

Transaction Management for Distributed Database using Petri Nets

Bidyut Biman Sarkar *1, Nabendu Chaki*2
*1Techno India, Salt lake, Kolkata, Inda
*2 University of Calcutta, Kolkata, India

*1bidyutbiman@gmail.com, *2nabendu@ieee.org

Abstract

Large and medium sized organizations are functionally
distributed in a structured or unstructured form over
different locations like continents, countries, plants,
divisions, departments, laboratories, work-groups and so
on. As there is no single global clock available for
synchronizing the transactions, some cost effective yet
easily deployable generic framework for asynchronous
transmission is necessary. The transaction management
mechanism for the distributed environment must ensure
that the sequence of updates is safe and reliable when
committed on the stable storages at different locations. In
this paper the Two Phase Commit (2PC) protocol for
distributed transactions is modeled with the help of a
timed Petri net to analyze the ACID property for
consistent commitment of distributed transactions.

Key Words: Distributed transactions, 2-Phase Commit,
Timed Petri Net, Time Petri Net, Virtual Data Warehouse

1. Introduction

The work proposed in this paper is an extension of [1].

Transaction management in a distributed environment has
been analyzed by introducing a sequence diagram in this
extension. Some of the key issues for successful commit
and failure of distributed transactions are described in
section 3.1. The Reachability analysis is performed and
included in this extension in section 4.2.1. More number
of contemporary literatures is reviewed; citations of recent
relevant work on Petri Net models are presented.

In a distributed environment communication between
objects or entities belongs to multiple servers is made
through message passing. Due to non availability of
centralized clock the synchronization process depends on
the time at which inputs are received, messages are lost in
transit and the speed of the processes. Complexity of the
transaction is directly proportional to the number of
operational locations. As for example; if the quality
control department operates as a separate cost centre or
export processing needs to setup at a new location. In such

situations the number of sites will increase. Cyclomatic
complexity will increase, time complexity for distributed
query processing will also increase and so as the chances
of resiliencies will also increase [2]. Message passing
operations can be used to construct protocols to support
particular process role and communication pattern [3]. As
for example in a business to business communication in an
e-commerce application, a clearing house (financial
entity) as a third party is always present to record all
financial transactions. The transaction times at the
computer systems of the business entities and the financial
institutions must tally with the allowed time delays.
Therefore the designing of a communication protocol for
a distributed transaction processing system is considered
to be one of the most critical tasks.

A brief review on four recent different contemporary
works on distributed decision support systems has been
carried out in [4]. Most of these are web-based and E-
Commerce applications. Interoperability among the
distributed systems is the key issue in the present paper.
Some of the architectures that are used for integration of
distributed legacy systems are CORBA, Java J2EE, XML,
SOAP, DCOM, Java RMI, EAI, and OMG, MDA.
CORBA allows applications to communicate with one
another efficiently and the Extensible Mark up Language
(XML) is used to process data on the WEB. The
Distributed Component object Model (DCOM) is a
protocol that enables components of the architecture to
communicate directly over a network [5].

Petri Net [4] is one of the most widely used modeling
and analysis tool. The classical Petri net is a directed
bipartite graph .The model describes the states, events,
conditions, choice, iterations and parallelism. The two
types of nodes are called places and transitions. Places
and transitions are connected via arcs. Places are
graphically represented by circles, transitions by bars.
Places can store tokens, represented by black dots. A
distribution of tokens on the places of a net is called a
marking, and corresponds to the ``state'' of the Petri net. A
transition of a net is enabled at a marking if all its input
places contain at least one token. An enabled transition
removes one token from each of the input places, and adds

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)

http://www.mirlabs.org/ijcisim
ISSN: 2150-7988 Vol.2 (2010), pp.069-076

one token to each of its output places. This is called the
firing rule. The formal definition of a Petri Net is
described by four-tuple and can be presented as:

PN= (P, T, D-, D+) (1)
Where, P is the set of places and |P|=m
T is the set of transitions and |T|=n
D-:P⊗ T→N is the pre incidence matrix that specifies the
arcs directed from places to transitions.
D+:T⊗ P →N is the post incidence matrix that specifies
the arcs directed from transitions to places.
D(P,T) token changes in place Pi for transition Ti .and the
P-invariant X indicates the conservation of tokens if
X ⊗ D(P,T)=0 and T-invariant Y indicates the system
stability and steady state, if Y ⊗ D-(P,T)=0

As for example, let us consider a primitive conveyor
belt system used in any process industry with three places:
P1–initial, P2–current and P3 – break down and four
transitions t1, t2, t3, and t4 describes as follows:
t1 – task starts, t2 – task complete, t3- task down, t4- task
maintenance.

Figure 1: Conveyor Belt in operation

The markings at the respective locations are:

 P1 P2 P3
Initial (Idle) [1 0 0]T
Current (working) [0 1 0]T
Break Down [0 0 1]T
P-invariants indicate token conservation and T-invariants
represents system stability and steady state of the system.

P-invariants
P1 P2 P3
1 1 1

The net is covered by positive P-invariants, therefore it is
bounded and the P-invariant equation may be represented
as M (P1) + M (P2) + M (P3) =1, Where, M is the marking
at the respective place.

T-invariants
t1 t2 t3 t4
1 1 0 0
1 0 1 1

The net is covered by positive T-invariants; therefore the
net is bounded and live.
 This paper is organized in five sections with relevant

subsections. Section 2 provides the basic specification on
time Petri Nets. Section 2.1 presents the timing dynamics
of a Timed Petri Net. Section 2.2 depicts the timing
dynamics of a Time Petri Net. Section 3 describes the
traditional distributed transaction processing intricacies
along with the web based distributed transactions. Section
3.1 presents the 2PC-commit protocol for distributed
systems with the help of an USE CASE diagram and in
section 3.2 a sequence diagram of the 2PC Distributed
System is described. Section 4 represents the Petri Net
model of the 2PC commit protocol. Section 4.1 describes
the Incidence Matrices of the Petri Net model. Section 4.2
deal with the Reachibility Graph of the Petri Net model
and in section 4.2.1 the Reachability Analysis of the
model is performed and presented. Section 5 indicates
future scope of the work plan.

2. Time Petri Nets

Adding the timing parameter with basic Petri Net
models enable us to simulate interesting real time systems.
One such application of spiking neural P-system [15] is a
deterministic SN-P model where communication among
the neurons used to take place through electrical signals of
identical voltage called spikes. Synapses are used as links
with the neighbouring neurons.

There could be various temporal constraints in
modeling such systems. The constraints could be a fixed
or a variable type. When the transition is a fixed type
constraint with a single time delay is known as Timed
Petri Net and it observes a strong firing mode. As for
performance evaluation of a timed Petri Net model the
time to fire and enabled a particular transition the firing
rules may be further improvised and more constraints may
be added. Instead of considering a single time delay, when
a time domain is used and observes a strong firing mode is
renamed as Time Petri Net [6].

In order to model the temporal aspect of concurrent
and distributed applications the addition of delay time will
restricts the dynamic behavior of the net. But by adding
color to the tokens will help in identifying the objects
uniquely and finally if an hierarchy is added then
decomposition of a complex system becomes easier. So,
when all these three features time, color and hierarchy are
added to a basic Petri Net model the Petri Net Model
becomes High Level Petri Net [7].

Timed workflow graphs are used for modeling the
temporal aspects in a Work Flow Management System
(WFMS), where first order predicate logic is used for
modeling, specifying and analyzing the temporal issues at
design and execution times[8]. In a Time Petri Net model

P1

P2
t1

t2
P3

t3 t4

Initial Current

Maintenance Breakdown

070Transaction Management for Distributed Database using Petri Nets

time is associated to transitions. Transitions represent
activities and activities take time. Timed Petri nets are
similar to Petri nets with the addition of a clock structure
associated with each timed transition. Let us now define
the time Petri net as a five tuple:
 TPN = (P, T, D-, D+, V) (2)
A timed transition tj once it becomes enabled fires after a
delay vjk. Time delays are of deterministic type, non
deterministic and stochastic types. Deterministic delays
allow for simple analysis methods with limited
applicability. The models handling nondeterministic
delays use time intervals to specify the duration of the
delay. In these models each delay is described by a
probability distribution function. Formally the Timed Petri
Nets allow strong firing mode, i.e, a transition, tj with a
delayed time, Tdel, will immediately fire at time when
necessary tokens have arrived. During the time period
from T0 to (T0 + Tdel) the tokens are preserved for tj and
consequently no other transitions can use those tokens. At
time (T0 + Tdel), the tokens must be removed from tj's
input to output places.

2.1. Timing Dynamics of a Timed Petri Net

Given the current enabled state x, the following pseudo
code shows how to evaluate the next enabled state x’ in a
Timed Petri Net [6]. Let us assume that;
x is the current enabled state
e is the transition that caused the PN into state x
t is the time that the corresponding event occurred
e’ is the next transition to fire (firing transition)
t’ is the next time the transition fires(t’=t +tdel)
x’ is the next state given by x’ = f(x, e’) where, f() is the
state transition where function.

2.2. Timing Dynamics of a Time Petri Net

In a Time Petri Net two times are associated with each
transition [9]. Smallest and the largest of these times for
any transition are marked as early-finish-time (EFT) and
late-finish-time (LFT) respectively. The firing Interval of
the transition is the difference between EFT and LFT.
States are pairs x = (M, I) in which M is a marking and I
is a firing Interval function. Firing a transition t, at timeΩ
from a state x = (M, I), is allowed if both the following
conditions hold:
(i) The transition is enabled;
(ii) Time Ω is comprised between the EFT and the
smallest of the LFTs among the enabled transitions. On
firing t at time Ω from a state x= (M, I) moves to a state
x’ = (M’, I’) and is computed as follows:
 1) The new marking M’ for each place is defined for any
place P, as in Petri Nets, as:
M’(P) = M(P) — Previous(t, P) + Next(t, P)

2) The new firing intervals I’ for transitions are computed
as follows:
a) For all transitions not enabled by the new marking x’,
then empty;
b) For all transitions e enabled by marking M and not in
conflict with t, then max(0, EFTe - Ω), LFTe -Ω , where
EFTe and LFTe are the lower and upper bounds of
interval I for transition e, respectively;
c) All other transitions have their interval set to their
Static Firing Interval.

3. Distributed Transaction Processing

In a distributed transaction at least two or more

network hosts are involved. Net work hosts provide
Transactional resources while the transaction
manager/coordinator is responsible for creating and
managing a global transaction. The transactions can be
flat or nested. Commit or abort transaction depends on
agreement of all the participating servers and two phase
commit protocol is used. Concurrent transactions must
observe locking mechanism or timestamp protocol or
optimistic concurrency control protocol. The global
transactions may encounter multiple resiliencies like
failure of hosts, failure of the network connection or
deadlock occurs and finally the global transaction is
responsible for recovery of the aborted transactions.
Internet and web-based distributed transactions are
interoperable with the traditional distributed transaction
processing systems; Let us now summarize the
characteristics of the distributed transactions
•Transactions are referred to all discreet tasks that must
be performed as a unit to accomplish a goal.
•Transactions may involve tasks that are done by one or
more participant.
•Transactions make sense when perform in conjugate with
some other tasks.
•Transactions must maintain the ACID properties
(Atomicity, Consistency, Isolation and Durability).
•In a conventional distributed environment, transactions
are short lived and resources are locked over a specific
duration and the participants will act under a transaction
manager.
•Distributed transactions under Internet and Web services
are of long durations.
•Participants may not allow their resources to be reserved
for long durations. Reservation is a characteristic of the
Isolation property of ACID.

WEB based distributed communication infrastructure
between the participants are not always reliable. It
depends on the communication network standard. Any
Web-based transaction may need to succeed even if only
some of the participants choose to confirm the transaction
and others cancels it. All activities in a distributed

071 Sarkar and Chaki

environment are logged. Transactions that have to be
undone perform compensation to return to previous state.

3.1. 2-Phase Commit Protocol for Distributed
System

Figure 2: Use Case Diagram

Success of 2-Phase Commit protocol [10] of

distributed transactions primarily ensures that all the
distinct servers must be agreed either to commit or to
abort. The initiator process is called coordinator and all
others are identified as participants. The coordinator first
communicates a message of commit/abort to all
participants and waits for a fixed duration. After a fixed
interval of time repeat requests are made to all non
responding participants. The process continues over a
fixed interval till all responses are acknowledged. To
maintain the ACID property of the participating
transactions, the server can’t abort part of a transaction or
commit without getting the acknowledgement from all
participants. However, there can be situations when
transaction gets aborted at some point of execution when
the server is crashed or deadlock is detected.

Let us now model the coordinator, participant activity
of 2-phase commit protocol with the help of a use-case
diagram (figure 2). The model consists of two distinct
entities namely coordinator and participant. The
occurrences of events are taking place between these two
entities. There are four events in the process (create log,
send message), (Commit/Abort message), (confirm-
commit, confirm-abort) and (Committed/Aborted, send
message) .The events are sequenced here numerically to
describe the order of the occurrences. A class diagram is
presented in (figure 3). The pseudo code of the use-case

functions following the timing sequence is as follows:
1: A LOG record is created at the stable storage with the
coordinator marked as “prepare”.
2: MSG: Message to participants to “create” and activate
time out.
3: A LOG is created at the participant’s stable storage
and marked as “prepare. Write “Ready” or “Abort”
message to the log at the participant’s log.
4: MSG: Message to coordinator “Ready” or “Abort”.
5: Coordinator acknowledges and checks all participants
reply. Check out with time out parameter and write the
decision of commit or abort in the log.
 6: MSG: Send “Abort/Commit” message for confirmation
to all Participants.
7: Participants acts according to the message received
from “(6:)” above. Write in the log. Execute the intended
operation.
8: MSG: Send the acknowledgement message to all
Coordinators.
9: On receipt of all acknowledgements from the
participants write “complete” in the coordinators log.

Fig 3: Class Diagram of 2PC

3.2 Sequence Diagram of the 2PC Distributed
System

There are six different states of activities listed in

sequence as follows:
1Æ Coordinator
2ÆCreate Log and send MSG
3Æ Commit message / Abort message
4Æ Confirm Commit/ Abort process
5Æ Committed / Aborted & send Message
6Æ Participants

The time domain is from [t1, t2, t3, ----------, t9]. The

• COID • PAID

• LOCATION • LOCATION

Coordinator

• COMESSAGE • COMESSAGE
• DATE • DATE

• TIME • TIME

� CREATE_LOG()
)

� MSG_SEND()

� CLOG_UPDT ()

� COMMIT () � COMMIT ()

� ABORT () � ABORT ()

� CREATE_LOG()

Participants

Participant

7

6

3

2

8

5

4

1

Create Log
Send Msg.

Commit/
Abort Msg.

Conf. Commit
Abort

Committed/
Aborted &

 Msg

Coordinator

� MSG_SEND()

� C_LOG_UPDT ()

072Transaction Management for Distributed Database using Petri Nets

CoordinatorÆ1 represents the time intervals of the four
activities (2 to 5). Dashed lines indicates the virtual lines,
where from the activity should start at some later instant
of time. Here t1 is the starting time when the coordinator
creates a log record at the stable storage and at time t1
+ ω =t2 the message reaches to the participants.

In the similar fashion the activities are executed till it

reaches to t8. At this point all participants confirm their
activity and at t8 + ω =t9 the activity will be completed.

The following pseudo code represents the basic algorithm
of a timed execution sequence of 2PC protocol.

Begin
Activity  initial t1
Clock=0
Repeat
 For j= t1 to t9 do
 Begin
 If {tk is enabled} then
 <Perform the corresponding activity>
 ω = ω + clock -time
 until Ω k <=ω [Ω k predefined time value]
 End
If all the activities are performed within time Ω k then

the distributed 2PC commit process can be performed
successfully otherwise a time out condition will be
activated. There may be various reasons for possible time
outs. Let us indicate some of the possible reasons due to
which distributed transactions fails to commit are:

• Deadlock Occurs
• System site failures
• Processor failure
• Media failures
• Power supply failure
• Main memory failure

• Main memory contents are lost, but secondary
storage contents are safe

• Secondary storage devices Failure
• Head crash / controller failure
• Communication failures
• Lost Messages or undeliverable messages due to

Network partitioning

4. Petri Net Model for 2PC Protocol

A brief overview of the distributed frame work and its
2-Phase Commit functions are presented in section 3.1.
There are two different locations: coordinator location and
participants location distributed geographically and
marked with doted vertical line in (figure: 5) of the Petri
Net model consisting of nine places and eight transitions.
Five places are marked for coordinator and four places for
participants.

Figure 5: Petri Net Model of 2PC

Table 1: Place & Transition Function of
Coordinator

Places Transition function
P1 DTM of

coordinator
t1 Message to DTM of the

participating site
P2 Wait state for

Commit /Abort
t2 i)Commit at Global Log

ii)Commit Msg to participants
P3 Global Commit t3 i)Abort at Global Log

ii)Abort Msg: to participants
P4 Global Abort t4 i)Commit or abort Global Log

ii)Write Complete to Global log
P9 Complete

1 2 3 4 5 6

Figure 4: Time Sequence Diagram of 2PC

t1 t2
t3
t4
t5
t6
t7
t8
t9

Coordinator Site Participant Site

P1

P2

P3 P4

P9

P5

P6

P7 P8

t1

t2
 t3

t4

t5 t6

t7
t8

 Activities are (2 to 5) Location z Location x

073 Sarkar and Chaki

Table-1 and Table-2 represents the place and transition
functions of the coordinator and the participant sites.
DTM is the transaction manager at the coordinator side
responsible for begin the transaction and it is enabled at
P1 when there is at least one token present.

Table 2: Place & Transition Function of
Participant

Places Transition function

P5 DTM of
participant

t5 Abort message to local log and
coordinator to wait state (P2).

P6 Ready state
for Commit

t6 i)Commit Msg. at local Log
ii) “Commit” Msg to coordinator
wait state (P2).

P7 Abort state t7 i)“Abort” Msg: to Coordinator
ii)Abort transaction

P8 Commit state t8 i)Commit at local Log
ii) Commit transaction iii)MSG:
to Global log

4.1. Incidence Matrices of the Petri Net Model

There is a pre-incidence matrix (3A) representing the
initial state, Post-incidence matrix (3B) representing
operational state and the combined matrix (3C)
representing the overall location wise state at any specific
transition of a location called marking. Each marking can
be used to analyze the Reachability of the Net Model.

In table 3(A) the row constituents P1, P2, P3, P4 and P9
representing the coordinator locations and P5, P6, P7, P8
are the participants locations. Columns t1-t8 are
representing the transitions. The pre-incidence matrix is
represented by [D-] and the token status at any [p,t]ij,
where I={1,2,…..9} and j={1,2,…8} before
commencement of the process is presented.

Table-3(A): Pre Incidence Matrix

Transition/Loc-Coord t1 t2 t3 t4 t5 t6 t7 t8
P1 1 0 0 0 0 0 0 0
P2 0 1 1 0 0 0 0 0
P3 0 0 0 1 0 0 0 0
P4 0 0 0 1 0 0 0 0
P9 0 0 0 0 0 0 0 0
Loc(Participant)
P5 0 0 0 0 1 1 0 0
P6 0 0 0 0 0 0 1 1
P7 0 0 0 0 0 0 0 0
P8 0 0 0 0 0 0 0 0

The post incidence Matrix is represented by [D+] and

the table 3(B) shows the token distribution of row
constituents P1, P2, P3, P4 and P9 of coordinator locations
and P5, P6, P7, P8 of participant’s locations. The column
constituent’s t1-t8 is representing the transitions after

enabling the process.

Table -3(B): Post Incidence Matrix
Transition/Loc-Coord t1 t2 t3 t4 t5 t6 t7 t8
P1 0 0 0 0 0 0 0 0
P2 1 0 0 0 1 1 0 0
P3 0 1 0 0 0 0 0 1
P4 0 0 1 0 0 0 1 0
P9 0 0 0 1 0 0 0 0
Loc(Participant)
P5 1 0 0 0 0 0 0 0
P6 0 1 1 0 0 1 0 0
P7 0 0 0 0 1 0 1 0
P8 0 0 0 0 0 0 0 1

Table-3(C): Combined Incidence Matrix
Transition/ Loc-Coord t1 t2 t3 t4 t5 t6 t7 t8

P1 -1 0 0 0 0 0 0 0
P2 1 -1 -1 0 1 1 0 0
P3 0 1 0 -1 0 0 0 1
P4 0 0 1 -1 0 0 1 0
P9 0 0 0 1 0 0 0 0
Loc(Participant)
P5 1 0 0 0 -1 -1 0 0
P6 0 1 1 0 0 1 -1 -1
P7 0 0 0 -1 1 0 1 0
P8 0 0 0 -1 0 0 0 0

The combined incidence matrix in table 3(C), shows the
token status at any instance after initiating the process.
The combined matrix is computed as [D+–D-].
Places are represented as: [P1, P2, P3, P4, P5, P6, P7, P8, P9]
Transactions represents: [t1, t2, t3, t4, t5, t6, t7, t8]
Initial marking M0 is: [1 0 0 0 0 0 0 0 0]T
P1, P2, P3, P4, P5, P6, P7, P8 and P9 none of them are
covered and hence the net is not covered by P-invariants.
The same is the case for the transitions t1, t2, t3, t4, t5, t6, t7,
t8 and the net is not covered by T-invariants.

4.2 Reachability Graph of the PN Model

The Reachable place of a Petri Net can be expressed

by the Reachability graph [11], which is a directed graph
and the nodes of the graph are identified as markings of
the Petri Net R(N, M0) ,where M0 is the initial marking
and the arcs are represented by the transitions of N. The
graph is used to define a given Petri Net N and marking
M, whether M belongs to R(N). Each initial marking M0
has an associated Reachability set .This set consists of all
the markings that can be reached from M0 through the
firing of one or more transitions. In our case the
reachability graph starts with initial marking M0.

074Transaction Management for Distributed Database using Petri Nets

Reachability analysis is a basic dynamic property of any
system. Firing rule of an enabled transition changes the
token distribution in a net according to the transition rule
but the equality problem is still undecided [12].
M0 = [1 0 0 0 0 0 0 0 0]T and finally reach to
state M9 =[0 0 0 0 0 0 0 0 1]T , where we conclude the
session for the current transaction in process.

Figure 6: Reachability Graph

4.2.1. Reachability Analysis

Let us now study some of the properties and behavior
of the model based on the Reachability Graph presented in
Figure 6 above[13].

Safeness: Any place of a Reachability grapgh is
declared safe, if the number of tokens at that place is
either 0 or 1. In our case the graph clearly shows that
any of the places [P1 – P9] represents a combination of
0(no token) and 1(token), which implies that if the firing
occurs there will be a token at the position bit other wise
no token. Thus it shows each of the places has a maximum
token count 1 or 0 and is declared safe and as all the
places in the net are safe, the net as a whole can be
declared safe.

Boundedness: The boundedness is a generalized
property of safeness. The limitation of token numbers in a
place restricted to 1 in case it is safe is enhanced to some
integer i, where i is known before hand for a place or we
call it as a constraint to check the overflow condition at
any stage calculated once at start. Boundary value for each
place will be the maximum token count for that place.
When there is no overflow at any place, then the design
guarantees the boundedness of the mode. In our case at
each stage from [P1- P9], i=1 and hence it is bounded.

Conservativeness: Conservation property of a Petri

Net model checks the number of tokens remains constant
before and after the execution. The process is to count the
sum of all tokens at their initial markings. Next the
Reachability tree is traversed and the sum of all tokens is
calculated for each marking in the tree. In our case it is 1.
If all the markings in the Reachability tree have the same
sum of tokens, then the Petri Net is declared to be strictly
conservative. So our model is also strictly conservative.
However, it will not be out of place to mention that in
most cases due to process transformation explicit token
counts are difficult to obtain to prove the conservation.

Liveness: The liveness property of a Petri Net is used
to show continuous operation of the net model or in other
words, it can be said that the system will not get into a
deadlock state as the process of commit or abort needs to
perform some transaction processing activity. The
possibility of deadlock or live lock can’t be ruled out and
to be checked. In order to find whether or not the Petri
Net is live; move along the markings of the Reachability
tree. If any marking exists in the tree such that no
transitions are enabled from that marking, then that
marking represents a deadlocked state, and the Petri Net
lacks the liveness property. Otherwise it is declared live.
In our case there is no such deadlock situation appears in
[p1- p9]. So we call our 2-phase commit protocol live.

However, problems arise when a reachability graph is
used with loops in it. It may cause a particular place
occupied with an infinite number of tokens. This would
result in an infinite sized tree.

5. Conclusions

In this paper our focus is on building a robust
distributed transaction handling protocol for efficient
handling of distributed virtual data warehouse.
Informational data from a relational database management
system (RDBMS) or from some other data sources are
called transactions and a kind of history generated out of
transactions is stored in data warehouse (DW). When a
Data Warehouse is connected with operational data base
through the use of middleware is called as virtual Data
Warehouse [14]. The virtual data ware house (VDW) will
become the backbone of the distributed framework.

 This paper presents a Petri Net model for the two
phase commit protocol for transaction management in a
distributed environment. There are inherent problems with
the 2PC protocols like; blocking which reduces the
availability of the resources. Ready state indicates
participant waits for the coordinator and at this stage if the
coordinator fails the site will be blocked until recovery.
Again independent recovery is not possible; however,
there exists recovery protocols for single site failures. The
uncertainty factors like happening of an event,
synchronization, resource sharing and communication are
some of the most important aspects attempted to

Coordinator Participants
P1

(1 0 0 0 0 0 0 0 0)

P2

P3

P4

P9
(0 0 0 0 0 0 0 0 1)

Ω <ω

(0 0 0 0 1 0 0 0 0)
P5

(0 0 0 0 0 1 0 0 ϖ)

P6

 (0 0 0 0 0 0 0 1 0)

P8

(0 0 0 0 0 0 1 0 0)

P7
(0 0 0 1 0 0 0 0 0)

(0 1 0 0 0 0 0 0 Ω)

075 Sarkar and Chaki

formalize. We further propose to model the scalable and
interoperable prototypes of such systems using high level
net models.

7. References

[1] Bidyut Biman Sarkar and Nabendu Chaki, “Modeling and
Analysis of Transaction Management for Distributed Database
Environment using Petri Nets”, Proc. of the 8th Int’l Conf. on
Computer Information Systems and Industrial Management
Applications (CISIM 2009), ISBN:978-1-4244-5612-3.

[2] Kaushal Chari, “Model composition in a distributed
environment”, Decision Support Systems archive, Elsevier
Science, Volume 35(3), 2003, pp: 399-413, ISSN:0167-9236.

[3] Stefano Ceri and Giuseppe Pelagatti, “The management of
distributed Transactions”, Chapter 2, Distributed Databases-
Principles & Systems, TMH, 1985, ISBN 0-07-066215-0

[4] B B Sarkar, N Chaki , “High level Net model for analyzing
agent base distributed decision support system”, Proc. of the
IACSIT International Spring Conference, pp:339-346, 2009,
ISBN 978-0-7695-3653-8.

[5] S. Kami Makki, and Ohio, “Distributed system:An Effective
information Sharing Approach for Legacy Systems”, JCIT
journal volume 2 (2007), pp: 22-28 (3), ISSN : 1975-9320

[6] Ramchandani C., 1974, “Analysis of asynchronous
concurrent systems by timed Petri nets”, Technical report-120,
(1974), Massachusetts Institute of Technology, Cambridge,
ISBN 0-89791-070-2.

[7] W.M.P Vander Aalst, “Putting high-level Petri Nets to
work in Industry”, Elsevier Computers in Industry, Vol. 25,
1994, pp. 45-54., ISSN:0166-3615.

[8] Bernard Berthomieu and Miguel Menasche, “An
Enumerative Approach for Analyzing Time Petri Nets”,
Proceedings IFIP, September 19-23 (1983), pp: 41-46, Elsevier,
ISBN 0-444-86729-5.

[9] Bernard Berthomieu, Michel Diaz, “Modeling and
Verification of Time Dependent Systems Using Time Petri
Nets”, IEEE Trans. on SE, Vol. 17(3), pp: 259 - 273, 1991
ISSN:0098-5589.

[10] Stefano Ceri and Giuseppe Pelagatti, “The management of
distributed Transactions”, chapter 7 of Distributed Databases,
Principles & Systems, TMH, 1985, ISBN 0-07-066215-0

[11] Marian V, Iordache and Panos J. Antsaklis, “Supervisory
Control of Concurrent Systems, Chapter 2, A Petri Net
Structural Approach”, Birkhauser Boston, ISBN-10 0-8176-
4357-5.

[12] Tado Murata, “Petri Nets:Properties, Analysis and
Applications”, Proceedings of the IEEE, Volume 77, No .4,
April 1989, pp:541-580, ISBN: 0-387-13723

[13] Barad M, “Timed Petri nets as a verification tool”, Proc. of
IEEE Winter Simulation Conf., pp: 547-554, 1998, ISBN: 0-
7803-5133-9.

[14] Ammoura Ayman, Zaiane Osmar R., Yuan Ji, “Towards

Framework for the virtual Data Warehouse”, British National
conference on databases, pp. 202-218, 2001, ISBN 3-540-
42265-X.

[15] Venkata Padmavati Metta, Kamala Krithivasan and Deepak
Garg, “Modeling Spiking Neural P systems using Timed Petri
nets”, Proceedings of the 8th International Conference on
Computer Information Systems and Industrial Management
Applications (CISIM 2009), ISBN:978-1-4244-5612-3.

8. Author Biography

Bidyut Biman Sarkar is a faculty
member in MCA department of
Techno India affiliated to West
Bengal University of Technology. He
has received his post graduate degree
in Applied Mathematics from the
University of Calcutta in the year
1978. Bidyut served IT industry in

India, Singapore and other South Asian countries for more
than 20 years. He is pursuing his Ph.D. studies in the areas
of distributed computing. A good number of publications
are already to his credit in national and international
conferences and journals. He has also authored a few text
books for the Engineering students at the under graduate
level of Computer Science and Information Technology.

Nabendu Chaki is an Associate
Professor in the Department of
Computer Science & Engineering,
University of Calcutta, Kolkata,
India. He did his first graduation in
Physics and then in Computer
Science & Engineering, both from
the University of Calcutta. He has
completed Ph.D. in 2000 from

Jadavpur University, India. Dr. Chaki has authored a
couple of text books and more than 70 refereed research
papers in Journals and International conferences. His
areas of research interests include distributed systems,
bio-informatics and software engineering. Dr. Chaki has
also served as a Research Assistant Professor in the Ph.D.
program in Software Engineering in U.S. Naval
Postgraduate School, Monterey, CA. He is a visiting
faculty member for many Universities including the
University of Ca’Foscari, Venice, Italy. Dr. Chaki is a
Knowledge Area Editor in Mathematical Foundation for
the SWEBOK project of the IEEE Computer Society.
Besides being in the editorial board for four International
Journals, he has also served in the committees of more
than 40 international conferences.

076Transaction Management for Distributed Database using Petri Nets

