pieces into a single one.

—No piece of FineChop(T) can be further chopped. Suppose p is a piece in

FineChop(T). Suppose there were a private chopping TooFine of T that

partitions p into two nonempty subsets q and r.

(1)

(2)

The accesses in q and r result from the merging step. In that case,

there is a path from q to r consisting of C-edges through the other

transaction instances. This implies the existence of an SC-cycle for

chopping TooFine.

Piece p is first piece p,, and q and r each contain rollback statements

of pl as constructed in the initialization step. So, one of q or r may

commit before the other rolls back by construction of p ~. This would

violate rollback-safety. ❑

4.3 The Dependency Graph for Ordering Pieces

Given the conflict edges, denoted C-edges, we apply Algorithm FineChop to

obtain the pieces. The question then becomes, How should we execute the

pieces of each transaction instance resulting from Algorithm FineChop? In

particular, if a piece does not include consecutive database operations, the

program may have to be rewritten, or pieces will have to be merged. Recall

the purchase transaction program:

(1) if (P > cash) {rollback};

(2) else inventory[ i ] := inventory[ i ] + p;

(3) cash := cash – p;

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995.



340 . D, Shasha et al,

T, : {a)

Fig. 8. Example of’ dependency graph,

T1 : {b,d,c,f} T, : {e}

In the previous section, we have shown that Algorithm FineChop divides the

purchase transaction into two sets of’ database operations:

PI: {Read cash, Write cash}:

P2: {Write inventory};

We now have to decide how to execute these two pieces. PI must be executed

first because it may execute a rollback statement. P2 can be executed after PI

because it is semantically valid to permute lines 2 and 3 in the original

purchase transaction program. This yields the following rewriting of the

purchase transaction program:

Tl: begin Tl: if ( p > cash) {rollback} else cash = cash – p: commit:

T2: begin T2; inventory[ i ] = inventory[ z ] + p; commit;

I$ote that if lines 2 and 3 were not commutative we would have had to merge

PI and P2 into one “superpiece.” This section explains how to decide when to

perform such merges. Our algorithm entails only analysis of individual

transaction programs. Thus, its complexity scales linearly with the number of

transactions.

First, we establish data dependencies between pieces inside each transac-

tion instance. These dependencies are represented by a directed graph, called

the dependency graph, whose nodes are pieces and whose edges, denoted

D–edges, are defined as follows: There is a D_edge from piece p to piece p’ if

—piece p has a statement s that “precedes” a statement s’ of piece p’ (i.e.,

there exists a path in the precedence graph7 from s to s’), and s and s’

conflict; or

—p is the first piece and contains a rollback statement. (This part about the

rollback statement is required for rollback-safety.)

Recall that intertransaction considerations are no longer relevant because

Algorithm FineChop already took care of them; D _edge.s concern only intra-

transaction dependencies.

The graph induced by D _edges may have a cycle. For example, consider

Figure 6. Assume that every single piece a, b, . . . consists of a single SQL

statement. If b precedes c and c precedes d in the original transaction

program and if c conflicts with b and d, then there is a D _edge from

{b, d, jl to {c}, and vice versa. In this case, the two pieces cannot be executed

in arbitrary concurrent order. We have to merge the two pieces into one

consisting of {b, c, d, f}. The obtained dependency graph is shown in Figure 8

7The precedence graph represents the precedence relationship defined m Section 2

ACM TransactIons on Database Systems, Vol 20, No 3, September 1995



Transaction Chopping . 341

(we have assumed that a contains a rollback statement). In general, all

pieces that are in a directed cycle of .D_edges must be merged into a single

superpiece.

There is no cycle between two iterations of a same program loop. However,

if a piece contains the first and the last iteration of a single loop, all of the

iterations of the loop must be merged with this piece.

We summarize these considerations into the following algorithm:

Algorithm Preserve_ Order( P, T).

(P is the finest chopping of a transaction instance T)
Construct the dependency graph (P, D _edges);

Reduce each cycle in the dependency graph to a new superpiece, and cause

the superpiece to inherit the dependencies from its constituents

Superpieces will be executed according to their dependency graph;
The order of statements within a superpiece will be the original relative order

of the statements in T.

The critical part of this algorithm is the detection of conflicting statements

with precedence relationships. This can be done by using techniques combin-

ing data and control-flow analysis of the transaction program, such as those

presented by Aho et al. [1986], Weiser [1984], and Agrawal [ 1994]. The more

effective they are, the less numerous the D _edges will be.

The resulting dependency graph can be used to reorganize the transaction

progarns: One can execute the superpieces in any order consistent with the

dependency edges. That is, if there is a dependency edge from superpiece p to

superpiece p’ then all of the statements of p must precede the statements of

p’ in the new program execution order. On the other hand, two superpieces of

a transaction instance T can be executed in parallel or their order can be

reversed, provided that there is no dependency edge between them,

A dynamically parallel approach consists of executing a superpiece s as

soon as all superpieces have D _edge arcs pointing to s complete. Thus,

chopping can enhance intratransaction parallelism, as well as reduce the

time locks are held. In our example (see Figure 8), T2 and T3 can be executed

in parallel.

Each superpiece will be managed as an independent transaction instance,

committing its changes when it finishes. If a superpiece aborts due to a

deadlock, then it is reexecuted by embedded SQL code that detects deadlock-

induced error codes and retries the superpiece. If a superpiece aborts due to a

system failure, then we use the “mini batch trick” illustrated in Example 2 of

Section 1.

5. APPLYING THESE RESULTS TO TYPICAL DATABASE SYSTEMS

For us, a typical database system will be one running SQL. Our main

problem is to figure out what conflicts with what. Because of the existence of

bind variables, it will be unclear whether a transaction instance that updates

the account of customer :x will access the same record as a transaction

instance that reads the account of customer :y. So, we will have to be

conservative.

ACM Transactions cm Database Systems, Vol. 20, No 3, September 1995



342 . D. Shasha et al

We can use the tricks of typical predicate locking schemes, as pioneered in

System R and then elaborated by Wong and Edelberg [1973] and by Dadam

et al. [1983]. For example, if two statements on relation account are both

conjunctive (only AIW3s in the qualification) and one has the predicate

AND name LIKE ‘T70’

whereas the other has the predicate

AND name LIKE ‘S%’

they clearly will not conflict at the logical data item level. (This is the only

level that matters since it is the only level that affects the return value to the

user. ) Detecting the absence of conflicts between two qualifications is the

province of compiler writers, We offer nothing new.

The new idea we have to offer is that we can make use of information in

addition to simple conflict information. For example, if there is an update on

the account table with a conjunctive qualification and one of the predicates is

AND acctnum = :x

then, if acctnum is a key, we know that the update will access at most one

record. This implies that a concurrent reader of the form

SELECT . . .

FROM account

WHERE . . .

will conflict with the update on at most one record. So, the SELECT

transaction can execute at degree 2 isolation. (Degree 2 isolation has the

effect of chopping the SELECT transaction instance into pieces, each of

which consists of a single data item access.) In fact, even if many updates of

this form are concurrent with a single instance of the SELECT transaction,

the reader can still execute at degree 2 isolation, because no SC-cycle will be

possible.8 On the other hand, if two instances of the SELECT transaction can

execute concurrently, then they cannot execute in isolation because an SC-

cycle is possible (see Figure 9).

Remark about Multiuersion Read Consistency. Several IIBM& (e.g., ORA-

CLE, GemStone, and RDB) offer a facility known as multiuersion read

consistency. For concreteness, we adopt the syntax of ORACLE. ORACLE

SELECT statements (as opposed to SELECT for update statements) acquire

no locks. Instead, they appear to execute when the enclosing transaction

instance began: They return values based on the data state at the time of the

first SQL statement of the transaction. If T is entirely read-only, then

multiversion read consistency ensures serializability. If T contains writes,

however, then using multiversion read consistency for selects may lead to

nonserializable executions such as begin(Tl) RI (x) begin(T2) W2(X) W2(y)

commit(T2) WI(y) eommit(Tl).

‘This does not hold for insertions, however Concurrent insertions of single records could result

in a phantom.

ACM TransactIons on Database Systems, Vol. 20, No 3, September 1995



Transaction Chopping . 343

Ts’: SELECT .,. from acccxmt

“i-m---’
w, acctnlun = 4 w, Sccbmm= 10 , - w, F#xtmm=4 w,&CCtmm=lo , -

L .i s ‘?:-” :< j , :f:-’”
Ts: SELECT... from account TX SELECT from account

CheSELECT transaction: no SCcycle. Two SELECT tmnsmhons a SC_cyde appears.

Fig. 9 Applying chopping to execute SELECT transactions at degree 2 isolation.

From the point of view of chopping theory, multiversion read consistency

puts all reads that use it into one piece and all other operations into another

piece. So Algorithm FineChop will tell us when and how much multiversion

read consistency to use.

For example, consider a situation in which one transaction program has

the form

SELECT . . .

FROM account

WHERE . . .

UPDATE balance . . .

producing a set of possibly concurrent transaction instances we call Group 1;

and another transaction program updates possibly several records of account,

producing a set of transaction instances we call Group 2. There are no other

transactions. Using multiversion read consistency for the Group 1 transac-

tions will not work because there could be a conflict between the SELECT

piece of a Group 1 transaction instance T and a Group 2 transaction instance,

and a second conflict between the Group 2 transaction and the SELECT

piece of a second Group 1 transaction T’. The UPDATE piece of T’ might

then conflict with the UPDATE piece of T. If, however, Group 1 contained

only a single transaction instance (i.e., no two instances of the first transac-

tion could execute concurrently), then using multiversion read consistency for

Group 1 SELECTS would work, because the conflicts with Group 2 transac-

tions yield cycles having only C-edges (see Figure 10).

6. EXPERIENCE WITH CHOPPING ON A REAL DBMS

We have implemented the chopping algorithm as a preprocessor for SQL-86

programs, To simulate its applicability in real life, we have tested its

performance on a variant of the AS3 AP [Gray 1991]) benchmark using a

commercial DBMS (ORACLE9 version 6). This section describes our SQL

‘ORACLE is a trademark of Oracle Corporation.

ACM TransactIons on Database Systems, Vol. 20, No 3, September 1995



344 . D. Shasha et al.

Group 2 72 Group 2 T2 T2’— ‘I-2”

. ...y.k...... .... ‘\k/-
T1

R, account

Group 1 ~

T1 ‘

R,accomt

s

T1
W, balm c W:’balance

Group 1 contains several tranaactIona:
aSC_cyclemy appear

Group I

T]
R, sccount

8

T1

w, balance

Group 1 contains only one transaction:

4
cycles have only C_edgea

Fig. 10. Applying chopping to multiversion read consistency: The SELECT statements using

multiversion read consistency constitute one piece of the transaction instances.

implementation and our experimental results, and discusses the performance

trade-offs of chopping,

6,1 Benchmark Experiment on a Real System

We consider the situation where a long transaction instance that updates a

large amount of data is run concurrently with many short conflicting transac-

tions, each of which randomly updates a single tuple. Our goal is to quantify

the value of chopping the long transaction while maintaining serializability.

Our hypothesis is that we should get a higher transaction throughput for the

short transactions and a slightly lower throughput for multiple instances of

the long transaction. Our test executes on a relation called “updates.” The

schema of the updates relation is the following: updates (key integer, int

integer, signed signed integer, double double precision). Attribute key is the

primary key in the relation.

The long transaction, denoted LT, updates tuples with an even key. It is of

the form

BEGIN TRANSACTION

EXEC SQL mod_550_seq; EXEC SQL unmod_550_seq;

EXEC SQL commit;

END TRANSACTION

where mod_ 550_ seq is the query

update updates set double = double + 10000000

where key between 100 and 1200 and mod(key, 2) = O;

and unmod _ 550_ seq is the query

update updates set double = double – 10000000

where key between 100 and 1200 and mod(key, 2) = O;

ACM Transactions on Database Systems. Vol 20, No 3, September 1995



Transaction Chopping . 345

There are two kinds of short transaction instances in our tests:

—the short conflicting transactions, denoted STC, which update a record in

common with the LT transaction; and

—the short nonconflicting transactions, denoted STNC, which do not update

any record in common with the LT transaction.

The STC transactions are of the form

BEGIN TRANSACTION

EXEC SQL oltp_update _ Conflict; EXEC SQL commit;

END TRANSACTION

where oltp _update _ Conflict is as follows:

update updates set double = O

where key =: random_ number(lOO, 1200) and mod(key, 2) = O;

The STNC transactions are of the form

BEGIN TRANSACTION

EXEC SQL oltp_update_NConflict; EXEC SQL commit;

END TRANSACTION

where oltp _update _ NConflict is as follows:

update updates set double = O

where key =: random _number(lOO, 1200) and mod(key, 2)! = O;

In our tests, we generate random numbers uniformly in the interval

[100..1200]. ORACLE’s locking granularity is tuple-level, so the STNC will

never have to wait for a lock held by LT, though it will have to wait for short

page-level latches (latches are released immediately after a page is updated,

rather than at the end of the enclosing transaction).

We vary three parameters:

(1) the number of short, conflicting transaction instances, denoted nb_STC;

(2) the number of short nonconflicting transaction instances, denoted

nb _ STNC; and

(3) the number of pieces into which the long transaction instance is decom-

posed, denoted N.

We perform our tests in two stages. First, the long transaction program is

chopped into N pieces. (Algorithm FineChop would allow us to make a

transaction out of each tuple access so N can be as great as 550.) The long

transaction is built up as the succession of the pieces encoded as embedded

SQL subprograms and separated by COMMIT statements.

The total number of concurrent users is 1 + nb~~c + nb~~~c, where the 1

stands for the long transaction. Each user is modeled as a UNIX1° process

that exercises its transaction type in a loop. The execution continues for a

10UNIX is a registered trademark of AT & T Bell Laboratories.

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995.



346 . D Shasha et al.

O“”L_J_L-J .~,.
O.al mm Ao.oo 60.CO

Fig. 11. Throughputs of STC and STNC,

predefined time T, yielding a transaction throughput for

transactions.

the long and short

6.2 Results

The experiments use ORACLE version 6.0.30 running under B.O,S. 2.0.0 on a

BULL DPX20. We used dedicated disks for the log and the database in order

to reduce seek times and rotational delays for writing the log.

The results of a first set of experiments are shown in Figures 11-13. Figure

11 shows that chopping the LT program significantly increases the through-

put of STCS. In fact, the throughput of STCS comes close to the throughput of

STNCS. That is the good news. The bad news is that the number of LTs that

can be executed within time T decreases as N increases (Figure 12). The

throughput of the STNC also decreases, probably due to resource contention.

Intuitively, chopping improves the performance of STC instances for two

reasons: (1) The maximum number of locks held at one time by the LT

decreases. Consequently, the probability that an STC requests a lock held by

an LT decreases. (2) The LT releases its locks earlier; the lock waiting time of

the STC becomes shorter when a conflict occurs.

Chopping also imposes two costs on LT (Figure 12): (1) It entails more log

writes because each piece commits separately (though group commits would

mitigate this cost if available), and (2) each log write causes a context switch.

Furthermore, since STCS, STNCS, and LTs are sharing the same resources

(CPUS and disks), the increasing number of active STCS in the system affects

the performances of STNCS and LTs.

ACM Transactions on Database Systems, Vol 20, No 3, September 1995



Transaction Chopping . 347

3s.00

mm

Zs.lm

20.00

15.00

1002

no

0.U3
[

\

I I I

O.al 2.aoo 40.U3 &3.oo

m

dxTIP@mmkmN

Fig. 12. Throughput of LT

lJlmlxlo3

5“)~—T=m+s’+-

1:j’-’---’;
350

3.UJ-
J

,

2s - 1

200 - J

I

1S4 - -i

I .00 - ]

J
033 -

O.al -i
I I I

0.00
CIIO@IS-:N

moo 40.00 60.63

Fig. 13. Global throughput.

ACM Transactions on Database Systems, Vol 20, No.3, September 1995



348 . D. Shasha et al

Iauxl$

1.10

1.Cm

O!xl

O..m

070

0.60

0.53

0,40

0.33

O.m\/

O,al m.cm

Fig. 14.

1

-1

What is the bottom line? The short transactions have been made faster at

some cost to the longer transactions. This is a reasonable trade-off since in

most applications the short transactions require the best response time.

There is, moreover, an overall improvement of the global throughput result-

ing from chopping, as Figure 13 shows (20 percent improvement). The biggest

improvement is given at relatively low chopping numbers. The global

throughput curve reaches a plateau after a chopping number of 20.

One of us proposed an average case performance model for chopping

[Llirbat 1994]. Here, we briefly describe that model and show how it applies

to this example.

As in Tay’s [ 1987] work, we model the probability of conflict as proportional

to the average number of items held locked (in conflicting lock modes) at any

time. The expected waiting time of a transaction instance T if it does

encounter a lock conflict is proportional to the size of the transaction instance

for which T has to wait. Thus, to a first approximation and in the absence of

resource contention, the expected waiting time is proportional to the square

of the average number of items held locked. (The approximation assumes that

the duration of a transaction instance is proportional to the number of locks

it obtains, a reasonable assumption for LT in this case. )

Since the average number of items held is inversely proportional to the

number of pieces of the chopping, the expected waiting time is proportional to

1/( choppings2 ), in the absence of resource contention and assuming a logging

protocol such as writeahead logging [Gray and Reuter 1992].

On the other hand, chopping’s costs are linearly proportional to the number

of pieces, as shown in Figure 14. As mentioned above, this cost can be

AC!MTransactIons on Database Systems. Vol 20, No 3, September 1995



Transaction Chopping . 349

reduced by group commits that combine the commits of several transaction

instances into one write.

7. SIMULATION

In this section we evaluate the performance of chopping in the general case

where random transactions are running concurrently on a centralized

database. To test the effects of chopping in a wide range of operating

conditions, we have implemented a simulation model and validated it against

the ORACLE experiments of the last section. The simulation model accu-

rately reflects the relative benefits and costs of chopping in those experi-

ments, though not the exact numbers.

The simulation results yield the following conclusions:

(1) Chopping a transaction decreases the waiting time of the other conflicting

transactions, and thus decreases lock contention and improves the

throughput of the concurrent transactions. In particular, the obtained

results show that chopping transactions can delay or prevent lock con-

tention thrashing, due to lock contention.

(2) This performance improvement is reduced by two resource effects: (1) the

added commit cost and (2) the increased resource contention (waiting for

CPUS and disks).

As we will see, performance analysis of chopping in different operating

situations helps us to describe a feedback-based approach to find a suitable

chopping number.

7,1 The Simulation Model

The database simulation model is based on Carey 1983, Agrawal et al. 1987,

Haritsa et al, 1990, and Agrawal et al, 1992. The main difference is the

simulation of the log manager operations at commit time to take into account

the cost of commits. This model was developed using the SIM package [Adler

et al. 1992]. It is divided into four main components: a transaction manager

(TM), a concurrency control agent (CCA), a data manager (DM), and log

manager (LM). The TM is responsible for issuing lock requests and their

corresponding database operations. It also provides the durability property by

flushing all log records of committed transactions to durable memory. In case

of failure or aborted transactions, the TM reads these log records in order to

ensure the atomicity property using undo–redo operations. The CCA sched-

ules the lock requests according to the two-phase locking protocol. The DM is

responsible for granting access to the physical data objects and executing the

database operations. The LM provides read and insert-flush interfaces to the

log table.

Figure Ma represents a closed querying model of the execution of chopped

transactions on a single-site database. Chopped transaction instances (CTIS)

are generated from the terminals. A CTI is decomposed into N pieces, which

are executed in a serial order as chained transactions. The intra _ CTI_delay

parameter represents the mean time delay between the completion of a piece

ACM Transactions on Database Systems, Vol. 20, No 3, September 1995



350 . D. Shasha et al.

TERMINALS

h /n[er_CJ/_delay

F++”
PA

TART

alnxEJJQlicvE

mA

Tmsaction LOCK REQUEST

-r

p--EI
A(2U

DATAACCESS Dam
-r

LGGREQUEST

I I
OONE

cob4MTEn

(a)

1- 1

AIKxtTED

TERML%us

(b)

w

Fig. 15 Simulation model. (a) Logical queueing model, (b) Physical queuemg model,

and the submission of the next piece. If a piece is aborted because of a lock

conflict, then it is repeatedly restarted until it commits. The parameter

restart_ delay represents the mean time between the abort of a piece and its

restart. A CTI completes when its last piece is committed. The parameter

inter_ CTI_delay represents the time delay between the completion of a CTI

and the initiation of a new CTI from a terminal.

The pieces are executed as normal transactions by the TM. The TM sends

lock requests to the CCAS request queue, and the CCA processes these

requests. If the transaction must block, it enters the blocked _quez~e until the

conflicting operations have released their locks. We use a deadlock-detection

strategy based on a waits-for graph. Whenever a deadlock is detected, the

youngest transaction is aborted. When a lock request can be granted, an

acknowledgment is sent back to the TM, which then forwards the database

operation to the DM. At commit time, the LM receives a Log_llush request

from the TM through the fZush _queue. The LM uses a group COMMIT’

ACM TransactIons on Database Systems, Vol 20, No. 3, September 1995



Transaction Chopping . 351

algorithmll to execute all waiting flush requests with a single IO. When the

log records are written to durable storage, the LM sends a message back to

the TM, which releases locks and completes the transaction with the COM-

MITTED message. In case of abort, the TM sends a Log_read request to the

LM, executes the undo operations, releases the locks, and ends the transac-

tions with the ABORTED message. For convenience, we assume in our

simulation that a Log_ read request never requires 10.12

The physical queueing model, shown in Figure 15b, is quite similar to the

one used by Carey [1983], Agrawal et al. [1987], and Agrawal et al. [1992], in

which the parameters num _cpus and num _disks specify the number of

CPU servers and the number of IO servers. The requests to the CPU queue

and the IO queues are serviced FCFS (first come, first serve). The parameter

obj_cpu is the amount of CPU time associated with executing a database

operation on a. single object. The parameter page_ io –access is the amount of

IO time associated with accessing a data page from the disk. The io _prob

parameter is the probability that a database read operation on an object

forces a data page IO. We add to this model one separate IO server that is

dedicated to the log file. The parameter Log_disk _io represents the fixed 10

time overhead associated with issuing the IO. The parameter Log_rec – io _ w

is the amount of IO time associated with writing a log record on the log disk

in sequential order. The commit _cpu parameter is the amount of CPU time

associated with executing the COMMIT (releasing locks and so on). The

abort_cpu parameter is the amount of CPU time associated With executing

the ABORT statement (executing undo operations, releasing locks, and so

on).

Each simulation consists of a number of repetitions. A repetition is per-

formed in three stages: (1) the generation of random transaction programs,

(2) the decomposition of these programs in pieces using the chopping algo-

rithm, and (3) the simulation of the execution of the obtained CTI. The

simulation time was fixed at 1000 s. The number of repetitions was chosen to

achieve 90 percent confidence intervals for our results (30 repetitions’). Table

I summarizes the parameters and their values in the simulation model and

experiments.

7,2 Simulation Results

In our experiments, we vary the multiprogramming level (number of concur-

rent transaction programs) from 1 to 100 (one program per terminal). This

allows us to obtain a wide range of operating conditions with respect to

conflict probability and resource contention. The curve in Figure 16 shows

that when we increase the multiprogramming level ( mpl ) the number of

conflicting operations per transaction13 increases. In Figure 17 we measure

the throughput of concurrent transactions running without concurrency con-

llWe implemented a zero-wait timer group commit [Helland et al. 1987].
12Reading the log fiIe ~Sually requires no IO (see Gray and Reuter 1992, P. 505)

13A data operation is conflicting if there exists a concurrent transaction that accesses the same

object.

ACM TransactIons on Database Systems, Vol. 20. No 3, September 1995



352 . D. Shasha et al.

Table I. Simulation Model Parameter Definitions and Values

Parameter
. .

db–size

num_terms

N

txn—wze

ulrite_ op_pct

num_cpus

n um_ dwks

k

obj— cp u

page— 10—access

Lo—prob

Log– disk– io

Log– ret– Lo– w

commLt_cpu

Abort_cpu

inter_ CTI_delay

zn tra— CTI— delay

restart— delay

~escr~ptlon VaLUe

Number of objects in database 20,000 objects

Number of terminals 1–100 terminal

Chopping number 1-8

Transaction size 80 operations

Write operation percentage 4070

Number of CPUS k CPUS

Number of data disks k data disks

Resource unit 2-4

CPU time for executing an operation 1 ms

IO time for accessing a page 7 ms

Probability of IO page access 0.2

Time for issuing an IO log access 7 ms

IO time for writing 1 page on log disk Olms

CPU time for executing a COMMIT 2 ms

CPU time for executing an ABORT 2 ms

Time between two CTIS 10 ms

Time between two CTI’S pieces 5 ms

Restart delay of one CTI’S piece 5 ms

Nb opwatwn,

mm 1 1

1’303

1800

17al -

16 ffl -

15CIJ -

14 co -

13m -

!203 -

lice -

10 so -

*W -

800 -

?Ga -

6@l -

503

4(XI -

3C0 -

2m

103

om -

1 1 1 c

om
, mpl

mm mm cow mm Im m

Fig, 16 Conflicts,

trol. This figure shows how resource contention limits the throughput of

transactions. A plateau is reached at a multiprogramming level of 20 because

the resources are saturated.

We now present the results of the simulation experiments when the long

transaction is chopped into 1 (no chopping), 2, 4, 6, and 8 pieces. Figures 18

and 19 illustrate, respectively, the throughput and the mean response time of

the concurrent transactions. They show that chopping transactions improves

ACM Transactions on Database Systems, Vol 20, No. 3, September 1995,



Transaction Chopping . 353

Nb CTISper second

r9ml-

u m -

17m -

I&w -

13m -

Mm -

urn -

lam -

ltm -

Wm -

*M -

am -

7m -

m -

$m -

4m -

3m -

ml -

im -

am -

lam

! 6,(7I

14.00

10w

8al

6UI

4.00

Mu

am auloalmm.m Ulm Im

No concurrency

mpl

Fig. 17. Effects ofresource sharing.

nb CTI per second
.. T .7

I -6)

r; ‘%i b “b
\

“’”’4’
.. .s

“K!>’.ti ‘“’”’,... ..:
‘1
: ‘,,

-. v, “,

.
: ‘h ‘o, ““’’””!

;! . . . .

/

:
,., j

i.

,.
..

:“1
Om

‘La ‘0.,

“m “u
e

no concwmncy “ISI
-..

0--------------
n{ I I ,lwppmg a..

+ ----- .5
Ctlomlnx = 2

h dloppmg= 4 . . . . . . .

* . . . . . . --------
● Cbvpplng=f)

.. .. ..
cbmping = 8 ......

.+...:
. ., mpl

sow

Fig. 18. CTI’s throughput.

lm.no

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995.



354 . D. Shasha et al

tune (111s)x 10‘

,4cm T“ 0

1503’’” “
.. ....

rlu [,hoppulg

T“

F-

aim mm lm m

Fig, 19 CTI’S mean response time

the performance significantly. Chopping = 8 gives the best performances.

Note that from mpl = 20 to mpl = 60 the obtained throughput is quite close

to the maximal throughput indicated by the “no concurrency” curve.

The best improvements of performance (120 percent with mpl = 100) are

provided by chopping with large multiprogramming levels when the through-

put of the nonchopped transactions is in a thrashing situation. Furthermore,

Figure 18 shows that chopping transactions delays the thrashing point to

larger multiprogramming levels. Specifically, the thrashing situation appears

at mpl = 20 if there is no chopping, at mpl = 30 when chopping is equal to 2,

at mpl = 40 when chopping is equal to 4, at rTLpl = 50 when chopping is

equal to 6, and after mpl = 55 when chopping is equal to 8. As observed and

explained in several studies [Tay 1987; Thomasian and Ryu 1991; Thomasian

1991; Ryu and Thomasian 1990; Carey et al. 1990], the thrashing behavior is

caused to a large extent by system underutilization due to transaction

blocking, and to a more limited extent by wasted processing caused by

transaction aborts. In Figure 20 we measure the mean time during which

each transaction is waiting for a lock. We observe that the mean waiting time

increases with the mpl. 14 This effect is reduced by chopping. We also observe

that chopping reduces the wasted processing caused by aborts by reducing

the size of pieces to restart (30 percent reducing with mpl = 100).

l~As explained by ThomasIan [ 1991], the strong increase of the mean waiting time IS essentially

due to cascading waits.

ACM TransactIons on Database Systems, Vol 20, No 3, September 1995



Transaction Chopping . 355

hrw(m>) x 10’

,,m:l.. . ., .

v
Q

no chc]ppim
ILm

/
Iiacl

10.UI

9m

B.m

lJXI

600

903

4,00

300

2.00

I.03

Oca

... s ------------

/

.!

chopping = 2

v--
choppmq = 4 P. ,, ...

....
b

ch<>ppul~= 6
.

t............. (h,,ppmg = 8

,.

.....

.

..... ....

?-+

J

Om mm Imm

nlpl

Fig. 20. Mean waiting time.

On the other hand, chopping does not help much when the mpl is low.

There are two reasons for this: (1) The probability that a transaction is

involved in a conflict is small, eliminating the need to chop; and (2) since the

marginal gain of chopping is small, effects of added commit cost are notice-

able. The mean CONIMIT-time graph (see Figure 21) illustrates the added

COMMIT cost due to chopping. The figure shows that chopping increases the

COMMIT cost in a linear manner. On the other hand, the COMMIT cost is

not very sensitive to the number of concurrent transactions. This is due to the

fact that we use group COMMIT.

To evaluate the effects of resource constraints on the performance of

chopping, we conducted new experiments with the number k of resource

units (the number of CPUS and disks in the system15) increased from two to

four. Figure 22 reports the obtained throughputs. The benefit of chopping is

significantly greater when more resources are provided. In particular, the

maximal throughput for k = 4 obtained by chopping the CTIS in eight pieces

represents a 39 percent improvement, compared to the maximal throughput

for k = 4 (see Figure 22b) obtained when there is no chopping. The maximal

throughput for k = 2 (see Figure 22a) obtained by chopping into eight pieces

represents only a 12 percent improvement, compared to the maximal

throughput for k = 2 obtained when there is no chopping. Hence, chopping

transactions is particularly useful if there is less resource contention. Indeed,

chopping transactions decreases the lock contention and so increases the

15See Table I.

ACM Transactions on Database Systems, Vol 20, No 3, September 1995



356 . D Shasha et al

time (m. )

“TIIQim ●++t++*t*** . . . ..+... -.+-

t -. ..+

lam ; . . .

i
‘-t... +

mm . ,

mm,

Xlm .

#-------- e---o --e--e..= ..=

m-ml ,..

1
002 mm lmm

Fig. 21. Mean COMMIT time,

number of active transactions in the system. If there is no resource con-

tention, these transactions are executed efficiently. On the other hand, if

resources are saturated these transactions have to wait for available re-

sources to be executed, and the global throughput is not improved.

7.3 Rule-of-Thumb Lessons from These Experiments

As already observed in the experiments on ORACLE, the simulation results

show that low chopping numbers give the biggest benefit. Furthermore, the

performance analysis in the previous section allows us to point out three

kinds of situations where increasing the chopping number is useless:

(1) There is resource contention. Once again, if resources are saturated,

increasing the number of active transactions will not improve the global

throughput (compare Fig-are 22a and b).

(2) There is minimal lock contention. In these situations the marginal gain of

chopping is too small because the probability of conflict is small (see

Figure 18, when mpl is lower than 15).

(3) The chopping algorithm chops only pieces involved in no conflicts. For

example, according to Figures 18 and 22, it is ineffective to chop transac-

tions from 6 to 8 pieces.

These considerations lead to a simple method to obtain a suitable chopping

number:

(1) Evaluate the system load.

(2) Evaluate the lock contention.

ACM Transactions on Database Systems, VIJ1 20, No 3, September 1995



Transaction Chopping . 357

,Bt)(TI ,>,, .w, m<l

3303 .

Mm :

2500 .

zom .

ls 03.

loon

u ------------
,1<, <,[l(,,>,m,q

*
<1,<1,>,,1,1s = 8 .$

5m .

f

.i

Om --1-

1. . . .. .... . .. m,),

Om wm [mm

(a)

N1>(’TI. ,w,.,,<Y,,,<I

T

35 m

30.0)

urn

rn.m

t~m

10m

sm

K. ‘+ *

Lab
F

b..

.

/“
:!,

,.
:.

.

No Cl,,, (,, n.,,,.l’
Q -------------

,1, ) ckmppmq

* ., . . . . . . . . ..
. <ho, ylmg . 2

:.

‘fi-
*..-.*~... ‘. ‘ *

“**
‘.

,.’ ‘+(..
+’
$

L %,
‘+.. :

:; %? Q % ““”:
“., > :

::
,.

,:

Q.,
“m.

Q. “ e-
“U..

‘El..
m-

<.,

L.. .. ... .... .... ........ . . ... ..mn.

o.m som Im m

(b)

Fig. 22. Effects ofresources. (a) Resource units = 2.(b) Resource units =4

ACM Transactions on Database Systems, Vol 20, N0 3, September 1995



358 . D Shasha et al.

(3) If the system is underutilized because of lock contention, then

—find the pieces that are involved in a lot of conflicts, and

—try to chop them.

(4) If resources are heavily loaded or if the only choppable pieces have no

conflicts with other pieces, then stop chopping. (The reason for the last

part is that chopping such a nonconflicting piece only adds to COMMIT

and transaction starting overhead without improving throughput.)

8. RELATED WORK

There is a rich body of work in the literature on the subject of chopping up

transactions or changing concurrency-control mechanisms, some of which we

review here, although the work is not strictly comparable. The reason is that

this paper is aimed at database users, rather than DBMS implementors.

Database users normally cannot change the concurrency-control algorithms

of the underlying system, but must use two-phase locking and its variants.

Even if users could change the concurrency-control algorithms, they probably

should avoid doing so, as the bugs that might result can easily corrupt a

system.

The literature offers many good ideas, however. Here is a brief summary of

some of the major relevant contributions.

Farrag and Ozsu [1987] proposed a concurrency-control algorithm that

generalizes both two-phase locking and time-stamp ordering. Whereas our

chopping paper has been oriented toward two-phase locking, their framework

might permit chopping approaches to time-stamping as well,

Garcia-Molina [ 1983] suggested using semantics by partitioning transac-

tions into classes. Transactions in the same class can run concurrently,

whereas transactions in different classes must synchronize. He proposed

using semantic notions of consistency to allow more concurrency than serial-

izability would allow and using counterstep transactions to undo the effect of

transactions that should not have committed.

Lynch [1983] generalized Garcia-Molina’s model by making the unit of

recovery different from the unit of locking (this is also possible with the

checkout/checkin model offered by some object-oriented database systems).

Farrag and Ozsu [ 1989] also considered the possibility of chopping up

transactions by using “semantic” knowledge and a new locking mechanism.

For example, consider a hotel reservations system that supports a single

transaction Reserve. Reserve performs the following two steps:

(1) Decrement the number of available rooms, or roll back if that number is

already 0.

(2) Find a free room, and allocate it to a guest,

If reservation transactions are the only ones running, then the authors

observed that each reservation can be broken up into two transactions, one

for each step. Our mechanism might or might not come to the same conclu-

sion, depending on the operation semantics known. To see this, suppose that

ACM TransactIons on Database Systems, Vol 20, No 3, September 1995



Transaction Chopping . 359

the variable A represents the number of available rooms, and r and r’

represent distinct rooms. Suppose we can represent two reservation transac-

tions by the following:

Tl: RW(A) R,W(r)

T2: RW(A) R(r) RW(r’ )

Chopping these will result in

Tll: RW(A)

T12: RW(r)

T21: RW(A)

T22: R(r) RW(r’ )

which will create an SC-cycle because of the conflicts on A and r. However,

the semantics of the hotel reservation system tell us that it does not matter if’

one transaction decrements A first but gets room r’. That would suggest that

T12 and T22 in fact commute and should be construed as primitive accesses.

If that is the case, then there is no SC-cycle. The authors noted in conclusion

that finding semantically acceptable interleaving is very hard. It is possible

that chopping would make it easier.

Agrawal et al. [1994] proposed a scheme that unifies the semantic approach

of Farrag and Ozsu with the relative atomicity approach of Lynch. Using

semantic relative atomicity as a correctness criterion can lead to finer chop-

pings.

Bayer [1986] showed how to change the concurrency-control and recovery

subsystems to allow a single batch transaction to run concurrently with many

short transactions. The results are consistent with chopping theory.

Hsu and Chan [1986] examined special concurrency-control algorithms for

situations in which data are divided into raw data and derived data. The idea

is that the recency of the raw data is not so important in many applications,

so updates to those data should be able to proceed without being blocked by

reads of the data. That approach does not guarantee serializable, so chopping

would not help.

O’Neil [1986] took advantage of the commutativity of increments to release

locks early even in an environment of concurrent writes. From the chopping

point of view, the increment is a separate piece.

Wolson [1987] presented an algorithm for releasing certain locks early

without violating serializability based on an earlier theoretical condition

given by Yannakakis [1982]. He assumed that the user has complete control

over the acquisition and release of locks. Using different formalisms and

different algorithms, Lausen et al. [1986] also examined chopping algorithms

under the assumption of complete control over locks. The setting here was a

special case of those algorithmic approaches: The user can only control how to

chop up a transaction or whether to allow reads to give up their locks

immediately. As mentioned above, we have restricted the user’s control in

this way for the simple pragmatic reason that systems restrict the user’s

control in the same way.

Bernstein et al, [1980] introduced the idea of conflict graphs in an experi-

mental system called SDD-1 in the late 1970s. Their system divided

ACM TransactIons on Database Systems, Vol. 20, No. 3, September 1995



360 . D. Shasha et al.

transactions into classes such that transactions within a class executed

serially, whereas transactions between classes could execute without any

synchronization.

Casanova’s [1981] thesis extended the SDD- 1 work by representing each

transaction by its flowchart and by generalizing the notion of conflict. A cycle

in his graphs indicated the need for synchronization if it included both

conflict and flow edges.

Shasha and Snir [1988] explored graphs that combine conflict, program

flow, and atomicity constraints in a study of the correct execution of parallel

shared-memory programs that have critical sections. The graphs used there

were directed, since the only correctness criterion is one due to Lamport

known as sequential consistency.

In summary, any approach that attempts to preserve serializability with-

out changing the system concurrency mechanism can be used in combination

with chopping. Approaches that relax serializability may also use chopping as

an additional mechanism [Hseuh and Pu 1993].

9. CONCLUSION

We have proposed a simple, efficient algorithm to partition transaction

programs into the smallest pieces possible with the following property:

If the small pieces of transaction instances execute serializability, then the

transaction instances will appear to execute serializable.

This permits database users to obtain more concurrency and intratransaction

parallelism without requiring any changes to database-system locking algo-

rithms. The only information required is some characterization of the trans-

action instances that can execute during a certain interval and the location of

any rollback statements within the transaction. Information about semantics

may help by reducing the number of conflict edges.

Our experiments on a real system using the AS3fl benchmark have

shown that chopping improves performance by reducing lock contention,

though it increases resource contention. These observations were confirmed

in more general situations by using a simulation model. Moreover, the

simulation results have shown that chopping transactions can be a good

method to prevent thrashing due to lock contention.

We note that read transactions show no trade-offi Using degree 2 isolation

always yields better performance. (This may be why using chopping to show

that degree 2 isolation is sufficient can make you popular with your clients.)

Several interesting problems remain open:

—Might chopping help the design of multidatabase concurrency-control

methods? We think so, because a multidatabase transaction may consist of

many separately committed pieces. Better performance would result if

some could commit even while others were still executing. Chopping can

say when this is possible.

—How does chopping work in the context of parallel transactions where

backing up one piece of a transaction may create ABORT dependencies

with respect to other pieces?

ACM Transactions on Database Systems, Vol. 20, No, 3, September 1995



Transaction Chopping . 361

—How does chopping interact with relaxed concurrency-control methods that

make use of semantic approximation? Some work has already been started

on combining chopping with epsilon serializability [Hseuh and Pu 1993].

—A pragmatic question: Suppose that an administrator asks how best to

partition transaction populations into time windows, so that the transac-

tions in each window can be chopped as much as possible. For example, a

good heuristic is to put global update transactions in a partition by

themselves while allowing point updates to interact with global reads.

What precise guidance could theory offer? The general pragmatic question

is: What is a good architecture for incorporating chopping among the

tuning knobs for the DBMS?

—Finally, if we could change the underlying DBMS, then we could ask the

transaction load controller to detect the formation of the SC-graph dynami-

cally. This presents promising opportunities for optimization.

ACKNOWLEDGMENTS

We would like to thank Gerhard Weikum for his astute comments regarding

order-preserving serializability and intratransaction parallelism, Victor Vianu

for a bus-ride discussion concerning transitive closure, and Rick Hull for

initial discussions concerning partitioned accesses,

We would also like to thank Elisabeth Baque for applying her artistry to

make the figures of the manuscript and Fabienne Cirio for her initial drafts

of those figures. Many thanks to Winy Goldgewicht and Bertrand Betonneau

for allowing us to do the experiments on ORACLE, to Dimitri Tombroff for

his effective contribution to the implementation of these tests, and to all of

the ORASCOPE BULL team for its generous support. Last, but not least, we

would like to thank the three referees for their extremely careful reviews

(they did two!) and very thoughtful comments.

REFERENCES

ADLER, D., DAGEVILLE, B., AND WONG, K.-F. 1992. A C-based simulation package. Tech. Rep.

ECRC-92-27i, ECRC, Munich.

AGRAWAL, D., ABBADI, A. E., AND JE~FERS, R. 1992. Using delayed commitment in locking

protocols for real-time databases. In ACM SZGMOD International Conference on Management

of Data (San Diego, Calif., June 2–5), 104– 113. ACM, New York.

AGRAWAL, D., BRUNO, J. L., ABBADI, A. E., AND KFUSHNASAWAMY, V. 1994. Relative serializabil-

ity: An approach for relaxing the atomicity of transactions. In ACM Principles of Database

Systems. V. Vianu, Ed., ACM, New York, 139-149.

AGRAWAL, H. 1994. On slicing programs with jump statements. ACM SIGPLAiV Not. 29, 6

(June), 302-311.
AGRAWAL,R., CAREY,M., AND Lmm’, M. 1987. Concurrency control performance modeling:

Alternatives and implications. ACM. Trans. Database Syst. 12, 4 (Dee), 609-654.

AHo, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques and Tools.

Addison-Wesley, Reading, Mass.

BAYER, R. 1986. Consistency of transactions and random batch. ACM Trans. Database Syst.

11, 4 (Dec.). 397–404.

BERNSTEIN, P., SHIPMAN, D. W., AND ROTHNIE, J. B. 1980. Concurrency control in a system for

distributed databases (sold-l). ACM Trans. Database Syst. 5, 1 (Mar.), 18-51.

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995.



362 . D. Shasha et al

BERNSTEIN, P A., H~DZILACOS, V,, MVD GOODMAN, N. 1991 Concurrency Control and Recouery

zn Database Systems Addison-Wesley, Reading, Mass,

CA~EY, M. J. 1983. Modeling and evaluation of database concurrency control algorithms Tech

Rep. and Ph D. thesis, Dept. of Computer Science, Univ. of California, Berkeley, Sept.

CAREY, M. J., KRISHNAMUEtTHY, S., AND Lwrw, M. 1990, Load control for locking: The “half and

half” approach. In The 9th ACM Symposturn on the Pnnctples of Database Systems (Nashville,

Term , May 20-22) ACM, New York, 72-84.

CASANOVA, M, 1981. The Concurrency Control Problem for Database Systems, Lecture Notes in

Computer Science, vol. 116. Springer-Verlag, New York,

D.ADANI, P., PISTOR, P., AND SCHEK, H.-J. 1983 A predicate or,ented Iockmg approach for

integrated reformation systems. In IFIP 9fh World Computer Congress (Paris, Aprd). North-

Holland, Amsterdam, 110–121.

FAR&iG, A. A , AND OZSLT,M. T 1987. Towards a general concurrency control algorithm for

database systems. IEEE Trans. Softw. Eng. SE-13, 10 (Oct.), 1073-1078,

FARRAG, A, A., AND OZSU, M, T, 1989 Using semantic knowledge of transactions to increase

concurrency ACM Trans. Database Syst 14, 4 (Dec.), 503–525

GARCI~-MOLINA, H. 1983. Using semantic knowledge for transaction processing in a dm -

tributed database. ACM Trans. Database S.vst 8, 2 (June), 186–213

GRAY, J . ED 1991. The Benchmark Handbook Morgan-Kaufmann, San Mateo, Calif,

GRAY, J., AND REC~TER. A 1992. Tran,sactlon Processing: Concepts and Techniques Morgan-

Kaufmann, San Mateo, Calif.

HARITSA, J., CAREY, M. J,, AND Lwrw, M. 1990, On being optimistic about real-time con-

straints. In The 9th ACM Symposium on Principles of Database System.? (Nashwlle, Term.,

May 20-22). ACM, New York, 331-343

HELLANZI, P , SAMMER, H,, LNN, J., CARR, R,, GARRET, P,, AND REUTER, A. 1987, Group commit

timers and high volume transaction systems. In Second International Workshop on High

Performance Trarzsact~on Systems. Lecture Notes in Computer Science, Vol. 359, Springer

Verlag, New York, 301-328.

HSEUH, W. AND Pu, C. 1993. Chopping up epsilon transactions. Tech Rep. CUCS-037-093,

Dept. Computer Science, Columbia Univ., New York

Hsu, M., AND CHAN, A, 1986, Partitioned two-phase locking, ACM Trans. Database Syst 11, 4

(Dec.), 431-446.

LAUSEN, G., SOIS.A.LON-SOININEN, E., AND WIZIMAYER, P 1986 Pre-analysis locking. Inf Control

70, 2-3 (Aug.). 193-215

LLIRIMT, F. 1994, Analysls of chopping algorithm’s performance Intern Rep., Rodin Project,

INRIA Rocquencourt, France.

LYNCH, N. 1983 Multi-1evel atomicity—A new correctness criterion for database concurrency

control. ACM Trans Database S.vstems 8, 4 (Dec.), 484–502

O’NBIL, P. 1986. The escrzzw transactional mechamsm. ACM Trans. Database Syst, 11, 4

(Dee ), 405-430.

RAM.OIRITHAM. K. AND CHRYSANTHLS, P K. 1995. Adl,ances in Concurrency Control and Trans-

action Processing IEEE Press, to appear.

RYU, I. K., AND THONASIAN, A. 1990. Analysis of performance with dynamic locking. J. ACM

37, 3 (Sept.), 491-523.

SALZBERG, B., AND TOMBRO~F, D. 1994. A programming tool to support long-running activities,

Tech. Rep, NU-CCS-94-1O, Dept. Computer Science, Northeastern Univ., Boston, Mass.

SHASHA, D. 1988. Efficient and correct execution of parallel programs that share memory.

ACM Trans. Program. Lang Syst. 10, 2 (Apr ), 282-312.

SHASHA, D. 1992. Database TanLng; A PrmcLpled Approach, Prentice-Hall, Englewood Cliffs,

N.J.

TA~, Y, 1987 Locking Performance m C’entralued Databases. Academic Press, New York.

THOMASZAN, A. 1991, Performance limits of two-phase locking. In 7th IEEE International

Conference Data Engzneermg (Kobe, Japan). IEEE, New York, 426–435,

THOM.ASIAN A., AND RYU, K 1991. Performance analysis of two-phase locking. IEEE Trans.

Softu, Eng 17, 5 (May), 386–402.

ACM TransactIons on Database Systems, Vol 20, No 3, September 1995



Transaction Chopping . 363

WEIS~R, M. 1984. Program slicing. IEEE Trans. Softw. Eng. SE10,4(July), 352-357.

WOLSON, O. 1987. Thevirtues oflocking bysymbollc names. J. Algorithms 8( March) 536-556.

WONG, K. C., AND EDELBERG, M. 1977. Interval hierarchies andtheir application to predicate

files. ACM Trans. Database Syst.2, 3( Sept,),223-232.

YANN.AKAKIS, M. 1982. A theory of safe locking policies in database systems. J, ACM 29, 3,

(July), 718-740.

Received March 1994; revised January 1995; accepted June 1995

ACM Transactions on Database Systems, Vol. 20, No. 3, September 1995


