
Transaction Chopping for Parallel Snapshot Isolation

Andrea Cerone1, Alexey Gotsman1, and Hongseok Yang2

1 IMDEA Software Institute
2 University of Oxford

Abstract. Modern Internet services often achieve scalability and availability by

relying on large-scale distributed databases that provide consistency models for

transactions weaker than serialisability. We investigate the classical problem of

transaction chopping for a promising consistency model in this class—parallel

snapshot isolation (PSI), which weakens the classical snapshot isolation to al-

low more efficient large-scale implementations. Namely, we propose a criterion

for checking when a set of transactions executing on PSI can be chopped into

smaller pieces without introducing new behaviours, thus improving efficiency.

We find that our criterion is more permissive than the existing one for chopping

serialisable transactions. To establish our criterion, we propose a novel declara-

tive specification of PSI that does not refer to implementation-level concepts and,

thus, allows reasoning about the behaviour of PSI databases more easily. Our re-

sults contribute to building a theory of consistency models for modern large-scale

databases.

1 Introduction

Modern Internet services often achieve scalability and availability by relying on

databases that replicate data across a large number of nodes and/or a wide geographi-

cal span [18, 22, 25]. The database clients can execute transactions on the data at any

of the replicas, which communicate changes to each other using message passing. Ide-

ally, we want this distributed system to provide strong guarantees about transaction

processing, such as serialisability [9]. Unfortunately, achieving this requires excessive

synchronisation among replicas, which increases latency and limits scalability [1, 15].

For this reason, modern large-scale databases often provide weaker consistency mod-

els that allow non-serialisable behaviours, called anomalies. Recent years have seen a

plethora of consistency model proposals that make different trade-offs between consis-

tency and performance [6, 7, 20, 22]. Unfortunately, whereas transactional consistency

models have been well-studied in the settings of smaller-scale databases [2, 13, 21] and

transactional memory [5, 12, 14, 16], models for large-scale distributed databases are

poorly understood. In particular, we currently lack a rich theory that would guide pro-

grammers in using such models correctly and efficiently.

In this paper we make a step towards building such a theory by investigating the

classical problem of transaction chopping [21] for a promising consistency model of

parallel snapshot isolation (PSI) [22]. PSI weakens the classical snapshot isolation

(SI) [8] in a way that allows more efficient large-scale implementations. Like in SI, a

transaction in PSI reads values of objects in the database from a snapshot taken at its

start. Like SI, PSI precludes write conflicts: when two concurrent transactions write

(a) Original transactions.

txn lookup(acct) {

return acct.balance; }

txn transfer(acct1,acct2,amnt) {

acct1.balance -= amnt;

acct2.balance += amnt; }

(c) An additional transaction making

the chopping incorrect.

txn lookup2(acct1,acct2) {

return acct1.balance+acct2.balance }

(b) A chopping of transfer (lookup is

left as is).

txn withdraw(acct,amnt) {

acct.balance -= amnt; }

txn deposit(acct,amnt) {

acct.balance += amnt; }

chain transfer(acct1,acct2,amnt)

{ withdraw(acct1,amnt);

deposit(acct2,amnt); }

Fig. 1. Example of chopping transactions.

to the same object, one of them must abort. A PSI transaction initially commits at a

single replica, after which its effects are propagated asynchronously to other replicas.

Unlike SI, PSI does not enforce a global ordering on committed transactions: these are

propagated between replicas in causal order. This ensures that, if Alice posts a message

that is seen by Bob, and Bob posts a response, no user can see Bob’s response without

also seeing Alice’s original post. However, causal propagation allows two clients to see

concurrent events as occurring in different orders: if Alice and Bob concurrently post

messages, then Carol may initially see Alice’s message, but not Bob’s, and Dave may

see Bob’s message, but not Alice’s.

A common guideline for programmers using relational databases and transactional

memory is to keep transactions as short as possible to maximise performance; long

transactions should be chopped into smaller pieces [3,21,24]. This advice is also appli-

cable to PSI databases: the longer a transaction, the higher the chances that it will abort

due to a write conflict. Unfortunately, the subtle semantics of PSI makes it non-trivial

to see when a transaction can be chopped without introducing undesirable behaviours.

In this paper, we determine conditions that ensure this. In more detail, we assume that

the code of all transactions operating on the database is known. As a toy example, con-

sider the transactions in Figure 1(a), which allow looking up the balance of an account

acct and transferring an amount amnt from an account acct1 to an account acct2

(with a possibility of an overdraft). To improve the efficiency of transfer, we may

chop this transaction into a chain [25] of smaller transactions in Figure 1(b), which the

database will execute in the order given: a withdraw transaction on the account acct1

and a deposit transaction on the account acct2. This chopping is correct in that any

client-observable behaviour of the resulting chains could be produced by the original

unchopped transactions. Intuitively, even though the chopping in Figure 1(b) allows a

database state where amnt is missing from both accounts, a client cannot notice this,

because it can only query the balance of a single account. If we added the transaction

lookup2 in Figure 1(c), which returns the sum of the accounts acct1 and acct2, then

the chopping of transfer would become incorrect: by executing lookup2 a client

could observe the state with amnt missing from both accounts.

We propose a criterion that ensures the correctness of a given chopping of trans-

actions executing on PSI (§5). Our criterion is weaker than the existing criterion for

chopping serialisable transactions by Shasha et al. [21]: weakening consistency allows

more flexibility in optimising transactions. Recent work has shown that transactions

arising in web applications can be chopped in a way that drastically improves their per-

formance when executed in serialisable databases [19, 25]. Our result enables bringing

these benefits to databases providing PSI.

A challenge we have to deal with in proposing a criterion for transaction chop-

ping is that the specification of PSI [22] is given in a low-level operational way, by

an idealised algorithm formulated in terms of implementation-level concepts (§2). This

complicates reasoning about the behaviour of an application using a PSI database and,

in particular, the correctness of a transaction chopping. To deal with this problem, we

propose an alternative axiomatic specification of PSI that defines the consistency model

declaratively by a set of axioms constraining client-visible events (§3). We prove that

our axiomatic specification of PSI is equivalent to the existing operational one (§4).

The axiomatic specification is instrumental in formulating and proving our transaction

chopping criterion.

2 Operational Specification of PSI

We first present an operational specification of PSI, which is a simplification of the one

originally proposed in [22]. It is given as an idealised algorithm that is formulated in

terms of implementation-level concepts, such as replicas and messages, but nevertheless

abstracts from many of the features that a realistic PSI implementation would have.

We consider a database storing objects Obj = {x, y, . . .}, which for simplicity we

assume to be integer-valued. Clients interact with the database by issuing read and

write operations on the objects, grouped into transactions. We identify transactions

by elements of TId = {t0, t1, . . .}. The database system consists of a set of replicas,

identified by RId = {r0, r1, . . .}, each maintaining a copy of all objects. Replicas may

fail by crashing.

All client operations within a given transaction are initially executed at a single

replica (though operations in different transactions can be executed at different replicas).

When a client terminates the transaction, the replica decides whether to commit or abort

it. To simplify the formal development, we assume that every transaction eventually ter-

minates. If the replica decides to commit a transaction, it sends a message to all other

replicas containing the transaction log, which describes the updates done by the trans-

action. The replicas incorporate the updates into their state upon receiving the message.

A transaction log has the form (t, start) (t, write(x1, n1)) . . . (t, write(xk, nk)),
which gives the sequence of values ni ∈ N written to objects xi ∈ Obj by the trans-

action t ∈ TId; the record (t, start) is added for convenience of future definitions.

Transaction logs are ranged over by l, and we denote their set by Log.

We assume that every replica executes transactions locally without interleaving (this

is a simplification in comparison to the original PSI specification [22] that makes the

operation start: operation receive(l): operation abort:

requires Current[r] = ε requires Current[r] = ε requires

t := (unique identifier from TId) requires l = (t, start) · _ Current[r] =
Current[r] := (t, start) Committed[r] = Committed[r] · l (t, start) · _

Current[r] := ε

operation write(x, n): operation commit:

requires Current[r] = (t, start) · _ requires Current[r] = (t, start) · _

Current[r] := Current[r] · (t, write(x, n)) requires ¬∃x, r′, t′. ((t, write(x, _)) ∈ Current[r]) ∧

(r 6= r′) ∧ ((t′, write(x, _)) ∈ Committed[r′]) ∧

operation read(x, n): ((t′, start) 6∈ Committed[r])
requires Current[r] = (t, start) · _ send Current[r] to all other replicas

requires write(x, n) is the last write to x Committed[r] := Committed[r] · Current[r]
in Committed[r] · Current[r] or Current[r] := ε

there is no such write and n = 0

Fig. 2. Pseudocode of the idealised PSI algorithm at replica r.

algorithm cleaner). This assumption allows us to maintain the state of a replica r in the

algorithm by:

– Current[r] ∈ Log ∪ {ε}—the log of the (single) transaction currently executing at r

or an empty sequence ε, signifying that no transaction is currently executing; and

– Committed[r] ∈ Log∗—the sequence of logs of transactions that committed at r.

Initially Current[r] = Committed[r] = ε.

We give the pseudocode of the algorithm executing at a replica r in Figure 2. This

describes the effects of operations executed at the replica, which come from the set

Op = {start, receive(l), write(x, n), read(x, n), abort, commit |

l ∈ Log, x ∈ Obj, n ∈ N}

and are ranged over by o. The execution of the operations is atomic and is triggered

by client requests or internal database events, such as messages arriving to the replica.

The requires clauses give conditions under which an operation can be executed. For

convenience of future definitions, operations do not return values. Instead, the value

fetched by a read is recorded as its parameter; as we explain below, the requires clause

for read(x, n) ensures that the operation may only be executed when the value it fetches

is indeed n. We use · for sequence concatenation, ∈ to express that a given record

belongs to a given sequence, and _ for irrelevant expressions.

When a client starts a transaction at the replica r (operation start), the database

assigns it a unique identifier t and initialises Current[r] to signify that t is in progress.

Since we assume that the replica processes transactions serially, in the idealised al-

gorithm the transaction can start only if r is not already executing a transaction, as

expressed by the requires clause. The operation receive(l) executes when the replica

receives a message l with the log of some transaction t, at which point it appends l

to its log of committed transactions. A replica can receive a message only when it is

not executing a transaction. When a client issues a write of n to an object x inside a

transaction t, the corresponding record (t, write(x, n)) is appended to the log of the

start

write(x, post)
commit

t1

start

write(y, reply)
commit

t2

receive(l1) receive(l2)
start

read(y, reply)

t3

read(x, post)
commit

l1 = (t1, start) (t1, write(x, post))

l2 = (t2, start) (t2, write(x, reply))
r1

r2

Fig. 3. An example execution of the operational PSI specification.

current transaction (operation write(x, n)). The requires clause ensures that a write

operation can only be called inside a transaction. A client can read n as the value of an

object x (operation read(x, n)) if it is the most recent value written to x at the replica

according to the log of committed transactions concatenated with the log of the current

one; if there is no such value, the client reads 0 (to simplify examples, in the following

we sometimes assume different initial values).

If the current transaction aborts (operation abort), the Current[r] log is reset to be

empty. Finally, if the current transaction commits (operation commit), its log is sent to

all other replicas, as well as added to the log of committed transactions of the replica

r. Crucially, as expressed by the second requires clause of commit, the database may

commit a transaction t only if it passes the write-conflict detection check: there is no

object x written by t that is also written by a concurrent transaction t′, i.e., a transaction

that has been committed at another replica r′, but whose updates have not yet been

received by r. If this check fails, the only option left for the database is to abort t using

the operation abort.

In the algorithm we make certain assumptions about message delivery between

replicas. First, every message is delivered to every replica at most once. Second, mes-

sage delivery is causal: if a replica sends a message l2 after it sends or receives a

message l1, then every other replica will receive l2 only after it receives or sends l1; in

this case we say that the transaction generating l2 causally depends on the one generat-

ing l1. This is illustrated by the execution of the algorithm depicted in Figure 3: due to

causal delivery, the transaction t3 that reads reply from y is also guaranteed to read post

from x.

The operational specification of PSI is given by all sets of client-database interac-

tions that can arise when executing the implementations of the operations in Figure 2

at each replica in the system. Due to the asynchronous propagation of updates between

replicas, the specification of PSI allows non-serialisable behaviours, called anomalies.

We introduce structures to describe client-database interactions allowed by PSI and

discuss its anomalies while presenting our declarative PSI specification, which is the

subject of the next section.

3 Axiomatic Specification of PSI

Reasoning about PSI database behaviour using the operational specification may get

unwieldy. It requires us to keep track of low-level information about the system state,

such as the logs at all replicas and the set of messages in transit. We then need to reason

about how the system state is affected by a large number of possible interleavings of

operations at different replicas. We now present a specification of PSI that is more

declarative than the operational one and, in particular, does not refer to implementation-

level details, such as message exchanges between replicas. It thus makes it easier to

establish results about PSI, such as criteria for transaction chopping.

Our PSI specification is given by a set of histories, which describe all client-

database interactions that this consistency model allows. To simplify presentation, our

specification does not constrain the behaviour of aborted or ongoing transactions, so that

histories only record operations inside committed transactions. Our specification also

assumes that the database interface allows a client to group a finite number of transac-

tions into a chain [25], which establishes an ordering on the transactions, similarly to a

session [23]. Chains are needed for transaction chopping (§1) and can be implemented,

e.g., by executing all transactions from a chain at the same replica.

To define histories and similar structures, we need to introduce some set-theoretic

concepts. We assume a countably infinite set of events Event = {e, f, g, . . .}. A relation

R ⊆ E × E on a set E is a strict partial order if it is transitive and irreflexive; it is

an equivalence relation if it is reflexive, transitive and symmetric. For an equivalence

relation R ⊆ E×E and e ∈ E, we let [e]R = {f | (f, e) ∈ R} be the equivalence class

of e. A total order is a strict partial order such that for every two distinct elements e and

f , the order relates e to f or f to e. We write (e, f) ∈ R and e
R
−→ f interchangeably.

Definition 1. A history is a tuple H = (E, op, co,∼), where:

– E ⊆ Event is a finite set of events, denoting reads and writes performed inside

committed transactions.

– op : E → {write(x, n), read(x, n) | x ∈ obj, n ∈ N} defines the operation each

event denotes.

– co ⊆ E × E is the chain order, arranging events in the same chain into the order

in which a client submitted them to the database. We require that co be a union of

total orders defined on disjoint subsets of E, which correspond to events in different

chains.

– ∼ ⊆ E × E is an equivalence relation grouping events in the same transaction.

Since every transaction is performed by a single chain, we require that co totally

order events within each transaction, i.e., those from [e]∼ for each e ∈ E. We also

require that a transaction be contiguous in co:

∀e, f, g. e
co
−→ f

co
−→ g ∧ e ∼ g =⇒ e ∼ f ∼ g.

Let Hist be the set of all histories. We denote components of a history H as in EH,

and use the same notation for similar structures introduced in this paper. Our specifica-

tion of PSI is given as a particular set of histories allowed by this consistency model.

To define this set, we enrich histories with a happens-before relation, capturing causal

relationships between events. In terms of the operational PSI specification, an event e

happens before an event f if the information about e has been delivered to the replica

performing f , and hence, can affect f ’s behaviour. The resulting notion of an abstract

execution is similar to those used to specify weak shared-memory models [4].

op(e) = read(x, n) =⇒
(

∃f. op(f) = write(x, n) ∧ f
hb
−→ e ∧ ¬∃g. f

hb
−→ g

hb
−→ e ∧

op(g) = write(x, _)
)

∨
(

n = 0 ∧ ¬∃f. f
hb
−→ e ∧ op(f) = write(x, _)

)

(Reads)

co ⊆ hb (Chains) {(e′, f ′) | e
hb
−→ f ∧ e 6∼ f ∧ e

′ ∼ e ∧ f ∼ f
′} ⊆ hb (Atomic)

(e 6= f ∧ {op(e), op(f)} ⊆ {write(x, n) | n ∈ N}) =⇒ (e
hb
−→ f ∨ f

hb
−→ e) (Wconflict)

Fig. 4. Consistency axioms of PSI, stated for an execution A = ((E, op, co,∼), hb). All free

variables are universally quantified.

Definition 2. An abstract execution is a pair A = (H, hb) of a history H and the

happens-before relation hb ⊆ E × E, which is a strict partial order.

For example, Figure 5(a) shows an abstract execution, which corresponds to the execu-

tion of the operational specification in Figure 3 (as we formalise in §4). Our PSI specifi-

cation is defined by consistency axioms (Figure 4), which constrain happens-before and

other execution components and thereby describe the guarantees that a PSI database

provides about transaction processing. We thus call this specification axiomatic.

Definition 3. An abstract execution A is valid if it satisfies the consistency axioms in

Figure 4. We denote the set of all valid executions by AbsPSI and let the set of PSI

histories be HistPSI = {H ∈ Hist | ∃hb. (H, hb) ∈ AbsPSI}.

The axiom (Reads) constrains the values fetched by a read using the happens-before

relation: a read e from an object x has to return the value written by a hb-preceding write

f on x that is most recent according to hb, i.e., not shadowed by another write g to x.

If there is no hb-preceding write to x, then the read fetches the default value 0 (we

sometimes use other values in examples). The axiom (Chains) establishes a causal de-

pendency between events in the same chain (thus subsuming session guarantees [23]),

and the transitivity of happens-before required in Definition 2 ensures that the database

respects causality. For example, in the abstract execution in Figure 5(a), the chain order

between the two writes induces an hb edge according to (Chains). Then, since hb is

transitive, we must have an hb edge between the two operations on x and, hence, by

(Reads), the read from x has to fetch post. There is no valid execution with a history

where the read from y fetches reply, but the read from x fetches the default value. The

operational specification ensures this because of causal message delivery.

The axiom (Atomic) ensures the atomic visibility of transactions: all writes by a

transaction become visible to other transactions together. It requires that, if an event e

happens before an event f in a different transaction, then all events e′ in the transaction

of e happen before all the events f ′ in the transaction of f . For example, (Atomic)

disallows the execution in Figure 5(b), which is a variant of Figure 5(a) where the two

writes are done in a single transaction and the order of the reads is reversed.

The axiom (Wconflict) states that the happens-before relation is total over write

operations on a given object. Hence, the same object cannot be written by concurrent

transactions, whose events are not related by happens-before. This disallows the lost

update anomaly, illustrated by the execution in Figure 5(c). This execution could arise

(a) Causality is preserved, the following is allowed: (b) Fractured reads: disallowed by (Atomic).

write(x, post) write(y, reply)

read(y, reply) read(x, post)

co, hb

co, hb

hb hb

write(x, post) write(y, reply)

read(x, post) read(y, empty)

co, hb

co, hb

hb

acct := acct + 50

acct := acct + 50

(c) Lost update:
disallowed by
(Wconflict).

read(acct, 0) write(acct, 50)

read(acct, 0) write(acct, 50)

read(acct, 50)

co, hb

co, hb

hb

hb

if (acct1 + acct2 > 100) acct1 := acct1 - 100

if (acct1 + acct2 > 100) acct2 := acct2 - 100

(d) Write skew:
allowed. Initially
acct1 = acct2 =
60

read(acct1, 60) read(acct2, 60) write(acct2,−40)

read(acct1, 60) read(acct2, 60) write(acct1,−40)

co, hb co, hb

co, hb co, hb

(e) Long fork:
allowed.

write(x, post1) read(y, empty) read(x, post1)
hb co, hb

write(y, post2) read(x, empty) read(y, post2)
hb co, hb

Fig. 5. Abstract executions illustrating PSI guarantees and anomalies. The boxes group events

into transactions. We omit the transitive consequences of the co and hb edges shown.

from the code, also shown in the figure, that uses transactions to make deposits into

an account; in this case, one deposit is lost. The execution violates (Wconflict): one of

the transactions would have to hb-precede the other and, hence, read 50 instead of 0
from x. In the operational specification this anomaly is disallowed by the write-conflict

detection, which would allow only one of the two concurrent transactions to commit.

Despite PSI disallowing many anomalies, it is weaker than serialisability. In partic-

ular, PSI allows the write skew anomaly, also allowed by the classical snapshot isola-

tion [8]. We illustrate how our consistency axioms capture this by the valid execution

in Figure 5(d), which could arise from the code also shown in the figure. Here each

transaction checks that the combined balance of two accounts exceeds 100 and, if so,

withdraws 100 from one of them. Both transactions pass the checks and make the with-

drawals from different accounts, resulting in the combined balance going negative. The

operational specification allows this anomaly because the two transactions can be exe-

cuted at different replicas and allowed to commit by the write-conflict detection check.

PSI also allows so-called long fork anomaly in Figure 5(e) [22], which we in fact

already mentioned in §1. We have two concurrent transactions writing to x and y, re-

spectively. A third transaction sees the write to x, but not y, and a fourth one sees the

write to y, but not x. Thus, from the perspective of the latter two transactions, the two

writes happen in different orders. It is easy to check that this outcome is not serialisable;

in fact, it is also disallowed by the classical snapshot isolation. In the operational spec-

ification this anomaly can happen when each transaction executes at a separate replica,

and the messages about the writes to x and y are delivered to the replicas executing the

reading transactions in different orders.

4 Equivalence of the Specifications

We now show that the operational (§2) and axiomatic specifications (§3) are equivalent,

i.e., the sets of histories they allow coincide. We start by introducing a notion of concrete

executions of the operational PSI specification and using it to define the set of histories

the specification allows. Concrete executions are similar to abstract ones of Definition 2,

but describe all operations occurring at replicas as per Figure 2, including both client-

visible and database-internal ones. We use the set-theoretic notions introduced before

Definition 1.

Definition 4. A concrete execution is a tuple C = (E, op, repl, trans,≺), where:

– E ⊆ Event is a finite set of events, denoting executions of operations in Figure 2.
– op : E → Op defines which of the operations in Figure 2 a given event denotes.
– repl : E → RId defines the replica on which the event occurs.
– trans : E → TId defines the transaction to which the event pertains.
– ≺ ⊆ E×E is a total order, called execution order, in which events take place in the

system.

The set ConcPSI of concrete executions that can be produced by the algorithm in

Figure 2 is defined as expected. Due to space constraints, we defer its formal definition

to [11, §C]. Informally, the definition considers the execution of any sequence of opera-

tions in Figure 2 at arbitrary replicas, subject to the requires clauses and the constraints

on message delivery mentioned in §2; the values of repl and trans are determined by

the variables r and t in the code of operations in Figure 2. For example, Figure 3 can be

viewed as a graphical depiction of a concrete execution from ConcPSI, with the execu-

tion order given by the horizontal placement of events. For a C ∈ ConcPSI and e ∈ EC ,

we write e ⊲C t : o @ r if transC(e) = t, opC(e) = o and replC(e) = r.

Definition 5. The history of a concrete execution C is

history(C) = (EH, opH, coH,∼H), where

EH = {e ∈ EC | ∃f ∈ EC , t ∈ TId. (f ⊲C t : commit @ _) ∧
((e ⊲C t : write(_, _) @ _) ∨ (e ⊲C t : read(_, _) @ _))};

opH = (the restriction of opC to EH);

coH = {(e, f) ∈ EH × EH | replC(e) = replC(f) ∧ e ≺C f}.

∼H = {(e, f) ∈ EH × EH | transC(e) = transC(f)};

For example, the concrete execution in Figure 3 has the history shown in Figure

5(a). The history history(C) contains only the events describing reads and writes by

the committed transactions in C. To establish a correspondence between the operational

and axiomatic specifications, we assume that chains are implemented by executing ev-

ery one of them at a dedicated replica. Thus, we define the chain order coH as the order

of events on each replica according to ≺C . This is, of course, an idealisation acceptable

only in a specification. In a realistic implementation, multiple chains would be multi-

plexed over a single replica, or different transactions in a chain would be allowed to

access different replicas [23]. We define the set of histories allowed by the operational

PSI specification as history(ConcPSI), where we use the expected lifting of history

to sets of executions. The following theorem (proved in [11, §D]) shows that this set

coincides with the one defined by the axiomatic specification (Definition 3).

Theorem 1. history(ConcPSI) = HistPSI.

5 Chopping PSI Transactions

In this section, we exploit the axiomatic specification of §3 to establish a criterion for

checking the correctness of a chopping [21] of transactions executing on PSI. Namely,

we assume that we are given a set of chain programs P = {P1, P2, . . .}, each defining

the code of chains resulting from chopping the code of a single transaction. We leave the

precise syntax of the programs unspecified, but assume that each Pi consists of ki pro-

gram pieces, defining the code of the transactions in the chain. For example, for given

acct1, acct2 and amnt, Figure 1(b) defines a chain program resulting from chopping

transfer in Figure 1(a). For a given acct, we can also create a chain program con-

sisting of a single piece lookup(acct) in Figure 1(a). Let P1 consist of the programs

for lookup(acct1), lookup(acct2) and transfer(acct1,acct2,amnt), and P2

of those for transfer(acct1,acct2,amnt) and lookup2(acct1,acct2).

Following Shasha et al. [21], we make certain assumptions about the way clients

execute chain programs. We assume that, if the transaction initiated by a program piece

aborts, it will be resubmitted repeatedly until it commits, and, if a piece is aborted due

to system failure, it will be restarted. We also assume that the client does not abort

transactions explicitly.

In general, executing the chains P may produce more client-observable behaviours

than if we executed every chain as a single PSI transaction. We propose a condition for

checking that no new behaviours can be produced. To this end, we check that every valid

abstract execution consisting of fine-grained transactions produced by the chains P can

be spliced into another valid execution that has the same operations as the original one,

but where all operations from each chain are executed inside a single coarse-grained

transaction.

Definition 6. Consider a valid abstract execution A = ((E, op, co,∼), hb) ∈ AbsPSI

and let ≈A = co∪co−1∪{(e, e) | e ∈ E}. The execution A is spliceable if there exists

hb′ such that ((E, op, co,≈A), hb
′) ∈ AbsPSI.

The definition groups fine-grained transactions in A, identified by ∼A, into coarse-

grained transactions, identified by ≈A, which consist of events in the same chain.

We now establish the core technical result of this section—a criterion for checking

that an execution A is spliceable. From this dynamic criterion on executions we then

obtain a static criterion for the correctness of chopping transaction code, by checking

that all executions produced by the chain programs P are spliceable. We first need to

define some auxiliary relations, derived from the happens-before relation in an abstract

execution [2, 4].

Definition 7. Given A ∈ AbsPSI, we define the reads-from rfA, version-order voA
and anti-dependency adA relations on EA as follows:

e
rfA−−→ f ⇐⇒ ∃x, n. e

hbA−−→ f ∧ opA(e) = write(x, n) ∧ opA(f) = read(x, n) ∧

¬∃g. e
hbA−−→ g

hbA−−→ f ∧ opA(g) = write(x, _);

e
voA−−→ f ⇐⇒ ∃x. e

hbA−−→ f ∧ opA(e) = write(x, _) ∧ opA(f) = write(x, _);

e
adA−−→ f ⇐⇒ ∃x. opA(e) = read(x, _) ∧ opA(f) = write(x, _) ∧

((∃g. g
rfA−−→ e ∧ g

voA−−→ f) ∨ (¬∃g. g
rfA−−→ e)).

The reads-from relation determines the write e that a read f fetches its value from

(uniquely, due to the axiom (Wconflict)). The version order totally orders all writes to

a given object and corresponds to the order in which replicas find out about them in the

operational specification. The anti-dependency relation [2] is more complicated. We

have e
adA−−→ f if the read e fetches a value that is overwritten by the write f according

to voA (the initial value of an object is overwritten by any write to this object).

Our criterion for checking that A is spliceable requires the absence of certain cycles

in a graph with nodes given by the fine-grained transactions in A and edges generated

using the above relations. The transactions are defined as equivalence classes [e]∼ of

events e ∈ EA (§3).

Definition 8. Given A ∈ AbsPSI, its dynamic chopping graph DCG(A) is a directed

graph whose set of nodes is {[e]∼A
| e ∈ EA}, and we have an edge ([e]∼A

, [f]∼A
)

if and only if [e]∼A
6= [f]∼A

and one of the following holds: e
coA−−→ f (a successor

edge); f
coA−−→ e (a predecessor edge); e

adA \≈A

−−−−−−→ f (an anti-dependency edge); or

e
(rfA ∪ voA) \≈A

−−−−−−−−−−→ f (a dependency edge).

A conflict edge is one that is either a dependency or an anti-dependency. A directed

cycle in the dynamic chopping graph is critical if it does not contain two occurrences of

the same vertex, contains at most one anti-dependency edge, and contains a fragment

of three consecutive edges of the form “conflict, predecessor, conflict”.

Theorem 2 (Dynamic Chopping Criterion). An execution A ∈ AbsPSI is spliceable

if its dynamic chopping graph DCG(A) does not have critical cycles.

We give a (non-trivial) proof of the theorem in [11, §E]. For example, the execution

in Figure 6 satisfies the criterion in Theorem 2 and, indeed, we obtain a valid execution

by grouping withdraw and deposit into a single transaction and adding the dotted

happens-before edges.

withdraw(acct1, 50) deposit(acct2, 50)

lookup(acct1) lookup(acct2)

P

S

D

A

read(acct1, 50) write(acct1, 0) read(acct2, 0) write(acct2, 50)

read(acct1, 0) read(acct2, 0)

hb

co

hb

co

hb

co

rf, hb ad

hb
hb

Fig. 6. An execution produced by the programs P1 and its derived relations. Initially acct1 = 50
and acct2 = 0. We omit the transitive consequences of the hb edges shown. The dashed edges

show the dynamic chopping graph, with S, P, A, D denoting edge types. The dotted edges show

additional happens-before edges that define a splicing of the execution (Definition 6).

We now use Theorem 2 to derive a static criterion for checking the correctness of

code chopping given by P . As is standard [13, 21], we formulate the criterion in terms

of the sets of objects read or written by program pieces. Namely, for each chain program

Pi ∈ P we assume a sequence

(Ri
1,W

i
1) (R

i
2,W

i
2) . . . (R

i
ki
,W i

ki
), (1)

of read and write sets Ri
j ,W

i
j ⊆ Obj, i.e., the sets of all objects that can

be, respectively, read and written by the j-th piece of Pi. For example, the

transfer(acct1,acct2,amnt) chain in Figure 1(b) is associated with the sequence

({acct1}, {acct1}) ({acct2}, {acct2}).
We consider a chopping defined by the programs P correct if all executions that

they produce are spliceable. To formalise this, we first define when an execution can be

produced by programs with read and write sets given by (1). Due to space constraints,

we give the definition only informally.

Definition 9. An abstract execution A conforms to a set of programs P , if there is

a one-to-one correspondence between every chain of transactions in A and a chain

program Pi ∈ P whose read and write sets (1) cover the sets of objects read or written

by the corresponding transactions in the chain.

For example, the execution in Figures 6 conforms to the programs P1. Due to the

assumptions about the way clients execute P that we made at the beginning of this

section, the definition requires that every chain in an execution A conforming to P
executes completely, and that all transactions in it commit. Also, for simplicity (and

following [21]), we assume that every chain in A results from a distinct program in P .

Definition 10. Chain programs P are chopped correctly if every valid execution con-

forming to P is spliceable.

We check the correctness of P by defining an analogue of the dynamic chopping

graph from Definition 8 whose nodes are pieces of P , rather than transactions in a given

execution. Each piece is identified by a pair (i, j) of the number of a chain Pi and the

piece’s position in the chain.

S

P

D DA A

withdraw(acct1) deposit(acct2)

lookup(acct1) lookup(acct2)

S

P

D D
A A

withdraw(acct1) deposit(acct2)

lookup2(acct1, acct2)

(a) (b)

Fig. 7. Static chopping graphs for the programs (a) P1 and (b) P2.

Definition 11. Given chain programs P = {P1, P2, . . .} with read and write sets (1),

the static chopping graph SCG(P) is a directed graph whose set of nodes is {(i, j) |
i = 1..|P|, j = 1..ki}, and we have an edge ((i1, j1), (i2, j2)) if and only if one of

the following holds: i1 = i2 and j1 < j2 (a successor edge); i1 = i2 and j1 > j2 (a

predecessor edge); i1 6= i2, and Ri1
j1
∩W i2

j2
6= ∅ (an anti-dependency edge); or i1 6= i2,

and W i1
j1

∩ (Ri2
j2
∪W i2

j2
) 6= ∅ (a dependency edge).

For example, Figures 7(a) and 7(b) show the static chopping graph for the programs

P1 and P2 respectively. There is a straightforward correspondence between SCG(P)
and DCG(A) for an execution A conforming to P: we have an (anti-)dependency edge

between two pieces in SCG(P) if there may exist a corresponding edge in DCG(A)
between two transactions resulting from executing the pieces, as determined by the read

and write sets. Using this correspondence, from Theorem 2 we easily get a criterion for

checking chopping correctness statically.

Corollary 1 (Static Chopping Criterion). P is chopped correctly if SCG(P) does not

contain any critical cycles.

The graph in Figure 7(a) satisfies the condition of the corollary, whereas the one in

Figure 7(b) does not. Hence, the corresponding chopping of transfer is correct, but

becomes incorrect if we add lookup2 (we provide an example execution illustrating

the latter case in [11, §A]).

The criterion in Corollary 1 is more permissive than the one for chopping serialis-

able transactions previously proposed by Shasha et al. [21]. The latter does not distin-

guish between dependency and anti-dependency edges (representing them by a single

type of a conflict edge) and between predecessor and successor edges (representing

them by sibling edges). The criterion then requires the absence of any cycles containing

both a conflict and a sibling edge. We illustrate the difference in Figure 8. The static

chopping graph for the programs shown in the figure does not have critical cycles, but

has a cycle with both a conflict and a sibling edge, and thus does not satisfy Shasha’s

criterion. We also show an execution produced by the programs: splicing the chains in

it into single transactions (denoted by the dashed boxes) yields the execution in Fig-

ure 5(e) with a long fork anomaly. We provide a similar example for write skew (Fig-

ure 5(d)) in [11, §A]. Thus, the chopping criterion for PSI can be more permissive than

the one for serialisability because of the anomalies allowed by the former consistency

model.

txn write1 { x := post1; } txn write2 { y := post2; }

chain read1 { txn { a := y }; txn { b := x }; return (a, b); }

chain read2 { txn { a := x }; txn { b := y }; return (a, b); }

write(x)

read(y)

read(x)

write(y)

read(x)

read(y)

S P S P

D D

D D

AA

AA

write(x, post1)

read(y, empty)

read(x, post1)

write(y, post2)

read(x, empty)

read(y, post2)

rf, hb

co, hb co−1

ad rf, hb

co, hb co−1

ad

Fig. 8. An illustration of the difference between the chopping criteria for PSI and serialisability:

programs, their static chopping graph and an example execution. The variables a and b are local.

Finally, we note that Theorem 2 and Corollary 1 do not make any assumptions

about the structure of transactions, such as their commutativity properties, which may

result in an excessive number of conflict edges in chopping graphs. These results can be

strengthened to eliminate conflict edges between transactions whose effects commute,

as done in [21, 25].

6 Related Work

Our criterion for the correctness of chopping PSI transactions was inspired by the crite-

rion of Shasha et al. [21] for serialisable transactions. However, establishing a criterion

for PSI is much more difficult than for serialisability. Due to the weakly consistent na-

ture of PSI, reasoning about chopping correctness cannot be reduced to reasoning about

a total serialisation order of events and requires considering intricate relationships be-

tween them, as Theorem 2 illustrates.

Our declarative specification of PSI uses a representation of executions more com-

plex than the one in notions of strong consistency, such as serialisability [9] or lineariz-

ability [17]. This is motivated by the need to capture PSI anomalies. In proposing our

specification, we built on the axiomatic approach to specifying consistency models, pre-

viously applied to eventual consistency [10] and weak shared-memory models [4]. In

comparison to prior work, we handle a more sophisticated consistency model, includ-

ing transactions with write-conflict detection. Our specification is also similar in spirit

to the specifications of weak consistency models of relational databases of Adya’s [2],

which are based on the relations in Definition 7. While PSI could be specified in Adya’s

framework, we found that the specification based on the happens-before relation (Defi-

nition 2) results in simpler axioms and greatly eases proving the correspondence to the

operational specification (Theorem 1) and the chopping criterion (Theorem 2).

Acknowledgements. We thank Hagit Attiya and Giovanni Bernardi for helpful discus-

sions. This work was supported by EPSRC and an EU FET project ADVENT.

References

1. D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP is only

part of the story. IEEE Computer, 45(2), 2012.

2. A. Adya. Weak consistency: A generalized theory and optimistic implementations for dis-

tributed transactions. PhD thesis, MIT, 1999.

3. Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious programming. In OPODIS,

2011.

4. J. Alglave. A formal hierarchy of weak memory models. Formal Methods in System Design,

41(2), 2012.

5. H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A programming language perspective on

transactional memory consistency. In PODC, 2013.

6. P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly Avail-

able Transactions: virtues and limitations. In VLDB, 2014.

7. P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Scalable atomic visibility

with RAMP transactions. In SIGMOD, 2014.

8. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI

SQL isolation levels. In SIGMOD, 1995.

9. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.

10. S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data types: specification,

verification, optimality. In POPL, 2014.

11. A. Cerone, A. Gotsman, and H. Yang. Transaction chopping for parallel snapshot isolation

(extended version). Available from http://software.imdea.org/∼gotsman/.

12. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and veri-

fying transactional memory. Formal Aspects of Computing, 25(5), 2013.

13. A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation

serializable. ACM Trans. Database Syst., 30(2), 2005.

14. P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In DISC, 2009.

15. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News, 33(2), 2002.

16. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPoPP, 2008.

17. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3), 1990.

18. A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system. SIGOPS

Oper. Syst. Rev., 44(2), 2010.

19. S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more concurrency from distributed

transactions. In OSDI, 2014.

20. M. Saeida Ardekani, P. Sutra, and M. Shapiro. Non-monotonic snapshot isolation: Scalable

and strong consistency for geo-replicated transactional systems. In SRDS, 2013.

21. D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Algorithms and

performance studies. ACM Trans. Database Syst., 20(3), 1995.

22. Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-replicated

systems. In SOSP, 2011.

23. D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. W. Welch. Session

guarantees for weakly consistent replicated data. In PDIS, 1994.

24. L. Xiang and M. L. Scott. Software partitioning of hardware transactions. In PPoPP, 2015.

25. Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. Aguilera, and J. Li. Transaction chains: Achiev-

ing serializability with low latency in geo-distributed storage systems. In SOSP, 2013.

