

Transaction Management for M-Commerce at a Mobile Terminal

Jari Veijalainen1, Vagan Terziyan2, Henry Tirri3
1Department of Computer Science and Inf. Systems, Univ. of Jyvaskyla, e-mail: veijalainenj@acm.org

2Department of Mathematical Information Technology, Univ. of Jyvaskyla, e-mail: vagan@it.jyu.fi
3Helsinki Institute for Information Technology and Department of Computer Science, University of

Helsinki, e-mail: Henry.Tirri@hiit.fi

Although there has been a lot of discussion of
"transactions" in mobile e-commerce (m-commerce), very
little attention has been paid for distributed transactional
properties of the computations facilitating m-commerce.
In this paper we first present a requirement analysis and
then present a wireless terminal-based Transaction
Manager (TM) architecture. This architecture is based on
the assumption that there is an application that supports
certain business transaction(s) and that it uses the TM to
store transactional state information and retrieve it after
a communication link, application, or terminal crash. We
present the design of such a TM, including the application
interface, modules and log structure. A pilot
implementation of this TM for the location-based
application is also discussed. We further discuss other
alternatives to design such a TM that together can be
called "Ontological Transaction Monitor". This acts as
an intelligent component between the application and the
servers accessed during M-commerce transactions and
controls the perceivable communication behavior of the
terminal towards the servers, maintains the state
information and takes care of tight coupling of
transactional properties of the computations as well as of
security and privacy.

1. Introduction
The main driving force for the rapid acceptance rate of
small mobile devices is the capability to get services and
run applications at any time and at any place, especially
while on the move [7]. The experience from Japanese
market shows that the most important factor is that the
terminals are permanently carried around, and thus people
can use so-called “niche-time” to use the gadgets for
various things [16,38]. The telecom industry estimates that
there will be 500 million Internet-enabled mobile phones
in 2003 in the world. The number of these mobile
Internet-enabled terminals, sometimes called Personal
Trusted Devices (PTDs), is expected to exceed the number

of fixed-line Internet users around 2003 [12]. M-
commerce transactions are an important class of
applications on the PTDs. Thus, it is of high importance
that the infrastructure offers proper security and
transactional means to protect all players in the
environment against system crashes, but also against
malicious players and criminals.

It is not very clear yet what are transactions in m-
commerce context and what could be their exact
transactional properties. The term “transaction” had
almost ten closely related, but different meanings, ranging
from business transactions to formal model of program
execution within a database system [21,24]. So far, most
of the transaction modeling work has been done from the
database system perspective. The famous (but imprecise)
ACID properties should be guaranteed for the program
executions within the database system [1,14,6]. The more
complicated models present individual transactional
computations as trees. One modeling dimension is the
selection of the correctness criteria that divide the
histories into acceptable and non-acceptable ones. A
standard way of doing this is to set up an equivalence
relation among histories and classify them with a serial
history as serializable, i.e. acceptable. Check e.g. [3,24]
for a more complete analysis of diverse transaction
modeling incentive.

Mobile e-commerce transactions have been developed
in an industry-led consortium called MeT-forum [11]. The
work has produced a public white paper [12] where the
opportunities and risks of m-commerce are discussed.
Scenarios (business models) for five types of m-commerce
have been developed. On June 12th, 2002, a larger
consortium called Open Mobile Software Alliance (OMA)
was announced [36]. Its goal is to create a truly global and
interoperable m-commerce market. The key technical goal
is end-to-end interoperability at the service level and thus
end-to-end transactional properties of the services should
be considered. MeT consortium will join this initiative.

Is m-commerce an area that would again need its own
transaction model? Isn’t the work of MeT enough? In a

closer look the need to go beyond individual messages and
message exchanges becomes more than evident, because
the overall business transaction can consist of several
interactions with different players, such as merchants,
financial institutions and logistic companies; interruptions
between the phases can cause for example the order to be
accepted but the goods not paid, or goods paid but not
delivered, etc. The infrastructure should offer mechanisms
that help in avoiding these. Such research was considered
vital e.g. in Asilomar report [37].

Another issue is the security and trust closely related
with it. Unless people feel that m-commerce infrastructure
is secure and protects their privacy they do not want to use
it. Therefore, security and privacy should be combined in
a new way with the transactional mechanisms into an
integrated whole [25]. Risks are discussed e.g. in [2,19].

A tentative definition for m-commerce transactions
can be stated as follows: a mobile e-commerce transaction
is any type of business transaction of an economic value
that is conducted using a mobile terminal that
communicates over a wireless telecommunications or
Personal Area Network with the e-commerce
infrastructure.

M-commerce transactions are inherently distributed,
because they are always performed over a wireless link
and are thus protocol-driven. From the modeling point of
view they can be viewed as special kind of workflow. M-
commerce transaction refers to:
- a specification of a m-commerce workflow composed

of a specification;
- enactment of the specification by the distributed m-

commerce infrastructure, comprising the execution of
the relevant protocols and the local steps launched by
the protocol message exchanges at different players.

The properties of m-commerce transactions are
evidently different from the traditional centralized and
distributed database transactions [1,14]. The same is true
also for many “advanced” transaction models developed
([5,3,24]), although some known transaction models are
designed for application environments with similar
properties as m-commerce environment. Here of particular
relevance is the S-transaction model [21,23] developed for
international banking environment with strong autonomy
properties. Sagas [39] and nested sagas [40,41] are also of
relevance, but as a special case of S-transactions they do
need to be paid a special attention to. The most relevant
work is reported in [42] where the workflow specification,
as well as the transaction specification and execution
graph, are closely tied together. We analyze below more
closely the commonalties and differences of m-commerce
workflow and those in [42].

One of the most important developments from m-
commerce transactions point of view is that the terminals
are being developed towards Personal Trusted Devices
(PTDs) containing private keys, private and corporate

information, and perhaps also credit card information and
wireless cash. Stealing or misusing such a device or
information carried in it can cause great damage for the
device owner and other parties involved.

One of the starting points of our work is to design such
a transaction model and corresponding transactional
mechanism in the m-commerce environment that is
intertwined with security, privacy, authentication, and
authorization mechanisms. As special e-commerce
transactions, m-commerce transactions complying with
the model should guarantee the atomicity notions
introduced in [20] for e-commerce, which as such can be
formulated as special kind of semantic constraints
between subtransactions of S-transactions (cf. [21,23]).

In the sequel we deepen the above analysis about the
need and form of transaction modeling for m-commerce
environments. In section 2 we relate business models and
transaction modeling concepts with each other. This is
done by analyzing two of the five business scenario types
suggested by MeT [12]. Based on this analysis we refine
transactional requirements and properties, as well compare
them with known transaction models. In section 3 we
describe a more complete transaction model for m-
commerce satisfying the requirements and deduce and
analyze more in detail the properties of this transaction
model. In section 4 we discuss shortly the implementation
aspects of a simple transaction manager. In section 5 we
look a more sophisticated design. Section 6 concludes.

2. Business models for m-commerce
In our earlier work [43] we have shown that the global m-
commerce environment should be viewed at least from
four perspectives. One of them is Business Models. They
determine how the business transactions are specified and
when and how the players interact with each other. The
business transactions are an abstract representation of the
m-commerce workflow specifications.

One way of defining a business model is given in [18]:
• an architecture for the product, service and

information flows, including a description of the
various business actors and their roles;

• a description of the potential benefits for the various
business actors;

• a description of the sources or revenues.
We analyse below some concrete business transaction

instances that are simultaneously m-commerce
transactions in our sense.

2.1. Mobile e-commerce players
We first look at Japan, because the wireless Internet (e.g.
i-Mode) has existed there since February 1999 and certain
m-commerce player categories have emerged and are
economically viable. According to [16,32] in the market

initiated by NTT DoCoMo one can distinguish the
following players: a user; mobile network operator
(MNO); telecom operator; application provider; facility
supplier; information provider; contents holder; solution
provider; financial institution; terminal manufacturer. Not
all these players take part in actual m-commerce
transactions, but get their revenues indirectly. Typically,
companies providing the network infrastructure or system
software for the terminals are such players. Typical of
Japanese market is that services are billed and thus
payments are not performed on-line [32]. Thus,
conventional telecom business models are adopted, rather
than those applied in Internet environment.

2.2. Internet e-commerce over PTDs
The basic idea here is that the wireless network is one of
the access networks to the e-commerce infrastructure
offered over Internet. The PTDs are only a new terminal
class through which the e-commerce transactions can be
conducted. The capabilities of the PTDs are (much) more
limited than in ordinary PCs or laptops (see [17]). The
interaction patterns between the customer and other
players can basically remain the same as in the cases,
where the business is conducted over PCs. Thus, one can
consider e.g. the eleven business models analysed in [18]
to be used by customers over PTDs. Is this realistic in all
cases and when does it make sense? To answer one must
remember that the interface facilities of the PTDs are not
capable of showing fancy graphical layouts and
complicated forms. They must be redesigned and
described using WML [27] or c-HTML – or XML-related
markup languages, especially XHTML [35]. In addition,
some scripting language like WML Script is needed.
Second, in contrast to Internet, users must pay for the data
transfer in MNOs networks and transferring data is
relatively slow – and expensive.

To give concrete examples we look at three business
transactions in [18]. One is E-shop with credit card
company as financial institution, the other one is Info-
brokerage type of service with direct on-line payment,
third is wireless banking (see [9,13,28]).

In Fig.1(a) the E-shop case is schematically depicted.
From m-commerce transaction point of view we omit the
goods selection phase that might involve several message
exchanges. The m-commerce transaction begins upon
placing the order. Thus, the Begin-tr clause is placed at
the terminal in front of issuing the order message. During
the order processing, the merchant contacts the credit card
company and checks whether it is ready to allow the
purchase. After checking the inventory, the merchant
either acknowledges or denies the order. If tangible goods
are ordered, the delivery logistics is asked to deliver the
goods to the address given by the customer.

a) implicit payment b) explicit payment

Merchant
subtransactions

Payment
subtransactions

The goods

Customer root
transactions

Goods delivery
subtransactions

Merchant
subtransactions

Payment
subtransactions

The goods

Customer root
transactions

Goods delivery
subtransactions

Fig. 1. E-Shop and E-Service with different type of payments

In the case of intangible goods, like music, the
merchant can deliver the goods over network by push or
pull approach. In the latter case, usually the customer gets
an email that contains an URL, from which the goods can
be loaded [29]. This additional information flow
facilitated by email is not shown in the picture. It is also
worth of noticing that the PTD does not need to be the
delivery address of the intangible goods (see [22]), but the
target address can also be another (home) device capable
of storing/presenting the contents (e.g. video recorder).

The second case is depicted in Fig.1(b) The difference
to the previous case is that after the customer has placed
the order, the merchant replies with a special form that
contains the payment information for the bank or other
payment service. The customer then contacts the bank and
pays the goods or service using funds transfer from her
account to the account of the merchant. For authorisation,
the personal PINs of the customer issued by the bank are
used. After a successful payment the customer gets
another form from the bank that she sends in form of a
request to the merchant. It contains the payment details.

Usually, there is an additional information flow
between the payment service and merchant to inform
about the payment (shown in the figure through an arrow).
The case is described more elaborately in [22].

In the banking case there are only two explicit players,
the customer and the bank, such as Nordea [9,13]. One
can access Nordea bank’s services through two
functionally equivalent but externally different WWW
pages. On the front page one can select the interface.
Thus, the user can do all banking operations using an IP-
enabled wireless PTD or usual PC. The actual server uses
secure end-to-end connections (https). The operations
include all typical operations for domestic and
international funds. transfers from customer's own
account. Nordea bank offers an even simpler banking
interface for pure WAP devices [10]. The interaction
patterns remain the same as above, but the forms
exchanged between the client and server are adapted to the
tiny resources of the current generation of WAP phones.
The authentication and authorisation is in all cases above
based on lists of PINs.

Looking at the technical requirements, with the
currently applied wireless tariffs that are either connection
time or data volume based - or both - an obvious
requirement for the m-commerce transactions is: the
transactional protocols should run as quickly as possible
and move as little data as possible from and to the PTD.
In practice this means that the m-commerce protocols
should exchange as few as possible messages and as little
as possible data over the wireless link. This raises
immediately the question, whether the interaction patterns
designed for the “cost free” Internet infrastructure can
indeed be used as such, or should they be redesigned.

On the other hand, as was inferred in [25], the
interaction pattern of the m-commerce transactions should
be the more complicated the higher value the business
transaction has. This is because increasing the number of
end-to-end authorised message exchanges during the
transaction execution makes it less probable that a
fraudulent person would be able to run successfully the m-
commerce transaction. This requirement is evidently in
contradiction with the above minimisation requirement.

2.3. Location-based services; the taxi example
These services are more in the domain of the MNOs than
the previous ones [8]. The basic idea is that the terminal
has a position on the earth and this is made known to
applications running on the infrastructure. The
infrastructure can be running on MNOs sphere of control
or at some external service provider. A typical query is:
“Where am I now?” “Where is the cheapest restaurant that
is 500 m away?” A very useful service request is: “Send
me a taxi right now!” For discussion on the emerging
applications see [15].

The first and very basic query that is implicit in any
location-based activity can be answered by displaying the
WGS-84 coordinates, or using maps, voice, etc. The
coordinates can be generated by a GPS-enabled terminal
itself or provided in whole or in part by the network
infrastructure. If the terminal is not GPS-enabled or is
outside GPS coverage, it must communicate with the base
stations in order to collect the data that is necessary for
calculating the position. The calculation can be done
either by the network or by the terminal.

The general logic of the terminal-initiated location-
based service requests is the following:

[Terminal-> positioning infra: locate_me (MyId)
positioning infra-> terminal: (MyId,XYZ)]
 Terminal: form the queryQ(MyId, XYZ,id,otherPara)
[Terminal ->LBS appl.:query
 Q(MyId,XYZ,Qid,otherPara)
LBS application -> terminal
 Result(Q(MyId,XYZ,Qid,otherPara))
{Terminal -> LBS application: ackQ(Qid)}]

By “[”, “]” we denote here the borders of subtransactions.

Let us now look at the taxi-ordering example. It differs
from the above digital content delivering examples in that
a physical taxi comes to the location where the customer
is (or was when the taxi was ordered). We can use either
of the ways above to perform the location query Q. Let us
take the former form. Then we have:

[Terminal-> positioning infra: locate_me (MyId,Qid)
positioning infra-> terminal: Result(Qid,XYZ)]
 [Terminal: form the query Q(MyId, XYZ,id,otherPara)
Terminal ->LBS appl.:queryQ(MyId,XYZ,Qid,otherPara)
LBS application -> terminal
 Result(Q(MyId,XYZ,Qid,otherPara))
Terminal -> LBS application: ackQ(Qid)]
Taxi arrives to the place (XYZ) after W minutes from placing the
order.
Customer is transported to the target address
[Customer pays the trip]

In this case the Result(Q(MyId,XYZ,Qid,otherPara))
says “Taxi nr. 999 comes to <address> in ca. 4 minutes;
order Nr 666” or “Sorry, we cannot deliver a taxi within 4
minutes, but within ca. 15 minutes”. The ackQ(Qid) is in
this case important, because through it the customer
commits to the order. Sending NackQ cancels the order.
OtherPara must in this case contain e.g. the time limit,
during which the taxi is expected to arrive. After the
customer has committed to the order, he is primarily
expected to wait for the taxi at <address> for the agreed
upon number of minutes. If W above exceeds the time in
the Result, the customer should not need to pay, even if
she does not wait. If the taxi does come on time to
<address>, but does not find the customer there, then the
customer should pay (see [30] for more on disputes in e-
commerce). The commitment to an order and disputes are
tricky aspects that are dependent on business habits in a
country and contribute to the roaming heterogeneity. The
differences have influence on the transaction borders and
are in this respect also relevant in this context.

Another aspect related with this is to map the (XYZ)
coordinates to <address>. It requires most probably
coordinate transformations and attachment of them to the
local map. Which player provides this mapping? It can be
the taxi ordering company, each individual taxi owner
(GPS car map), or an external service provider that upon
getting a coordinates <XYZ> returns the <address>. These
infrastructure issues are for further study. The above taxi
service requires privacy protection measures and customer
trust. For instance, the tracking of phone number should
only be enabled for this particular purpose, taxi-order here
and now, if there is a need to set up a voice connection
with the customer. In general, m-commerce transaction
security can probably be improved through location-based
authentication (see [4]). Location, as calculated from a
location signature, adds a new dimension to user
authentication and access control. It can be used to

determine whether a person is attempting to log in from an
approved location or performing tracking from an allowed
region, and using approved services.

2.4. Business models with MNO as proxy
Because wireless communications are slow and expensive,
the capabilities of the PTDs are limited, one is easily lead
to the following idea. Another component, proxy, could
present the terminal and thus the customer against other
players. The terminal could submit a request to the proxy
that then acts on behalf of the customer controlling the
PTD, based on the instructions given in the request.
Basically, in any m-commerce business model one might
try to add this kind of a middleman. From the m-
commerce workflow point of view proxy means making
the execution tree (or rooted TAG) higher but narrower at
the first level. Typically, such a proxy can perform
searching, information gathering, sorting of the received
data etc. This saves a lot of bandwidth over the wireless
link, costs, and processor and memory capacity of the
PTDs, as well as energy at the terminal.

A more general business model using a proxy is one,
where the proxy is explicitly equipped with capability
from the customer. The capability should contain the
instructions for proxy and it should be signed by the
private key of the customer. It should also contain the
certificate issued by a Certification Authority. The clearly
missing piece is a general language to describe the
assignments from the customer to the proxy. Technically,
the language should be based on XML as BizTalk™ [31]
is. This kind of a mobile assignment/ contracting
language is left for further study.

3. Towards m-commerce transaction model
From the above analysis one can draw the following
conclusions. In all m-commerce workflow specifications
the user is the ultimate source and initiator of the
workflow. Thus, the terminal should run in all cases the
root step of the workflow instance. It is, however, as
evident that there is not just one m-commerce workflow
that the terminal should be able to run, but many, as
evidenced by the few examples above. They differ in
topology from each other. In addition, different workflows
might require different kinds of protocols to be run against
the other players. Taking into consideration the local
business habits, even the “same” abstract workflow, such
as “ordering a taxi” – might require different concrete
protocols to be run at the terminal in different countries.
We can still find many commonalties between the
protocols and a common shape of the execution graphs.
Thus, as alluded in the introduction, m-commerce
transaction model is a reasonable concept. What are the
properties of such transactions?

The PTD representing the customer is the source of
activity and thus naturally the root of the transaction. It
must often request several tasks or steps to be performed
at different players (ordering, positioning, paying) over a
wireless network. Thus, there are subtransactions
involved. M-commerce transaction instances are
distributed and they can be modelled as rooted Directed
Acyclic Graphs (RDAG). The subtransactions are in some
cases directly traditional DB-transactions with ACID
properties, e.g. funds transfers (cf. [42]). There are also
contractor-subcontractor relationships present in the
environment (logistics, searching, indirect payments) that
necessitate a deeper subtransaction hierarchy. Akin to S-
transactions the depth of the hierarchy cannot be
determined by the root at the beginning of the execution.
An important aspect is that m-commerce transactions
often rely on existing infrastructure that remains as it is.
Therefore, the root transaction does not necessarily know
how deep the hierarchy/DAG actually is. The hierarchy
can vary from business model to business model and even
from transaction instance to transaction instance.
Therefore, the controllable scope of m-commerce
transactions is the root and first level of the transaction
execution graph no matter how large the entire RDAG of
the m-commerce transaction is. This first level forms also
the scope of standardisation by MeT, because the deeper
levels are already existing ones and their design cannot be
much influenced.

The m-commerce environment is highly autonomous
and heterogeneous and has legacy systems running. This
has several implications. First, the m-commerce
workflows are typically inter-organisational. Second, they
are in a new way dynamic, because the terminal can roam
to any place in the world and initiate such an m-commerce
transaction. Consider in this respect a roaming customer
and the taxi example above. Evidently, the PTD should be
able to communicate and interact with the local
infrastructure in order to be able to order the taxi. What
guarantees, that the PTD is able to do it exactly in the
same manner in New York, Istanbul and Beijing? This is a
new legal, business model, organisational and
hardware/software problem. We call it roaming
heterogeneity. This phenomenon was a reason for
establishing MeT [12] and later OMA [36]. The roaming
heterogeneity and existing global infrastructure is a
difference to S-transactions as well as to the environment
in [42]. In order to mitigate the above problem and to cut
the data transmission costs one must try to minimise the
number of parties the root must interact with during an m-
commerce transaction. Bandwidth and computational
restrictions at the terminals are also important. Thus, m-
commerce transactions should be as “narrow” as possible
at the top.

Like S-transactions, M-commerce transactions often
contain real actions [6,21] as part of them (delivering

tangible or intangible goods or non-digital services like
taxis). Sometimes the real actions can be technically tied
to the running m-commerce transaction, sometimes the
user must tell the terminal of the occurrence of real world
action (like arriving of the ordered book).

Similarly to S-transactions, atomicity preservation is
the key property of the m-commerce transactions. That is,
they always try to enforce an atomicity constraint [21] that
says that either all necessary “positive” subtransactions
are performed or otherwise they are cancelled. The
constraint sought to be enforced usually fulfils certified
delivery [15], but this is not always enough. Due to the
unreliability of the E-commerce infrastructure and real
actions involved, atomicity constraints can only be
enforced with certain probability that is less than one.

Durability, Consistency and Serializability are
important concerning the subtransactions of different m-
commerce transactions at one player, but they are not the
key properties of the overall transaction. In fact, they play
very similar role as in S-transactions [21,23]. Permanence
of the state is also of high importance for the root
transaction running at the terminal. Because the
transactions can last days or even months (trading tangible
goods, ticketing) special measures must be taken to store
the transaction states (logs) persistently.

As e-commerce transactions, m-commerce
transactions can involve cancellations and dispute
resolution. How they are handled depends largely on the
business model and local business habits. As such, the
problems and solutions are similar to the Internet e-
commerce cases, if Internet e-commerce is performed
over a wireless link. A new problem is location-related
disputes and cancellations (taxi did not arrive to the right
place at right time) and should be studied further.

A very important new thing is that authorisation,
authentication, security, and privacy aspects are pervasive
in the m-commerce transactions [22,25]. This requires the
user-PTD interactions to be modelled and logged as part
of the root transaction. Also, encryption and transactions
must be more closely brought together.

4. Implementation considerations
As said above the controllable scope the m-commerce
transactions are the root and the first level subtransactions.
Because the latter are running at e-commerce or
infrastructure servers, we assume for simplicity that they
are implemented using DBMS with full transactional
facilities. Thus, such local subtransactions have ACID
properties. The same holds for the subtransaction trees
rooted at the servers.

4.1. Transactional functionality at PTD
The main challenge is how to support m-commerce
transactions at the scarce-resourced PTDs. Could

workflow specifications be made executable at PTDs? In
theory yes, but in practice this would require much
resources from the terminal. We do not believe that the
current or next generation of PTDs would be able to run
an interpreter for general workflow specifications. On the
other hand, the top-end terminals (such as Nokia 9210 and
3G terminals in Japan) are now capable of running Java so
it is only a matter of time when this will be possible. We
assume in the sequel that there is an application that
materializes the m-commerce workflow root functionality
and that runs at the terminal. There can be several such
applications hosting one or several workflows or only one
(the workflow interpreter). As we see from the examples,
the role of the PTD in transactional sense is somewhat
similar to a 2PC co-ordinator. Both must keep track of the
state of the subtransactions and guarantee that their end
state remains coherent, although the criteria for the
coherence are different for 2PC and MC Transaction
Manager (MCTM).

What are threats? First, the action atomicity can be
jeopardized by communication crashes and/or terminal or
server crashes. That is, typically a request is sent, but a
response never arrives at the terminal. This is not a pure
communication problem, because the request might have
caused a state change at the server (e.g. order is placed)
and thus simply e.g. re-issuing or forgetting the request is
not appropriate. This is really an application (and
protocol) design problem, because it must be able to
decide when it makes sense to re-issue or cancel the
request after a particular crash. Both the applications
running at the terminal and at the server must be
“recoverable” in the sense that they recognize that a crash
happened and remember what was done before the crash..

Subtransaction atomicity is jeopardized, if the
sequence of actions is not complete in a semantic sense. If
the two interactions with the bank above are interrupted at
any point of time where both of them have not been
completely performed, the subtransaction atomicity is not
preserved.

Finally, the transaction atomicity is jeopardized if the
subtransaction atomicity is jeopardized or some
semantically necessary subtransaction is missing. If the
merchant is not informed of the successful payment, the
customer will most probably not get the goods. Notice that
lacking atomicity at a lower level constituent implies lack
of next higher level atomicity, but not vice verso.

From these follows that MCTM running at the
terminal must be able to distinguish and log: 1) beginning
of m-commerce transaction BegTr, 2) end of it EndTr, 3)
beginning of a subtransaction BegSTr, 4) end of
subtransaction EndSTr. Assuming that a subtransaction
corresponds to a sequence of actions, i.e. request-response
pairs towards the same server while performing a service,
MCTM further needs to mark 5) start of action BegAC,
and 6) end of action EndAC.

Distinguishing between different m-commerce
transactions and their subtransactions requires a unique
naming scheme. This is in a natural way hierarchical
(TID.STID). The name should also contain the identity of
the player, where the subtransaction is being run, in order
to recover the action/subtransaction, if necessary.

Further requirement is that the subtransaction borders
must be determinable during the execution because the m-
commerce transaction can evolve in different ways based
on the user's decisions or application logic.

How can the PTD decide upon the above borders? A
basic facility the PTD must offer is transactional context
that either the user or the (micro)browser can ask the PTD
to enter or leave. This is required for two reasons. First,
the PTD is used for many purposes, and not all are related
with m-commerce transactions. Second, not all
subtransactions or actions of an m-commerce transaction
protocol need be included into the scope of an m-
commerce transaction (e.g. browsing catalogues).
Entering the transactional context means that the
application/browser begins to interact with MCTM to
insure transactional properties.

Including certain subtransactions or actions
dynamically into the transactional scope or excluding
some of them dynamically and possibly conditionally can
be solved by letting the user to set the m-commerce
(sub)transaction borders. If we accept this paradigm in this
environment, then the mobile user must indeed set the
transactional borders. Concretely, this would mean that
while in the transaction context she is offered e.g. a menu,
where she can issue the above actions. This approach has
far-reaching ramifications, as the entity responsible for the
correctness of the m-transactions would be the user.

Another way is an implicit transaction border setting
by the application software at the terminal. The latter
requires that the software can recognise when the user has
initiated such an action that should start an m-commerce
transaction or subtransaction, and which action or
incoming message should close the m-commerce
(sub)transaction. This is possible, if the application knows
which actions belong to the subtransaction.
Subtransaction can also be closed when the application or
user wants to start interaction with a new server. The same
holds if the incoming message contains TID or STID or
information based on which the correct transactional
context can be deduced. This requires protocol with
memory properties from the server. The latter requirement
is emphasised because the m-commerce transactions are
typically long lasting. Thus the user must be allowed to
run several m-commerce transactions simultaneously. As
a consequence, an incoming message does not necessarily
belong to the currently running m-commerce transaction.

The simultaneous execution of several m-commerce
transactions, and also terminal crashes, require that the
PTD offers operations suspend(<id>) and resume(<id>)

for the user. Using them, the user can switch between
different transactions within the transaction context or
leave it and return to it, when appropriate.

There are two possibilities: either the user controls the
m-commerce transaction borders or the PTD application
software does it. We can also combine the solutions into
one, i.e. if the application does not know where the
borders should be placed, it asks for user's assistance,
otherwise it does it. The applications running at the
terminal must be quite sophisticated in order to fulfil the
above requirements. They should be prepared for diverse
crash situations and be able to decide when to recover
forward or backward after a certain kind of a crash. This
requires at least a persistent log from which the history
prior to the crash can be retrieved. We opt for a design
where the TM is application-driven and acts as a kind of
sophisticated persistent memory and bookkeeper. From
the customer point of view, it is reasonable to keep record
of not only incomplete transactions, but also of finalized
ones. There should be possibility to save transaction log or
part of it into an “application” log upon transaction
termination.

4.2. Design principles of a simple MCTM
An M-commerce application (workflow root) execution at
the terminal corresponds to one instance of M-commerce
transaction, as perceived by the MCTM. Consequently a
unique Transaction Identifier (TID) identifies it. The
logical design of TM is as follows. Applications will
interact with MCTM through a standard, programmatic
interface allowing them to start and end a transaction,
subtransaction and action. Further, applications can write
a CHECKPOINT and retrieve any of the earlier stored
items at any time. The TM basically stores the items
handed over by the application into a persistent log in the
order they arrive. The persistent log is implemented using
the most persistent (RAM) memory the terminal offers. In
the top-end terminals we can usually rely on file system of
the platform while managing the persistent data.

For the latter purpose the application must store as part
of the END_AC record also the name of the compensating
action and parameters with which this must be executed in
order to reverse the impact of the action being closed. The
action might also be such that it does not need to be
compensated or it might be non-compensatable. We
envision that often the application must ask user what to
do in case of a backward recovery.

A more detailed TM architecture is presented in Fig.2.
Application Interface is implemented by Dispatcher that
keeps track of the TIDs etc. and is able also to analyze the
state of the transaction. Archivist handles the log i.e.
Application Log Memory (ALM). Archivist processes
BeginTR, EndTR, BeginSTR, EndSTR, Begin AC, and
EndAC by assigning Ids for appropriate transactions,

subtransactions and actions, storing corresponding log
records with appropriate timestamp values in the ALM. It
also stores the CHECKPOINT information. We assume in
this stage that the application writes the actual checkpoint
data into a persistent store (file) and only the reference
(file name) is stored into the ALM, along timestamp. This
is facilitated by the SetCKPNT operation.

B eg inTR BeginST R B eg inAC

T R_ID [ST R_ID { A C_ID (/*C LS_ID=D ATA*/

W riteCK PN

… /*C LS_ID=D ATA*/

GetCHK PN
T EndAC

)

EndST R

ST R_ID }

E ndTR

]

Archivist

D ispatcher

Application Log Mem ory (ALM)

Application

CheckT R C heckSTR CheckAC

T R_State ST R_Sta te A C_State

GetTR GetST R G etAC

TR_List STR_List AC_List

De leteLog

t1 t2 t3 t4 … tn -3 tn-2 tn-1

t

C ompensate
AC

TR_ ID

tn

GetCLS

C LS_L ist

AC_ ID

TM _State

CheckMon ito r

Fig. 2. Managing the Application Log Memory

Operations GetTR, GetSTR, GetAC, and GetCLS are
used by the Application to pick up from the ALM Ids of
transactions within temporal interval, Ids of
subtransactions within a transaction, Ids of actions within
a subtransaction, Ids of data clusters within an action.
Operations CheckTR, CheckSTR, and CheckAC return
results of analysis of a transaction, a subtransaction, or an
action respectively to allow Application to decide what to
do with previously interrupted transaction (subtransaction
or action). Operation DeleteLog purges the ALM.
Through a parameter the application can ask the TM to
keep a data cluster in the persistent log for a later usage
(e.g. a digital map).Operation CompensateAC marks that
the action to be logged compensates an earlier action. This
helps in guaranteeing idempotence in case a crash occurs
during the recovery from earlier crashes.

No item is ever cleaned from the log, except when the
whole ALM for a particular transaction is discarded.

4.3. Simple MCTM Implementation
The TM sketched above is implemented using Java. The
idea is that the software is included into application during
compile time and that the MCTM runs as part of each
process (or thread). In other words, there can be several
simultaneously running instances of the MCTM within
one terminal. This raises the question, how the uniqueness
of the TIDs is guaranteed. How this is achieved depends
on the concrete environment. If the file system offers
exclusive access to a file, this can be used to store a
counter value into a special file. The MCTM reads this in
an exclusive mode when allocating a new unique id and a

higher counter value is written back to the file in exclusive
mode. A more sophisticated solution is to use the local
time provided by the clock of the terminal as part of the
TID, with or without the counter above, which is the
solution used in our implementation.

Another issue closely related with the architecture
above is how to get the recovery started. MCTM can
namely only run as part of an application process and
another program must ask it to check the log(s). One
solution to this is that after a terminal or application crash
a special recovery application runs and asks the MCTM to
return the list of all non-completed transactions (within a
certain interval ending NOW). This list is then shown to
the user who can select a TID. The recovery application
subsequently retrieves the application type information
from the ALM corresponding to the TID and runs the
appropriate application up. The user can further ask the
application to recover the transaction with TID. Another
way to come to this point is that after a crash the user
simply runs her interrupted application up. She can then
ask the MCTM to list all incomplete transactions
generated by that application type and pick one of them to
be executed. Once the transaction to be continued has
been chosen, the application can ask the MCTM to return
its state to the application. It is the contents of the
appropriate ALM, i.e. an ordered list of log entries. This
includes the possible checkpoints. By following the list of
BeginTR, EndTR, BeginSTR, EndSTR, BeginAC, EndAC
and CompensateAC and checkpoints it can determine
which actions and subtransactions were completed, which
not and retrieve its internal state from the checkpoint file,
if present. Depending on the state, the application must
then either continue the execution (recover forward) or try
to cancel the already taken actions at the servers (recover
backward) - perhaps with user's help.

4.4. An application running with simple MCTM
The concrete application we are currently using with the
MCTM is a Location-oriented application that offers to
the user a digital map on PTD’s screen based on the
location the user is at. At the present stage the Mobile
Location Service (MLS) pilot system [34] supports
geographic data in the form of road network and location-
based information on points of interest, encoded in XML.
The MLS client runs on devices supporting Java such as
Nokia 9210. A more detailed application-driven MCTM
design can be found in [33] and the overall system design
and implementation in [34].

5. Ontological MCTM design
In the above simple MCTM design the application has the
understanding of the semantics of the workflow root
actions, whereas the MCTM is only a slightly enhanced
logger. The combination of security, privacy and

transactional properties also fall short in the architecture.
A more sophisticated MCTM would monitor the
communications between the client and server and also
integrate encryption/decryption functionality into the
transactions. The architecture is depicted in Fig.3:

Application

Transaction Monitor

Communication Manager Security Manager

Log

TO/From Server
Fig. 3. Architecture of an Ontological TM

In this architecture, the application-MCTM interaction
can happen at different abstraction levels. The generic
low-level interface would be one where the application
asks primarily the MCTM to communicate a request to a
particular server and return a response. The request would
be basically of form Req(IP-addr, PDU-content, Encr-
indicator,TID). The MCTM then causes the
encryption/decryption to be performed using the Security
Manager that hosts the private key etc and asks the
Communication Manager to send the encrypted request to
the server whose address is IP-addr, selected by the
application. When the response arrives, MCTM decrypts it
and hands the content to the application, along the TID.
The MCTM can deduce the action borders and
subtransaction borders by itself based on the server
address in the request. The application must, however,
indicate the beginning and end of the entire m-commerce
transaction to the MCTM. The interface between the
application and MCTM can be also more abstract than
above. Whereas above the application must know the
addresses of the servers it wants to communicate with and
the application protocol format, these both could be
catered for by the MCTM. In the extreme case, the
application could only issue a request to the MCTM
“Order taxi immediately to this place, target address
being…” After that, the MCTM should interpret the
request and compile a detailed transaction execution plan
consisting of the following steps: (1) ask the positioning
of the terminal; (2) consult the service discovery service in
order to find the most appropriate taxi service address in
the neighbourhood; (3) send request to this service for a
taxi; (4) inform the user that a taxi is coming along the
order information.

As can be seen, the latter requires a lot of intelligence
of the TM. It should be able to generate an application
based on the request. It is worth of noticing that the
Ontological TM could use the earlier application driven
MCTM as its component.

6. Conclusions
Currently one can see the emergence of at least five
different kinds of m-commerce applications: Internet E-
commerce over wireless access networks, location-based
services, ticketing applications, retail shopping, and
banking. M-commerce operates partially in a different
environment than Internet E-Commerce due to the special
characteristics and constraints of the terminals, sometimes
called Personal Trusted Devices and networks, and the
context, situations and circumstances that people use their
PTDs while roaming.

In this paper, we have analysed the business models
and ensuing transactional requirements in the environment
and deduce key ingredients for a transaction model
necessary for m-commerce environments. Central
conclusions are that m-commerce transactions in a strong
sense are needed. We have also implemented the first
manager running at Java-enabled terminals, such as Nokia
9210. M-commerce transactions can be viewed as
transactional workflows and are relatives of S-
transactions, i.e. structurally RDAGs, long lasting, contain
cancellations and real actions. A form of semantic
atomicity (preferably certified delivery [20]) is the
property they try to enforce. Due to hostility of the
environment, and vulnerability of PTDs, security and
privacy must be intertwined with the transaction model
and its realisation. The m-commerce environment is
global, highly autonomous and heterogeneous due to
roaming, different regulatory frameworks and existing and
emerging business models. This causes roaming
heterogeneity, a new form of heterogeneity, to emerge.
That and other forms of heterogeneity make it worthwhile
to develop standard solutions to reduce heterogeneity and
make global m-commerce possible, an important task for
Open Mobile. An important conclusion is that the m-
commerce transactions are an important conceptually and
pragmatically. Although a rather coherent view on them
has been presented here, making standard software at the
terminal feasible, much more detailed work is needed.

Acknowledgements
This research was funded by the Finnish National
Technology Agency (TEKES), Nokia Networks, HP
Finland, and Yomi Solutions (contract 330/401/99).
Support of FhG-FIT (Sankt Augustin, Germany) for the
first author during his sabbatical in 2000-2001 is also
highly appreciated.

References
[1] P. Bernstein, V. Hadzilacos, N. Goodman, Concurrency

Control and Recovery in Database Systems, Addison-
Wesley, 1987.

[2] O. Braun, D. Bremer, G. Schmidt, K. Zimmer, Designing a
Generic System for Process-Oriented Support of Business
Transactions Using Internet for Electronic Commerce,
http://www.electronicmarkets.org/netacademy/.

[3] R. De By, W. Klas, J. Veijalainen (eds.), Transaction
Management Support for Cooperative Applications. Kluwer
Academic Publ., December 1997.

[4] D. E. Denning, P. F. MacDoran, Location-Based
Authentication: Grounding Cyberspace for Better Security,
Computer Fraud & Security, Elsevier Science Ltd., 1996,
http://www.cosc.georgetown.edu/~denning/infosec/Grounding.txt.

[5] A. Elmagarmid, Database Transaction Models for
Advanced Applications, Morgan Kaufmann, 1992.

[6] J. Gray, A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, San Mateo, CA, 1993.

[7] A. Helal, B. Haskell, J.L. Carter, R. Brice, D. Woelk, M.
Rusinkiewicz, Any Time, Anywhere Computing; Mobile
Computing Concepts and Technology, Kluwer Academic
Publishers, June 1999.

[8] G. Letham, GIS Movers and Shakers Target LBS. http://spa
tialnews.geocomm.com/newsletter/2000/22/mobile2001l.

[9] Merita Solo. http://solo.merita.fi.
[10] Merita Solo over WAP services. http://www.merita.fi/s/

kodin/osta/laskut/osoite_wap.stm.
[11] Mobile Electronic Transactions forum. http://www.mobile

transaction.org/.
[12] MeT Overview White Paper. Version 2.0, 29.1.2001. http:

//www.mobiletransaction.org/pdf/White%20Paper_2.0.pdf.
[13] Nordea bank. http://www.nordea.com/eng.
[14] C. Papadimitriou, The Theory of Concurrency Control, CS

Press, Rockville, MD, 1986.
[15] J. Suutari, Transparencies on the Architecture of Location-

based Services in WAP Environment, MMM-Nokia
Meeting, November 2000.

[16] K. Tanaka, A set of transparencies about the Finnish-
Japanese 3G project, Finpro Office, Tokyo, 2001.

[17] P. Tarasewitch, M. Warkentin, Issues in Wireless E-
Commerce, ACM SIGEcom Exchanges, Issue 1.1, August
2000, pp. 19-25.

[18] P. Timmers, Business Models for Electronic Markets. http:
//www.electronicmarkets.org/netacademy/publications.nsf/a
ll_pk/949/$file/v8n2_timmers.pdf?OpenElement&id=949.

[19] A. Turner, Internet Contributes to Increase in Identity Theft,
Fairfax IT, September 1, 2000, available in:
http://www.it.fairfax.com.au/breaking/20000901/A41152-
2000Sep1.html#top.

[20] J. D. Tygar, Atomicity in Electronic Commerce. In
Proceedings of the 15th PODC Conference, 1996: 8-26.

[21] J. Veijalainen, Transaction Concepts in Autonomous
Database Environments. (Ph.D. thesis). GMD-Bericht Nr.
183, R. Oldenbourg Verlag, Munich, Germany, April 1990.

[22] J. Veijalainen, A. Tsalgatidou, Electronic Commerce
Transactions in Mobile Computing Environment. Q. Jin, J.
Li, N. Zhang, J. Cheng, C. Yu, S. Nogushi (eds), Proc. of
IS2000, Fukushima, Japan, Nov. 5-8, 2000, pp. 37-45.

[23] J. Veijalainen, F. Eliassen, B. Holtkamp: The S-transaction
Model. Chapter 12 in [5]

[24] J. Veijalainen, A. Wolski, Transaction-based Recovery.
Chapter 11 in: A. Elmagarmid, M. Rusinkiewicz and A.
Sheth (eds.), Management of Heterogeneous and

Autonomous Database Systems, Morgan Kaufmann Publ.,
San Francisco, October 1998, pp. 301-350.

[25] J. Veijalainen, Transactions in Mobile Electronic
Commerce. In: G. Saake, K. Schwarz, C. Türker (eds.),
Transactions and Database Dynamics. LNCSNr. 1773,
Springer Verlag, Berlin, December 1999: 208- 229.

[26] E. Wesel, Wireless Multimedia Communications, Networ-
king Video, Voice and Data. Addison-Wesley, 1998.

[27] Wireless Application Protocol. See WAP-forum at
www.wapforum.org.

[28] Keltainen Pörssi at www.keltainenporssi.fi.
[29] Liquidaudio at http://www.liquidaudio.com/.
[30] J. Tang, and J. Veijalainen, On E-Commerce Transaction

Protocols that support Atomicity Based Dispute Handling
with Untrustworthy Players. In Proceedings of ICTEC
2000, Dallas, TX, USA, Nov. 16-19, 2000, pp. 299-314.

[31] C. Herring and Z. Milosevic. Implementing B2B Contracts
Using BizTalk. Proc. of HICSS-34, Maui, Hawaii, Jan. 3-6,
2001. CD-ROM, file ST4T106.pdf.

[32] A. Devine, S. Holmqvist, Mobile Internet Content Providers
and their Business Models. Masters Thesis, Stockholm
Kungl Tekniska Högskolan, January 2001.
http://www.japaninc.net/online/sc/master_thesis_as1.pdf.

[33] J. Veijalainen, V. Terziyan, Transaction Management for
M-Commerce at a Mobile Terminal. Accepted to Workshop
on Reliable and Secure Applications in Mobile
Environment. Oct. 28, New Orleans, USA.
http://www.cs.jyu.fi/~mmm

[34] J. Markkula, A. Katasonov, A. Garmash, Developing MLS
Location-based Service Pilot System. In: Proc. of
Smartnet’2002, 7th Conference on Intelligence in Networks,
Saariselkä, Finland, April 8-10, 2002.

[35] WAP forum; WAP Specification 2.0. Accessible at
http://www.wapforum.org/.

[36] Open Mobile Alliance. http://www.openmobilealliance.org/.
[37] P. Bernstein et al. The Asilomar Report on Database

Research. SIGMOD Record 27 (1998), 4(Dec.).
http:www.acm.org/sigmod/record/issues/9812/asilomar.html.

[38] K. Ichikawa, The View of NTT DoCoMo on the Further
development of Wireless Internet. Tokyo Mobile Round
Table Conference, May 2002.

[39] H. Garcia-Molina, K. Salem: Sagas. Proc. of ACM
SIGMOD conference, May 1987, pp. 249-259.

[40] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K.
Salem, Modeling Long-Running Activities as Nested Sagas,
IEEE Bulletin of the Technical Committee on Data
Engineering, 14 (1), 1991.

[41] H. Garcia-Molina et al. Coordinating Multitransaction
Activities with Nested Sagas. Ch. 16 in V. Kumar & M.
Hsu (eds.), Recovery Mechanisms in Database Systems,
Prentice-Hall 1998.

[42] P. Grefen, J. Vonk, P. Apers, Global Transaction Support
for Workflow Management Systems: From Formal
Specification to Practical Implementation. VLDB Journal
10 (2001), pp. 316-333.

[43] Jari Veijalainen, Mathias Weske, Modeling Static Aspects
of Mobile Electronic Commerce Environments. Ch. 7. in L.
Peng, K. Siau (eds.). Advances in Mobile Commerce
Technologies, Idea Group Publishing. (forthcoming).

