Transaction Monitoring in Networks on Chip:
The On-Chip Run-Time Perspective

Calin Ciordas T Kees Goossens *

f Eindhoven University of Technology
Design Methodology for Electronic Systems
PO Box 513, NL-5600 MB Eindhoven
{c.ciordas,a.a.basten @tue.nl }
{a.g.boon@student.tue.nl}

Abstract

Networks-on-chip (NoC) are a scalable interconnect so-
lution to multiprocessor systems on chip (MPSoC). NoCs
transport data in packets which are fragments of transac-
tions, such as read and write actions of IPs. For debug
purposes, reconstructing transactions at run-time is essen-
tial. Run-time analysis of the NoC behavior at transaction
level makes the complete MPSoC easier to understand. We
present a NoC analyzer able to monitor NoC transactions
at run-time. The proposed hardware transaction monitor is
able to reconstruct on-chip, at run-time, NoC transactions
from bit-level intercepted router link communication. Four
NoC analyzer modes are detailed raising the abstraction
level gradually from physical raw to logical connection-
based, transaction-based and abstract transaction event-
based. Each mode is analyzed for area and bandwidth in an
experimental setup based on several ALthereal NoC designs.
A transaction monitor has an area cost of 0.026mm? in a
0.13um CMOS technology, and for several MPEG/audio
case studies, the entire monitoring system adds an average
of 5% to the NoC area. We show the versatility of our NoC
analyzer by run-time monitoring user connections and the
Configuration Master IP in the NoC.

1 Introduction
1.1 Problem Statement

Due to ever increasing technological advances, very
complex large scale system on a chip (SoC) designs are
becoming possible. Each new SoC generation integrates
more processing elements, more features, and offers in-
creased functionality. With this ever increasing complex-

Twan Basten |

Andrei Radulescu ¥ Andre Boon *

! Philips Research Laboratories
Embedded Systems Architectures on Silicon
Prof. Holstlaan 4, NL-5656 AA Eindhoven
{kees.goossens @philips.com}
{andrei.radulescu@philips.com}

ity, the step of getting the design working properly becomes
increasingly difficult, leading to a need for better debug so-
lutions. This points to the need for providing the necessary
controllability, and in particular the observability of internal
operations of a complex SoC. Observability of current SoCs
is becoming a major bottleneck as the amount of embedded
cores and critical internal signals per I/O pin ratio increases.

This has led to the addition of dedicated on-chip re-
sources which support functional analysis in order to in-
crease SoC observability. Existing techniques such as sys-
tem simulations and state dumps using JTAG/boundary scan
chains are complemented by this additional infrastructure.
This debug instrumentation has become common at core
level [2], and bus-level [21]. Increasingly, a system-centric
debug infrastructure, supporting multi-core system-level di-
agnosis and analysis, like ARM’s Coresight [1] and First
Silicon’s OCI [15], is gaining momentum. Computation
and communication observability in current SoCs are a rec-
ognized must, and its importance is growing.

Networks on chip (NoCs) [3, 8, 10, 12, 16, 13] are the
preferred interconnect solution for large scale multiproces-
sor SoCs. With the emerging trend of NoC-based SoCs,
system busses are replaced by NoCs. The on-chip commu-
nication becomes more sophisticated, relying on run-time
programmable solutions. While the on-chip debug infras-
tructure at core level can be reused in NoC-based SoCs,
standard bus monitors no longer work with such systems,
as multiple truly parallel communication paths between the
IPs exist, as opposed to a (single) centralized bus in bus-
based SoCs. This led to the addition of debug infrastruc-
tures for the NoC interconnect [5]. This debug infrastruc-
ture copes with the run-time communication observability
in NoC-based SoCs.

Even if basic observability of NoCs is achieved in the
form of bits, it is still the question of what the monitored

bits mean, e.g. a configuration packet for the NoC itself
or a write action issued by an IP connected to the NoC.
The abstraction level at which monitoring can be done can
vary from the bit-level to the level of inter-IP communi-
cation. For NoCs, the interconnected IPs communicate to
each other by means of transactions, which are read and
write actions from IPs. To increase the operational speed
of system-level debugging, the NoC debugging infrastruc-
ture must bring the abstraction level of the monitored data at
transaction level, and allow run-time transaction monitoring
in particular, at a reasonable cost.

Transactions are composed of one or more messages,
e.g. a read action from an IP, and the data coming back
as the result of it. In efficient packetization schemes, e.g. in
the Athereal NoC, the transaction components are consid-
ered part of a data stream which is packed at Network Inter-
faces (NI) into packets without consideration for alignment
of packets and transaction components. The monitored bit
stream (raw data) corresponding e.g. to a monitored router
link contains multiple time-multiplexed connections of dif-
ferent traffic classes, e.g. guaranteed throughput (GT) and
best effort (BE). These connections are established between
different pairs of spatially distributed IPs. Identifications of
transactions out of this monitored bit stream is a challenging
problem.

1.2 Related Work

There has been a lot of work in providing observabil-
ity for bus-based systems. ARM’s Coresight [1] technology
combines ETMs [2] for ARM cores, with the AHB Trace
Macrocell which gives visibility on AMBA AHB busses,
offering an understanding of multilayer-bus utilization and
visibility of accesses to memory areas. First Silicon’s on-
chip instrumentation technology (OCI), provides on-chip
logic analyzers [21] for AMBA AHB, OCP, and Sonics Sil-
iconBackplane bus systems. These solutions allow the user
to run-time capture bus activity, and can be combined in a
multicore-embedded debug system [15] with in-system ana-
lyzers for cores, e.g. for MIPS cores. Although state-of-the-
art, both solutions are not able to cope with a NoC-based
SoC.

While the test and verification implications of using
NoCs have been inventoried in [22], in the research commu-
nity, focus is on the design [4, 14, 8, 12, 16, 10], analysis [9]
and use [18] of NoCs. Currently, there is little support for
run-time communication observability in NoC-based SoCs
in general.

[5] proposes the concepts of a generic NoC Monitoring
Service (NoCMS) to cope with communication observabil-
ity in NoC-based SoCs and advocates the use of abstract
events in reducing the size of the monitored data. The
NoCMS can be instantiated at design time together with the

NoC by means of a monitoring-aware NoC design flow [7].

The impact of run-time monitoring on NoC design flows
is shown in [6], in case of shared or separated NoCs for
application and monitoring data. As far as we are aware,
there is no support for transaction-level monitoring in exist-
ing NoCs.

[20] proposes on-chip run-time collection of traffic
statistics at network interfaces to optimize the usage of com-
munication resources in a NoC-based SoC; this is done us-
ing the centralized resource management of [19].

1.3 Contribution

This paper presents the concepts of monitoring NoC
transactions on chip at run-time. It shows how we can re-
construct the transaction view (read and write actions from
IPs) from the raw, low-level monitored data. The raw data
can be monitored at any router, a module which has no
understanding of any notion of transaction. We show that
transactions can be reconstructed regardless the way in
which packetization has been done in network interfaces,
covering all existing NoC packetization schemes.

We further propose a hardware monitor which supports
on-chip transaction reconstruction and several intermedi-
ate levels of abstractions needed for it, raising the ab-
straction level gradually from physical ‘raw’ to logical
connection-based, transaction-based and abstract transac-
tion event-based. We further show that such monitoring
is feasible area wise, as the transaction monitor supporting
both GT and BE traffic classes is 0.026mm? in a 0.13um
CMOS technology, small even when compared with a cor-
responding 0.13mm? combined GT/BE NoC router in the
same technology.

We call the resulting monitoring system a NoC analyzer
and the supported abstraction levels, analyzer modes. An
analysis of the generated traffic for each of the analyzer
modes is presented in the context of four realistic Athe-
real NoC designs based on an MPEG codec, underlining
advantages and potential problems for each of them. An ex-
ample of monitoring NoC configuration master activity in
the connection-based mode is shown.

1.4 Overview

Section 2 presents the ZAEthereal NoC in general and the
transaction-based communication model and packetization
in particular. The NoC analyzer and the two basic data
transport scenarios used throughout the paper are intro-
duced in Section 3. In Section 4 we describe transaction
monitoring by presenting the four NoC analyzer modes and
the underlying monitor architecture. The area and traffic
implications are presented in Section 5 and the conclusions
in Section 6.

2 /Athereal Experimental Setup

We have used the Zthereal NoC [10] as an example
for our work but all the concepts presented are more gen-
eral and can be reused for other NoCs. Several NoCs
[3, 8, 10, 12, 16, 13] have been proposed. In general they
are composed of network interfaces (NI), which implement
the NoC interface to IPs, and of routers which transport data
from NI to NI

The Athereal NoC runs at 500 MHz and offers a raw link
bandwidth of 2GB/s in a 0.13m CMOS technology. ZAthe-
real offers transport-layer communication services to IPs,
in the form of connections, comprising best-effort (BE) and
guaranteed-throughput (GT) services. Guarantees are ob-
tained by means of TDMA slot reservations in NIs. ZAthe-
real NoC instances are reconfigurable at run-time. This is
achieved by programming the NIs using standard memory-
mapped I/O ports. The current setup uses centralized pro-
gramming of the NoC and source routing, but distributed
solutions are also possible.

Transactions (reads and writes) are performed on con-
nections. One transaction comprises one or more messages.
Messages are differentiated as request and response mes-
sages. E.g. a request message can be the write message
depicted in Fig. 1. A response message is for example data
coming back as a result of a read operation, or an acknowl-
edgment as a result of a write operation.

cmd | length | flags | | seq nr. |trans id word 0
address word 1
write data 1 word 2

write data n word n+1

Figure 1. AEthereal message format

The NIs convert these messages into packets, by chop-
ping them into pieces of a maximum length and adding a
header to each of these pieces, resulting in packets. Pack-
ets may be of different lengths. The packet header consists
of: (1) a path to the destination NI as a sequence of router
output ports, (2) a queue identifier at the destination NI, and
(3) piggybacked credits for end to end flow control. An ex-
ample packet is shown in Fig. 2.

Packets are further split into flits, the minimum transfer
unit between hops. The flit format is presented in Fig. 3,
with the mention that this particular flit contains a packet
header as the first word. One flit corresponds to one TDMA
slot. Note that the GT packet presented in Fig. 2 corre-
sponds to three consecutively allocated slots. One flit com-
prises three 32-bit words. For each of the three words there
are two bits of sideband information. The first two sideband
information bits, id in Fig. 3, show whether the flit is BE or

32bit
2bit 5 : 5 : 22
GT[5 [222,101
= 2 payload 0 T
410 payload 1
GT payload 2 -]
% £ payload 3 T%
= payload 4 =
1 ler payload 5
B 3 payload 6
eop payload 7

Figure 2. AEthereal packet example

id [credit| qgid | path | word0
size payload 0 word 1
eop payload 1 word 2

Figure 3. AEthereal flit format

GT and whether it contains a packet header or not. The sec-
ond two bits show the number of valid words in the flit. The
last two bits show the end of packet.

3 NoC Analyzer

For the basic access to NoC flits, we have used the NoC
Monitoring Service (NoCMS) of [5]. The NoCMS is of-
fered by the NoC in addition to the communication services
offered to the IPs. It consists of configurable probes at-
tached to NoC components. The generic probe modular de-
sign comprises three parts: the sniffer (S), the event gener-
ator and the monitoring network interface (MNI). The MINI
can be a separate NI or can be merged with an existing NI.

Our specialized transaction monitor replaces the generic
event generator of [5]. Fig. 4 presents an MPEG codec with
a 2x3 NOC with its NOC Analyzer. All routers of the NoC
example from Fig. 4 have a transaction monitor (TM). The
general process works as follows; the sniffer obtains the raw
flits (bit-level) from the NoC components and passes this in-
formation to the transaction monitor. The transaction mon-
itor performs local processing, specific to each of the ana-
lyzer modes. It then forwards the results to the MNI. The
MNI packetizes the result as payload and sends them over
the network to the Monitoring Service Access point (MSA),
over a previously established monitoring connection, just
like any other data in the NoC. The monitoring connections
can be either BE or GT. We use the same NoC for monitor-
ing as well as for the user traffic because this solution allows
a logical, dynamic partitioning of NoC resources; resources
can be used for monitoring when needed, and freed when
not. Note that a separate interconnect for monitoring may

][]

‘Mcm—lH]P H]P‘ ‘Mcm—Z‘

] NIL

Figure 4. 2x3 MPEG codec with NOCMS

be used as well [6].

The NoC analyzer has to be able to check the functional
details of user traffic from the observed router link data,
at different levels of abstraction. For this, the transaction
monitor architecture is defined. A schematic of the transac-
tion monitor internal architecture is depicted in Fig. 5. All
router links are sniffed by the sniffer which provides this
info to the link selection block. In the link selection block
one link is selected for further analysis. Then, there are
four transaction monitor processing blocks. One or more
of these blocks can be enabled and configured through the
enable/configuration block. Two ports connect the transac-
tion monitor to the MNI, one slave port (SP in Fig. 5), for
programming the transaction monitor, and one master port
(MP in Fig. 5), for sending the transaction monitor data
to the MSA. Transaction monitors are programmed using
memory-mapped I/O, by means of write transactions. Each
processing block corresponds to one of the analyzer modes
that we have identified. Each analyzer mode is detailed in
the following section.

If the sniffed data is memory-mapped, e.g. the MSA is
a memory, the transaction monitor uses write transactions
to send the data to the MSA, and a command and address
have to be added to the transaction monitor data. Therefore,
a write transaction from a transaction monitor to an MSA
will always contain a command, an address, and the useful
payload. In the remainder we refer to this as the memory-
mapped scenario.

If the sniffed data is not memory-mapped, e.g. the MSA
is another IP which takes care of streaming the data off
chip, no commands and addresses are added to this data.
Therefore, a peer-to-peer streaming data transaction from
transaction monitor to MSA will contain just the useful pay-
load. In the remainder we refer to this as the streaming data
scenario. We have implemented both memory-mapped and
streaming-data scenarios in our simulator.

| Sniffer

0 2 2

™ y vVYVYY

Wection |

A 4
GT/BE filtering

flit

A 4

all GT/BE

connection filtering

one connection

Y

A 4

—Pl depacketization I

Y

|—P| abstraction |

A 4

events

enable/configuration

| MNI

Figure 5. Transaction Monitor Architecture

4 Analyzer Modes
4.1 Raw Mode

In the raw mode the analyzer provides full observability
on all bits passing a certain physical link. The link desired
can be selected from all router links at run-time through the
enable/configuration block. The link selection block pro-
vides at its output all flits passing one link. These flits can
be part of different connections as TDMA is used for ev-
ery link. The flits can be directly forwarded to the MNI or
passed as input to the GT/BE filtering block. Looking only
at the flit structure and not beyond we can do only limited
filtering. Local filtering is possible based on the traffic cat-
egory. For the Athereal NoC we are able to filter GT or
BE traffic from the raw flits. This is made possible by the
2-bit sideband information (see Fig. 2) of each flit which
specifies whether the flit is GT or BE. The resulting flits are
forwarded to the MNI. The MNI packetizes the flits as pay-
load of a write transaction (memory-mapped scenario) or a
data stream (streaming-data scenario).

A potential problem may arise: assuming for a certain
link that utilization is very high, and that we do raw sniff-
ing, the sniffed data has to be sent over a connection to the
MSA. Due to the packetization overhead (the packet head-
ers added to the useful sniff payload), the total can be more
than the physical link bandwidth, making the transport of
the sniffed data impossible. Filtering whether the traffic is
GT or BE can alleviate this problem in certain cases, but not
always solve it.

The raw mode is useful in case all details of the flits
are important to be examined. Bit-level details can be in-
spected. In practice it works for low bandwidth connec-
tions, or for short snapshots of high bandwidth connections.

4.2 Connection-based Mode

As sending the raw sniffing results to the MSA cannot al-
ways work in practice, a more advanced mode is needed. In
the connection-based mode the analyzer provides full ob-
servability on all bits of a selected connection, raising the
abstraction level from physical raw to logical connection.
The transaction monitor must allow further filtering of the
sniffed data, besides the traffic class (e.g. BE/GT) in or-
der to reduce the traffic from monitoring probe to MSA.
All the NoC user traffic goes over connections, and connec-
tions share links based on a TDMA scheme. Filtering of
the sniffed data is possible if a certain connection can be
identified from the other connections sharing the same link.

The connection filtering block of the transaction monitor
uses as input the output of the GT/BE filtering block. Con-
nection identification can be done for the Athereal NoC by
means of the queue identifier and path; this pair uniquely
identifies a connection. Both have to be programmed in the
transaction monitor using the transaction monitor’s slave
port SP. Both the queue identifier and path can be found
in the header of packets, see Fig. 2. A packet header can
be identified by the 2-bit sideband information of each flit.
Further more, a packet header is always the first word in
the flit. Once a header is intercepted the queue identifier
of the destination queue in the NI, and the path to that NI,
can be extracted from the header. The transaction monitor
must have the desired connection set and compare the value
stored locally with run-time values from the headers. Once
a match is found we have identified a packet belonging to
the desired connection. The resulting packets are forwarded
to the MNL

Note that the proposed transaction monitor enabled in
the connection-based mode is in the current setup able to
monitor a single connection at a given time. However, the
extension to support the monitoring of multiple connections
at a given time is straightforward.

The connection-based mode is useful in case all details
of a certain connection have to be examined, e.g. packet
headers or connection utilization. The previously men-
tioned problem of exceeding the physical link bandwidth is
still possible although this would require extraordinary cir-
cumstances, e.g. all slots reserved for a single connection.
This is unlikely, and this mode is feasible in practice.

4.3 Transaction-based Mode

In the transaction-based mode the analyzer raises the ab-
straction to transaction level and provides bit-level full ob-
servability on transactions over a certain connection. This
implies full observability of all transaction components,
which are messages. A full transaction may involve a sin-
gle message (e.g. a single write without acknowledgement)
or multiple messages. The case of transactions using mul-
tiple messages possibly on multiple connections, involves
the combination of data from multiple transaction monitors
or from one transaction monitor at different points in time,
which can for example be done at the MSA.

Being able to identify all the flits of a certain connection,
the next step is therefore to identify messages belonging to
the connection. This allows to see, from within the NoC,
when a write or a read message has been issued and from
where or to which of the IPs or memories, providing a trans-
action level view.

The main problem is how to identify the messages. It is
difficult to detect the start of a message, because messages
are considered payload and are packed in packets without
any alignment. The routers, where monitoring is done, have
no notion of messages. A packet may contain a single mes-
sage, part of a message, or parts of multiple messages. It is
therefore complex to see where a message starts just look-
ing at a packet.

Message identification requires depacketization, a pro-
cedure usually done at the NI at the receiving side, at every
slave NI port (SNIP). Hardware modules for depacketiza-
tion are available for ZAthereal. These modules assume that
the first packet over a connection carries the first message
header, immediately after the packet header. From there
they only count the number of words in the received mes-
sage, knowing that after it there is a new message header.
Having detected the start of the message, the rest becomes
simple. In the majority of existing NoCs, the size of the
message is coded in the first word of the message, the exact
place depending on the exact protocol message format. So,
if the message start is detected, the rest of the message can
be obtained by counting the words in the following sniffed
flits belonging to the same connection, till the message size
is reached. Counting of the message words does not take
into account the headers of the packets involved, which are
discarded. However, the main difficulty is detecting the start
of the message.

There are three possible situations, covering all existing
NoCs, see Fig. 6, with regard to alignment of packet header
and message header, each of the situations having pros and
cons regarding the NoC design:

(A) The NoC does not distinguish between messages and
packets, message/packet correspondence is one to one,
see Fig. 6A. As previously explained, a packet header

A MP [MH] PH |

B | wmp_ [pH|| MP |mH|PH]

c | w~mp |peu||mu| mp [PH]

Figure 6. Message-packet alignment

(PH) can be easily identified. In this case we have
also identified the message header (MH), which fol-
lows the packet header, and the message decoding can
start. From the NoC point of view this is a simple
packetization scheme, but it may require long packets.
Therefore, it may not fit well with the TDMA scheme,
and may have partially empty packets.

(B) The message header is aligned with the packet header
but the NoC splits messages in multiple packets, see
Fig. 6B. Even if a packet header can be easily iden-
tified, as message/packet correspondence is no longer
one to one, it is important to know with which packet
header the message header is aligned. Some packet
headers are followed by message headers, others are
followed by parts of the message payload (MP). This
situation fits well with the TDMA scheme, but may
have partially empty packets.

(C) The NoC does not align messages and packets, see
Fig. 6C. This is the most general and difficult case and
is used by the ZEthereal NoC. A message header can be
anywhere in the payload of a packet. This is the most
efficient packing of messages in packets and it is good
for TDMA.

There are at least two solutions to solve the message
identification problem described at points B and C:

(1) One solution is to explicitly specify the message bound-
aries. This means that each packet specifies whether
it contains the start of the message and where in the
packet is the message header. The presence of a mes-
sage header in the packet and its offset can be coded
either in the packet header itself or in the sideband in-
formation in the form of a control bit. This can be
enforced by adapting the master NI port (MNIP) to
include this information in the header or sideband in-
formation, which is not difficult because the NI has
knowledge of the message start. Using this solution
may require design modifications of the NI.

(2) A second solution is to make sure that we can monitor
the first packet going over the connection, and all the

following flits belonging to the same connection. In
this case we can continue identifying messages. This
is because the first packet will contain a packet header
immediately followed by a message header and from
there we can keep accounting for the following mes-
sages like the SNIP is already doing for the user traf-
fic. This can be enforced e.g. by setting and enabling
the transaction monitors before the connection is used.
The advantage of this solution is that it requires no
modifications of the NoC components.

For our experiments with the ZAEthereal NoC, we have
enforced the second solution (2). We have made this choice
because the Athereal packet header does not contain infor-
mation about message headers. The potential drawback of
this solution, the fact that the transaction monitors must be
enabled before the actual monitored connection is set up, is
considered acceptable. Our solution requires a strict corre-
lation between the (re)configuration moments of the NoC
and the configuration of the NoCMS transaction monitors.
It is possible to apply this solution for the Zthereal NoC,
because our transaction monitors are run-time configurable
by means of MMIO write operations, and because prece-
dence of the transaction monitor configuration in front of
the user connection configuration is enforced. The transac-
tion monitors are configured before the actual connections
are configured, being able to sniff all the data from a con-
nection starting with the first flit of the first packet. In case
of a NoC reconfiguration, it is again possible to reconfig-
ure all the transaction monitors at the beginning of the re-
configuration when the rest of the connections are not yet
configured.

The traffic introduced by the analyzer transaction-based
mode is lower than in the connection-based mode as packet
headers are removed in transaction reconstruction, when
converting from packets to messages. This is done in the
depacketization block of the transaction monitor, in fact a
reused SNIP from the ZAthereal NoC.

By identifying messages, local filtering of messages per
connection is possible; all these options can be added to the
depacketization block. For example, filtering of only write
or read messages, or filtering of certain address range writes
can be done, handy for debug purposes.

The transaction-based mode is useful when all details of
transactions or transaction components are required to be
inspected. This is especially useful when inspecting IP to IP
communication. However, details regarding packetization,
like the content of packet headers, are no longer visible.

4.4 Transaction Event-based Mode

In the transaction event-based mode the analyzer pro-
vides full observability on relevant transaction features or

components and abstracts other irrelevant transaction fea-
tures. Being able to identify messages over a certain con-
nection is indeed very useful. However, not all of this in-
formation is always needed for getting the picture of what
is really going on in the NoC. Therefore, the abstraction
level can be raised; whenever a transaction component is
sniffed, a transaction event can be generated. E.g. a transac-
tion event can state what was the command, address and the
number of words in a message. A write message at address
#0000 with 10 words of payload has a total of 12 words for
the entire message. All this can be abstracted in an event of
two words containing only the relevant features (command,
address, nr. words), getting rid of the irrelevant (for this
example) 10 words of payload.

Local filtering of relevant features of transactions is done
in the abstraction block of the transaction monitor. The traf-
fic introduced is lower than in the transaction-based mode
as we get rid of packet headers and irrelevant transaction
features by means of event abstractions.

Table 1. Comparison of analyzer modes

Mode TM capability Filtering Potential pb.
raw id. traffic GT/BE link bw.
connection +id. connection connections link bw.
transaction +id. msg. messages msg. start
tr. event +evt. generation msg. features msg. start

Table 1 summarizes this section, showing a compari-
son between all analyzer modes focusing on the capabilities
built in the transaction monitor, the potential filtering and
the potential problems in each of the modes.

5 Analysis and Examples
5.1 Implementation

Our final point is to prove that on chip run-time monitor-
ing of NoC transactions is feasible in resource constrained
NoC designs. Therefore, we have investigated the area and
traffic implications of our NoC analyzer. For the experi-
mental validation of our NoC analyzer we have built a flit
accurate SystemC model, and a cycle accurate synthesiz-
able VHDL model of the transaction monitor. We have used
these models in conjunction with the Athereal NoC and de-
sign flow.

The placement of the transaction monitors at routers is
a design time choice. Currently, our NoC design flow [10]
has been extended to support monitoring in general [6], and
fully supports the (automatic) insertion of transaction mon-
itors in particular [7].

For our experiments all routers are instrumented using
the monitoring-aware NoC design flow with transaction

monitors, thus resulting in a fully probed NoC. For our traf-
fic experiments with the SystemC models we have used
transaction monitors supporting all four analyzer modes.
For our area experiments with the VHDL models we have
used transaction monitors supporting the first three analyzer
modes (full transaction reconstruction without transaction
abstraction). We use GT connections for each of the trans-
action monitors to transport the sniffed data from the trans-
action monitors to the MSA. The application and monitor-
ing traffic share the same NoC. For NoC design-time as-
pects related to monitoring, such as how to provision the
monitoring requirements or how to automate the insertion
of monitors please refer to [6] and [7] respectively.

To quantify the complete effects of monitoring we had a
look at four different SoC designs, using NoC mesh topolo-
gies, supporting combinations of several MPEG instances
(from one to four) with a single audio instance consisting
of sample rate conversion, MP3, audio-postprocessing and
radio as presented in [17].

5.2 Area Analysis

The area overview of three probes, corresponding to
the first three analyzer modes (raw, connection-based and
transaction-based), realized in a 0.13m CMOS technology
is presented in Table 2. Since transaction monitors support
both GT and BE traffic classes, a comparison is made with
the area of an Athereal arity 6, GT/BE router, presented
in [11], which is 0.13mm? in the same 0.13m CMOS tech-
nology.

Table 2. Area Impact

Probes area(mm?) comp. to router
raw 0.020 15%
connection-based 0.024 18%
transaction-based 0.026 20%

The results show that offering raw data monitoring ca-
pability would require 15% more area compared to a single
router, while connection-based capabilities would require
around 18%. Full fledged on-chip transaction reconstruc-
tion is feasible at the cost of 20% of the router area. The
probe area presented includes the configuration unit allow-
ing to (re)configure the transaction monitors at run-time.
Configuration includes the start and end time of transaction
monitor activity, the selection of the desired mode with the
required characteristics. It also includes three words of in-
ternal storage.

The first three analyzer modes realize the transaction
reconstruction, by decoding the transaction components,
while the fourth one is doing the transaction abstraction.
Therefore, the area cost of the probe supporting the first

three modes is fixed and the area cost of a probe supporting
all four analyzer modes may vary, depending on the trans-
action abstraction capability implemented. The area cost of
transaction abstraction is left for future work.

Looking at the NoC level, on average, for our designs,
the overall monitoring system adds 5% to the original NoC
area (routers and NIs). This accounts for the transaction
monitors area, and the increase in the number of NI ports
with the corresponding buffers.

5.3 Traffic analysis

A traffic comparison for all analyzer modes is presented
in Table 3. The monitoring targets are two user connections
of 40 MB/s and 60 MB/s respectively. The monitoring was
done by activating a single transaction monitor for each of
the target connections, and configuring it in turns for each
mode. The traffic figures correspond to a single transaction
monitor and are independent of the number of transaction
monitors present in the NoC.

Table 3. Monitoring traffic details

user data MB/s MB/s
user payload P 40 60
NoC payload P+C+A 59,84 89,68
NoC traffic P+C+A+H 65,20 95,04
raw
debug payload P’= Y (P+C+A+H) 255,28
(mm) NoC payload P+C’+A 340,37
(mm) NoC traffic P’+C'+A’+H’ 355,76
(sd) NoC payload P’ 255,28
(sd) NoC traffic P’+H’ 270,88
connection-based
debug payload P’=P+C+A+H 65,20 95,04
(mm) NoC payload P+C+A 86,93 126,72
(mm) NoC traffic P’+C+A’+H’ 92,08 131,84
(sd) NoC payload P’ 65,20 95,04
(sd) NoC traffic P’+H’ 70,40 100,24
transaction-based
debug payload P’=P+C+A 59,84 89,68
(mm) NoC payload P+C+A 79,79 119,57
(mm) NoC traffic P’+C+A’+H’ 84,96 124,72
(sd) NoC payload P’ 59,84 89,68
(sd) NoC traffic P’+H’ 65,04 94,88
tr. event-based
debug payload P’=E 19,95 29,89
(mm) NoC payload P +C+A 39,89 59,79
(mm) NoC traffic P+C+A’+H’ 45,04 64,96
(sd) NoC payload P’ 19,95 29,89
(sd) NoC traffic P’ +H’ 25,12 35,04

The user payload, e.g. 40 MB/s, denoted with P in Ta-
ble 3, represents the application data. To this user data,

%
500.00% 445.64%

Oraw
B connection-based

Otransaction-based
Otr. event-based

400.00%

315.46%

300.00% 1 274.33%

185.01%

200.00% —

100.00%1 41.22%
30.30% 31.23% 7.97% 5.47%

-0.25% -0.17%

0.00% T T
-30.82% -31.65% L L

-61.48% -63.13%
-100.00% ;)
mm (40) mm (60) sd (40) sd (60)

Figure 7. Monitoring traffic comparison

commands (C) and addresses (A) still have to be added be-
fore the NIs, the value is shown as P+C+A in Table 3. This
represents the actual payload for the NoC. Taking into ac-
count the slot allocation, due to packetization, headers are
added in the NIs to the actual payload, P+C+A+H in the
table. P+C+A+H is the traffic going through the network.

When monitoring in the raw mode the sum of P+C+A+H
for all connections passing the monitored link becomes the
actual payload P’ for the debug connection. In our exper-
iment the two monitored connections share the same link,
together with another 60MB/s GT user connection, which
explains the large payload in Table 3. Note that the raw
traffic is only directly related with the the monitored link
utilization.

When monitoring in the connection-based mode
P+C+A+H becomes the actual payload P’ for the debug
connection. When monitoring in the transaction-based
mode P+C+A becomes the actual payload P’ for the debug
connection, because the headers are removed in this ana-
lyzer mode, assuming no further message filtering which is
the worst case for this mode. When monitoring in the trans-
action event-based mode the actual payload E is computed
in this example by abstracting the 6-word messages (P=4
words, C=1 word and A=1 word) used on this connection
in 2-word events. In general it may vary depending on the
abstraction capability of the event-model.

When using the memory-mapped scenario, the (mm)
tag in Table 3, for the transport of the monitored data,
new addresses and commands are added to the previ-
ously explained payload P’, denoted P’+C’+A’ in Table
3. New packetization is done, and new headers (H’) are
added to this, getting the final debug connection traffic
to P’+C’+A’+H’. When using the streaming-data scenario,
(sd) in Table 3, for the transport of the monitored data, new

addresses and commands do not need to be added to P’.
Headers are added though, getting the final debug connec-
tion traffic P’+H’.

Fig. 7 presents the NoC analyzer traffic for all analyzer
modes in percentages, compared to the initial NoC traffic of
65.20 MB/s and 95.04 MB/s for the 40MB/s and 60 MB/s
connections respectively. This is done for both the memory-
mapped (mm) and streaming-data (sd) scenarios. In the
raw analyzer mode the numbers show that there is a tremen-
dous traffic on a link, several times bigger than the consid-
ered user connections. Note that the raw mode shows the
overall link traffic comprising three connections in total. In
the connection-based mode the numbers show that we in-
troduce in the NoC new traffic, bigger than the monitored
traffic. In the (mm) scenario this is 41% and 39% more,
while in the (sd) scenario it is only 8% and 5% more. In the
transaction-based mode we introduce in the NoC new traffic
around 30% higher than the monitored traffic in the (mm)
scenario, and comparable but slightly lower than the mon-
itored traffic in the (sd) scenario. In the transaction event-
based mode we introduce in the NoC new traffic, lower than
the monitored traffic, which is always the case for suffi-
ciently abstract events. This represents a real gain over the
monitored connections. The gain amounts to around 30%
and 60% in the (mm), respectively (sd) scenario, in the con-
crete example.

As expected, traffic wise it is a good idea to use transac-
tion abstractions when doing online transaction monitoring,
in case other details are not of interest. Combining them
with a ’streaming-data’ scenario is beneficial. Monitoring
at the lowest level of detail would produce the most load for
the NoC.

5.4 Debugging the NoC Configuration
Master

As previously mentioned, the ZAthereal NoC can be con-
figured at run-time. In the current Athereal setup, a cen-
tralized programming module, e.g. an ARM processor, is
doing all the configuration work. This centralized module
is called the Configuration Master, see the Cfg. Master in
Fig. 4. As support for NoC debug, it is important to see
what the Configuration Master is doing at run-time, as all
the inter-IP communication is going over connections. The
observed behavior can then be compared to the expected
behavior in order to catch possible errors.

The Configuration Master uses BE packets to configure
the NIs. Our NoC analyzer can monitor configuration in the
connection-based mode. For this we take advantage of the
Athereal configuration details. All NIs have a port, with
qid 0, called a configuration port. Through this port the
NIs are configured at run-time. The observation of the Con-
figuration Master requires a single probe. Therefore at run-

time, a single transaction monitor was activated in one test
NoC, depicted in Fig. 4, namely the transaction monitor
attached to router R3. This transaction monitor monitors
the link between NIO, where the Configuration Master is
connected, and router R3. The transaction monitor was en-
abled in the connection-based mode, and was configured
only with the queue identifier 0 and not also with the path.
In this way all the outgoing traffic from NIO towards any
destination with qid=0 is filtered, and then sent to MSA.
This amounted to 205 flits containing 529 (4-byte) words of
configuration data. In this way all the Configuration Master
behavior is observed. A single preestablished GT connec-
tion is used to transport the monitored data to the MSA. As
another experiment the transaction monitor was enabled in
the transaction-based mode and the path was set. Transac-
tions are only monitored over this path, corresponding to
NI4 being configured, and this amounts to 24 write transac-
tions.

Due to the centralized programming of the NoC using a
single Configuration Master in the current setup, one trans-
action monitor is currently sufficient to monitor NoC con-
figuration. However, in the near future, distributed pro-
gramming of the NoC may be another option. In order
to keep up with this option multiple Configuration Master
monitors will have to be employed (or activated), one for
each Configuration Master.

6 Conclusions

We have presented a NoC analyzer able to perform run-
time NoC transaction monitoring. The proposed NoC ana-
lyzer alleviates the run-time observability problem by pro-
viding hardware transaction monitors able to work on four
different levels of abstraction. They correspond to four an-
alyzer modes, ultimately being able to on-chip reconstruct
transactions from low-level monitored router data and ab-
stract them to events. All of the analyzer modes can be
enabled and configured at run-time. They match difficult
debug situations, and are a valuable asset when debugging
multiprocessor NoC-based SoCs.

In NoC monitoring it is important to go beyond the raw
low-level data (bits), to understand what data means (trans-
actions). Due to nonalignment of packets and messages
it is generally difficult to (re)construct a transaction level
view. We have conceptually shown how this problem can
be solved for all existing NI packetization schemes. Thus
our concepts can be reused for any existing NoC. A trans-
action monitor for the most difficult packetization scheme
was implemented at the cost of one fifth of the router area.
The total monitoring system leads to an increase of NoC
area of around 5% for several MPEG/audio SoCs.

A traffic analysis of analyzer modes has been presented.
The traffic introduced, compared to the traffic of the mon-

itored connection, varies from a penalty of 41% in the
connection-based mode memory-mapped scenario, to a
gain of 63% in the transaction event-based mode streaming-
data scenario. We have proven the versatility of our NoC
analyzer by debugging the NoC configuration master.

Acknowledgement

The authors would like to thank Andreas Hansson for his
help with the example Athereal NoC designs and NoC de-
sign flow.

References

[1] ARM. Coresight. http://www.arm.com/products/solu-
tions/CoreSight.html.

ARM. Embedded Trace Macrocell. www.arm.com, 2002.
L. Benini and G. De Micheli. Networks on chips: A new
SoC paradigm. IEEE Computer, 35(1):70-80, 2002.

E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC:
QoS architecture and design process for network on chip.
Journal of Systems Architecture, 50(2-3):105-128, Feb.
2004. Special issue on Networks on Chip.

C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. van
Meerbergen. An event-based monitoring service for net-
works on chip. ACM Transactions on Design Automation of
Electronic Systems, 10(4):702-723, Oct. 2005. HLDVT’04
Special Issue on Validation of Large Systems.

C. Ciordas, K. Goossens, A. Rddulescu, and T. Basten. NoC
monitoring: Impact on the design flow. In Proc. Int’l Sym-
posium on Circuits and Systems (ISCAS), pages 1981-1984,
May 2006, IEEE 2006.

C. Ciordas, A. Hansson, K. Goossens, and T. Basten. A
monitoring-aware NoC design flow. In Proc. Euromicro
Symposium on Digital System Design, Aug. 2006, IEEE
2006.

W. J. Dally and B. Towles. Route packets, not wires: on-
chip interconnection networks. In Proc. Design Automation
Conference (DAC), pages 684—689, 2001, ACM 2001.

S. Gonzédlez Pestana, E. Rijpkema, A. Radulescu,
K. Goossens, and O. P. Gangwal. Cost-performance trade-
offs in networks on chip: A simulation-based approach. In
Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 764-769, Feb. 2004, IEEE
2004.

K. Goossens, J. Dielissen, O. P. Gangwal, S. Gonzélez Pes-
tana, A. Ridulescu, and E. Rijpkema. A design flow for
application-specific networks on chip with guaranteed per-
formance to accelerate SOC design and verification. In Proc.
Design, Automation and Test in Europe Conference and Ex-
hibition (DATE), pages 1182—1187, Mar. 2005, IEEE 2005.
K. Goossens, J. Dielissen, and A. Radulescu. The Athereal
network on chip: Concepts, architectures, and implementa-
tions. [EEE Design and Test of Computers, 22(5):21-31,
Sept-Oct 2005.

(2]
(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

10

[12] P. Guerrier and A. Greiner. A generic architecture for on-
chip packet-switched interconnections. In Proc. Design,
Automation and Test in Europe Conference and Exhibition
(DATE), pages 250-256, 2000, IEEE 2000.

F. Karim, A. Nguyen, and S. Dey. An interconnect ar-
chitecture for networking systems on chips. IEEE Micro,
22(5):36-45, Sept. 2002.

S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Mill-
berg, J. Oberg, K. Tiensyrja, and A. Hemani. A network on
chip architecture and design methodology. In Proc. Sympo-
sium on VLSI, pages 117-124, 2002, IEEE 2002.

R. Leatherman and N. Stollon. An embedded debugging
architecture for socs. IEEE Potentials, 24(1):12—-16, Feb-
March 2005.

M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch.
The Nostrum backbone - a communication protocol stack
for networks on chip. In Proc. Int’l Conference on VLSI
Design, pages 693-696, 2004, IEEE 2004.

A. Moonen, R. van den Berg, M. Bekooij, H. Bhullar, and
J. van Meerbergen. A multi-core architecture for in-car dig-
ital entertainment. In Proc. of GSPx Conference, 2005.

S. Murali and G. De Micheli. Bandwidth-constrained map-
ping of cores onto NoC architectures. In Proc. Design,
Automation and Test in Europe Conference and Exhibition
(DATE), pages 896-901, 2004, IEEE 2004.

V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y.
Mignolet. Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles.
In Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 234-239, Mar. 2005, IEEE
2005.

V. Nollet, T. Marescaux, and D. Verkest. Operating-system
controlled network on chip. In Proc. Design Automation
Conference (DAC), pages 256259, June 2005, ACM 2005.
First Silicon. BusNavigator.
http://www.fs2.com/busnavigator.html.

B. Vermeulen, J. Dielissen, K. Goossens, and C. Ciordas.
Bringing communication networks on chip: Test and ver-
ification implications. IEEE Communications Magazine,
41(9):74-81, Sept. 2003.

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

