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Abstract

This paper introduces nonblocking transaction composition (NBTC),
a new methodology for atomic composition of nonblocking operations on
concurrent data structures. Unlike previous software transactional mem-
ory (STM) approaches, NBTC leverages the linearizability of existing non-
blocking structures, reducing the number of memory accesses that must
be executed together, atomically, to only one per operation in most cases
(these are typically the linearizing instructions of the constituent opera-
tions).

Our obstruction-free implementation of NBTC, which we call Medley,
makes it easy to transform most nonblocking data structures into transac-
tional counterparts while preserving their liveness and high concurrency.
In our experiments, Medley outperforms Lock-Free Transactional Trans-
form (LFTT), the fastest prior competing methodology, by 40–170%. The
marginal overhead of Medley’s transactional composition, relative to sep-
arate operations performed in succession, is roughly 2.2×.

For persistent data structures, we observe that failure atomicity for
transactions can be achieved “almost for free” with epoch-based periodic
persistence. Toward that end, we integrate Medley with nbMontage, a
general system for periodically persistent data structures. The resulting
txMontage provides ACID transactions and achieves throughput up to
two orders of magnitude higher than that of the OneFile persistent STM
system.

1 Introduction

Nonblocking concurrent data structures, first explored in the 1970s, remain an
active topic of research today. In such structures, there is no reachable state
of the system that can prevent an individual operation from making forward
progress. This liveness property is highly desirable in multi-threaded programs
that aim for high scalability and are sensitive to high tail latency caused by
inopportune preemption of resource-holding threads.
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Many multi-threaded systems, including those for finance, travel [30], ware-
house management [6], and databases in general [39], need to compose opera-
tions into transactions that occur in an all-or-nothing fashion (i.e., atomically).
Concurrent data structures, however, ensure atomicity only for individual oper-
ations; composing a transaction across operations requires nontrivial program-
ming effort and introduces high overhead. Preserving nonblocking liveness for
every transaction is even more difficult.

One potential solution can be found in software transactional memory (STM)
systems, which convert almost arbitrary sequential code into speculative trans-
actions. Several STM systems provide nonblocking progress [10, 19, 25, 26, 37].
Most instrument each memory access and arrange to restart operations that
conflict at the level of individual loads and stores. The resulting program-
ming model is attractive, but the instrumentation typically imposes 3–10× over-
head [34, Sec. 9.2.3].

Inspired by STM, Spiegelman et al. [36] proposed transactional data struc-
ture libraries (TDSL), which introduce (blocking) transactions for certain hand-
modified concurrent data structures. By observing that reads need to be tracked
only on critical nodes whose updates may indicate semantic conflicts, TDSL re-
duces read set size and achieves better performance than general STMs.

Herlihy and Koskinen [18] proposed transactional boosting, a (blocking)
methodology that allows an STM system to incorporate operations on exist-
ing concurrent data structures. Using a system of semantic locks (e.g., with
one lock per key in a mapping), transactions arrange to execute concurrently so
long as their boosted operations are logically independent, regardless of low-level
conflicts. A transaction that restarts due to a semantic conflict (or to a low-level
conflict outside the boosted code) will roll back any already-completed boosted
operations by performing explicitly identified inverse operations. An insert(k,v)
operation, for example, would be rolled back by performing remove(k). Trans-
actional boosting leverages the potential for high concurrency in existing data
structures, but is intrinsically lock-based, and is not fully general: operations
on a single-linked FIFO queue, for example, have no obvious inverse.

In work concurrent to TDSL, Zhang et al. [43] proposed the Lock-Free Trans-
actional Transform (LFTT), a nonblocking methodology to compose nonblock-
ing data structures, based on the observation that only certain nodes—those
critical to transaction semantics—really matter in conflict management. Each
operation on an LFTT structure publishes, on every critical node, a descrip-
tion of the transaction of which it is a part, so that conflicting transactions
can see and help each other. A remove(7) operation, for example, would pub-
lish a description of its transaction on the node in its structure with key 7.
Initially, LFTT supported only static transactions, whose constituent opera-
tions were all known in advance. Subsequently, LaBorde et al. [23] proposed a
Dynamic Transactional Transform (DTT) that generalizes LFTT to dynamic
transactions (specified as lambda expressions). Concurrently, Elizarov et al. [8]
proposed LOFT, which is similar to LFTT but avoids incorrectly repeated help-
ing.

Unfortunately, as in transactional boosting, the need to identify critical
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nodes tends to limit LFTT and DTT to data structures representing sets and
mappings. DTT’s publishing and helping mechanisms also require that the
“glue” code between operations be fully reentrant (to admit concurrent execu-
tion by helping threads [23]) and may result in redundant work when conflicts
arise. Worse, for read-heavy workloads, LFTT and DTT require readers to
be visible to writers, introducing metadata updates that significantly increase
contention in the cache coherence protocol.

In our work, we propose NonBlocking Transaction Composition (NBTC),
a new methodology that can create transactional versions of a wide variety of
concurrent data structures while preserving nonblocking progress and incurring
significantly lower overhead than traditional STM. The intuition behind NBTC
is that in already nonblocking structures, only critical memory accesses—for
the most part, the linearizing load and compare-and-swap (CAS) instructions—
need to occur atomically, while most pre-linearization memory accesses can
safely be executed as they are encountered, and post-linearization accesses can
be postponed until after the transaction commits.

In comparison to STM, NBTC significantly reduces the number of mem-
ory accesses that must be instrumented—typically to only one per constituent
operation. Unlike transactional boosting and transactional transforms, NBTC
brings the focus back from semantics to low-level memory accesses, thereby
enabling mechanical transformation of existing structures and accommodating
almost arbitrary abstractions—much more than sets and mappings. NBTC also
supports dynamic transactions, invisible readers, and non-reentrant “glue” code
between the operations of a transaction. The one requirement for compatibility
is that the linearization points of constituent operations must be immediately
identifiable: each operation must be able to tell when it has linearized at run
time, without performing any additional shared-memory accesses. Most non-
blocking structures in the literature appear to meet this requirement.

To assess the practicality of NBTC, we have built an obstruction-free imple-
mentation, Medley, that uses a variant of Harris et al.’s multi-word CAS [16]
to execute the critical memory accesses of each transaction atomically, eagerly
resolving conflicting transactions as they are discovered. Using Medley, we have
created NBTC versions of Michael and Scott’s queue [29], Fraser’s skiplist [10],
the rotating skiplist of Dick et al. [7], Michael’s chained hash table [28], and
Natarajan and Mittal’s binary search tree [31]. All of the transformations were
straightforward.

In the traditional language of database transactions [15], Medley provides
isolation and consistency. Building on recent work on persistent memory, we
have also integrated Medley with the nbMontage system of Cai et al. [2] to
create a system, txMontage, that provides failure atomicity and durability as
well—i.e., full ACID transactions. Specifically, we leverage the epoch system of
nbMontage, which divides time into coarse-grain temporal intervals and recov-
ers, on failure, to the state of a recent epoch boundary. By folding a check of
the epoch number into its multi-word CAS, txMontage ensures that operations
of the same transaction always linearize in the same epoch, thereby obtaining
failure atomicity and durability “almost for free.”
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Summarizing contributions:

• (Section 2) We introduce nonblocking transaction composition (NBTC), a
new methodology with which to compose the operations of nonblocking data
structures.

• (Section 3) Deploying NBTC, we implement Medley, a general system for
transactional nonblocking structures. Medley’s easy-to-use API and mechan-
ical transform make it easy to convert compatible nonblocking structures to
transactional form.

• (Section 4) We integrate Medley with nbMontage to create txMontage, provid-
ing not only transactional isolation and consistency, but also failure atomicity
and durability.

• (Section 5) We argue that using NBTC and Medley, transactions composed
of nonblocking structures are nonblocking and strictly serializable. We also
argue that transactions with txMontage provide a persistent variant of strict
serializability analogous to the buffered durable linearizability of Izraelevitz
et al. [21].

• (Section 6) We present performance results, confirming that Medley imposes
relatively modest overhead and scales to large numbers of threads. Specif-
ically, Medley outperforms LFTT by 1.4× to 2.7× and outperforms TDSL
and the OneFile nonblocking STM [33] system by an order of magnitude. On
persistent memory, txMontage outperforms nonblocking persistent STM by
two orders of magnitude.

2 Nonblocking Transaction Composition

Nonblocking transaction composition (NBTC) is a new methodology that fully
leverages the linearizability of nonblocking data structure operations. NBTC
obtains strict serializability by atomically performing only the critical memory
accesses of composed operations. It supports a large subset of the nonblocking
data structures in the literature (characterized more precisely below), preserving
the high concurrency and nonblocking liveness of the transformed structures.

2.1 NBTC Composability

The key to NBTC composability is the immediately identifiable linearization
point. Specifically:

Definition 1. A data structure operation has an immediately identifiable lin-
earization point if:

1. statically, we can identify every instruction that may potentially serve as
the operation’s linearization point. Such an instruction must be a load for a
read-only operation or a compare-and-swap (CAS) for an update operation;

2. dynamically, after executing a potentially linearizing instruction, we can de-
termine whether it was indeed the linearization point. A linearizing load must
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be identified before the operation returns; a linearizing CAS must be identified
without performing any additional shared-memory accesses.

There can be more than one potential linearization point in the code of an
operation, but only one of them will constitute the linearization point in any
given invocation.

Definition 2. A nonblocking data structure is NBTC-composable if each of its
operations has an immediately identifiable linearization point.

While it may be possible to relax this definition, the current version accom-
modates a very large number of existing nonblocking structures.

2.2 The Methodology

It is widely understood that most nonblocking operations comprise a “planning”
phase and a “cleanup” phase, separated by a linearizing instruction [12, 38].
Executing the planning phase does not commit the operation to success; cleanup,
if needed, can be performed by any thread. The basic strategy in NBTC is to
perform the planning for all constituent operations of the current transaction,
then linearize all those operations together, atomically, and finally perform all
cleanup. Our survey of existing data structures and composition patterns reveals
two principle complications with this strategy.

The first complication involves the notion of a publication point, where an
operation may become visible to other threads but not yet linearize. Because
publication can alter the behavior of other threads, it must generally (like a
linearization point) remain speculative until the entire transaction is ready to
commit. An example can be seen in the binary search tree of Natarajan and
Mittal [31], where an update operation o may perform a CAS that publishes its
intent to linearize soon but not quite yet. After this publication point, either o
itself or any other update that encounters the publication notice may attempt
to linearize o (in the interest of performance, a read operation will ignore it).
Notably, CAS instructions that serve to help other (already linearized) opera-
tions, without revealing the nature of the current operation, need not count as
publication.

The second complication arises when a transaction, t, performs two or more
operations on the same data structure and one of the later operations (call it
o2) depends on the outcome of an earlier operation (call it o1). Here the thread
executing t must proceed as if o1 has completed, but other threads must ignore
it. If o1 requires cleanup (something that NBTC will normally delay until after
transaction commit), o2 may need to help o1 before it can proceed, while other
transactions should not even be aware of o1’s existence.

Both complicating cases can be handled by introducing the notion of a spec-
ulation interval in which CAS instructions must be completed together for an
operation to take effect as part of a transaction. This is similar to the CAS ex-
ecutor phase in a normalized nonblocking data structure [38], but not the same,
largely due to the second complication. For an operation that becomes visible
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before its linearization point, it suffices to include in the speculation interval all
CAS operations between the publication and linearization points, inclusive. For
an operation o2 that needs to see an earlier operation o1 in the same transaction,
it suffices to track the transaction’s writes and to start o2’s speculation interval
no later than the first instruction that accesses a location written by o1.

Definition 3. A bit more precisely, we say

• A CAS instruction in operation o of thread t in history H is benign if there
is no extension H ′ of H such that t executes no more instructions in H ′ and
yet o linearizes in H ′ nonetheless.

• The first CAS instruction of o that is not benign is o’s publication point (this
will often be the same as its linearization point).

• The speculation interval of o begins either at the publication point or at the
first instruction that sees a value speculatively written by some earlier opera-
tion in the same transaction (whichever comes first) and extends through o’s
linearization point.

• A load in a read-only operation is critical if it is the immediately identifiable
linearization point of the operation. A CAS in an update operation is critical
if it lies in the speculation interval.

Without loss of generality, we assume that all updates to shared memory
(other than initialization of objects not yet visible to other threads) are effected
via CAS.

Given these definitions, the NBTC methodology is straightforward: To atom-
ically execute a set of operations on NBTC-composable data structures, we
transform every operation such that (1) instructions prior to the speculation
interval and non-critical instructions in the speculation interval are executed on
the fly as a transaction encounters them; (2) critical instructions are executed
in a speculative fashion, so they will take effect, atomically, only on transaction
commit; and (3) instructions after the speculation interval are postponed until
after the commit.

3 The Medley System

To illustrate NBTC, we have written a system, Medley, that (1) instruments
critical instructions, executes them speculatively, and commits them atomically
using M-compare-N-swap, our variant of the multi-word CAS of Harris et al. [16];
(2) identifies and eagerly resolves transaction conflicts; and (3) delays non-crit-
ical cleanup until transaction commit.

3.1 API

Figure 1 summarizes Medley’s API. Using this API, we transform an NBTC-
composable data structure into a transactional structure as follows:
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1 template <class T> class CASObj { // Augmented atomic object
2 T nbtcLoad();
3 bool nbtcCAS(T expected, T desired, bool linPt, bool pubPt);
4 /* Regular atomic methods: */
5 T load(); void store(T desired); bool CAS(T expected, T desired);
6 };
7 class Composable { // Base class of all transactional objects
8 template <class T> void addToReadSet(CASObj<T>*,T); // Register load
9 void addToCleanups(function); // Register post-critical work

10 template <class T> T* tNew(...); // Create a new block
11 template <class T> void tDelete(T*); // Delete a block
12 template <class T> void tRetire(T*); // Epoch-based safe retire
13 TxManager* mgr; // Tx metadata shared among Composables
14 struct OpStarter { OpStarter(TxManager*); } // RAII op starter
15 };
16 class TxManager { // Manager shared among composable objects
17 void txBegin(); // Start a transaction
18 void txEnd(); // Try to commit the transaction
19 void txAbort(); // Explicitly abort the transaction
20 void validateReads(); // Optional validation for opacity
21 };
22 struct TransactionAborted : public std::exception{ };

Figure 1: C++ API of Medley for transaction composition.

1. Replace critical loads and CASes with nbtcLoad and nbtcCAS, respectively.
Fields to which such accesses are made should be declared using the CASObj
template.

2. Invoke addToReadSet for the critical load in a read operation, recording the
address and the loaded value.

3. Register each operation’s post-critical work via addToCleanups.

4. Replace every new and delete with tNew and tDelete. Replace every retire
(for safe memory reclamation—SMR) with tRetire.

5. Declare an OpStarter object at the beginning of each operation.

CASObj<T> augments each CAS-able 64-bit word (e.g., atomic<Node*>)
with additional metadata bits for speculation tracking (details in Section 3.2).
It provides specialized load and CAS operations, as well as the usual methods
of atomic<T>. To dynamically identify the speculation interval, nbtcCAS takes
two extra arguments, linPt and pubPt, that indicate whether this call, should
it succeed, will constitute its operation’s linearization or/and publication point.
In a similar vein, addToReadSet can be called after an nbtcLoad to indicate
(after inspecting the return value) that this was (or is likely to have been) the
linearizing load of a read-only operation, and should be tracked for validation
at commit time.

Composable is a base class for transactional objects. It provides a variety of
NBTC-related methods, including support for safe memory reclamation (SMR),
used to ensure that nodes are not reclaimed until one can be certain that no
references remain among the private variables of other threads. Our current
implementation of SMR uses epoch-based reclamation [10, 17, 27]. For the sake
of generality, Composable also provides an API for transactional boosting, which
can be used to incorporate lock-based operations into Medley transactions (at
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the cost, of course, of nonblocking progress). We do not discuss this mechanism
further in this paper.

The TxManager class manages transaction metadata and provides methods
to initiate, abort, and complete a transaction. A TxManager instance is shared
among all Composable instances intended for use in the same transactions. In
each operation call, the manager distinguishes (via OpStarter()) whether exe-
cution is currently inside or outside a transaction. If outside, all transactional
instrumentation is elided; if inside, instrumentation proceeds as specified by the
NBTC methodology.

Given that nonblocking operations can execute safely in any reachable state
of the system, there is usually no need to stop the execution of a doomed-to-
abort transaction as soon as a conflict arises—i.e., to guarantee opacity [14]. In
exceptional cases (e.g., when later operations of a transaction cannot be called
with certain combinations of parameters, or when aborts are likely enough that
delaying them may compromise performance), the validateReads method can be
used to determine whether previous reads remain correct.

To illustrate the use of Medley, Figure 2 highlights lines of code in Michael’s
nonblocking hash table [28] that must be modified for NBTC; Figure 3 then
shows an example transaction that modifies two hash tables. In a real appli-
cation, the catch block for TransactionAborted would typically loop back to the
beginning of the transaction code to try again, possibly with additional code to
avoid livelock (e.g., via backoff or hints to the underlying scheduler). In contrast
to STM systems, Medley does not instrument the intra-transaction “glue” code
between data structure operations. This code is always executed as regular code
outside a transaction and should always be data-race free; if it has side effects,
the catch block (written by the programmer) for aborted transactions should
compensate for these before the programmer chooses to retry or give up.

3.2 M-Compare-N-Swap

To execute the critical memory accesses of each transaction atomically, we em-
ploy a software-emulated M-compare-N-swap (MCNS) operation that builds on
the double-compare-single-swap (RDCSS) and multi-word CAS (CASN) of Har-
ris et al. [16]. Each transaction maintains a descriptor that contains a read set,
a write set, and a 64-bit triple of thread ID, serial number, and status, as
shown in Figure 4. Descriptors are pre-allocated on a per-thread basis within a
TxManager instance, and are reused across transactions. A status can be InPrep
(initial state), InProg (ready to commit), Committed (after validation succeeds
when InProg), or Aborted (explicitly by another thread when InPrep or due to
failed validation).

Each originally 64-bit word at which a critical memory access may occur is
augmented with a 64-bit counter, together comprising a 128-bit CASObj. Each
critical CAS installs a pointer to its descriptor in the CASObj and increments
the counter; upon commit or abort, the descriptor is uninstalled and the counter
incremented again. We leverage 128-bit CAS instructions on the x86 to change
the original word and the counter together, atomically. The counter is odd when
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1 class MHashTable : public Composable {
2 struct Node { K key; V val; CASObj<Node*> next; };
3 // from p, find c >= k; nbtcLoad and tRetire may be used
4 bool find(CASObj<Node*>* &p, Node* &c, Node* &n, K k);
5 optional<V> get(K key) {
6 OpStarter starter(mgr); CASObj<Node*>* prev = nullptr;
7 Node *curr, *next; optional<V> res = {};
8 if (find(prev,curr,next,key)) res = curr->val;
9 addToReadSet(prev,curr);

10 return res;
11 }
12 optional<V> put(K key, V val) { // insert or replace if key exists
13 OpStarter starter(mgr);
14 CASObj<Node*>* prev = nullptr; optional<V> res = {};
15 Node *newNode = tNew<Node>(key, val), *curr, *next;
16 while(true) {
17 if (find(prev,curr,next,key)) { // update
18 newNode->next.store(curr);
19 if (curr->next.nbtcCAS(next,mark(newNode),true,true)) {
20 res = curr->val;
21 auto cleanup = [](){
22 if (prev->CAS(curr,newNode)) tRetire(curr);
23 else find(prev,curr,next,key);
24 };
25 addToCleanups(cleanup); // execute right away if not in tx
26 break;
27 }
28 } else { // key does not exist; insert
29 newNode->next.store(curr);
30 if (prev->nbtcCAS(curr,newNode,true,true)) break;
31 }
32 }
33 return res;
34 }};

Figure 2: Michael’s lock-free hash table example (Medley-related parts
highlighted).

1 void doTx(MHashTable* ht1, MHashTable* ht2, V v, K a1, K a2) {
2 TxManager* mgr=ht1->mgr; assert(mgr==ht2->mgr);
3 try { // transfer ‘v’ from account ‘a1’ in ‘ht1’ to ‘a2’ in ‘ht2’
4 mgr->txBegin();
5 V v1 = ht1->get(a1); V v2 = ht2->get(a2);
6 if (!v1.hasValue() or v1.value() < v) mgr->txAbort();
7 ht1->put(a1, v1.value() - v); ht2->put(a2, v + v2.valueOr(0));
8 mgr->txEnd();
9 } catch (TransactionAborted) { /* transaction aborted */ }

10 }

Figure 3: Transaction example on Michael’s hash table.
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1 struct Desc {
2 map<CASObj* addr,{uint64 val,cnt}>* readSet;
3 map<CASObj* addr,{uint64 oldVal,cnt,newVal}>* writeSet;
4 atomic<uint64> status;//63..50 tid 49..2 serialNumber 1..0 status
5 enum STATUS { InPrep=0, InProg=1, Committed=2, Aborted=3 };
6 };
7 struct CASObj { atomic<uint128> val_cnt; };

Figure 4: Descriptor and CASObj structures.

CASObj contains a pointer to a descriptor and even when it is a real value.
Each instance of MCNS proceeds through phases that install descriptors,

finalize status, and uninstall descriptors. The first two phases are on the critical
path of a data structure operation. A new transaction initializes metadata in its
descriptor (at txBegin): it clears the read and write sets, increments the serial
number, and resets the status to InPrep. The installing phase then occurs over
the course of the transaction: Each critical load records its address, counter,
and value in the read set. Each critical CAS records its address, old counter,
old value, and desired new value in the write set; it then installs a pointer to
the descriptor in the CASObj. Pseudocode for the installing phase appears in
Figure 5.

To spare the programmer the need to reason about counters, nbtcLoad makes
a record of its 〈counter, object〉 pair (line 15 in Fig. 5); addToReadSet then adds
this pair (and the specified CASObj) to the transaction’s read set (line 20).

When a thread encounters its own descriptor, nbtcLoad returns the specu-
lated value from the write set (line 11). Likewise, nbtcCAS updates the write
entry (line 34). Such encounters automatically initiate the speculation interval
(lines 10, 30, and 32), which then extends through the linearization point of the
current operation (line 38).

If an operation encounters the descriptor of some other thread, it gets that
descriptor out of the way by calling tryFinalize (Fig. 6). This method aborts the
associated transaction if the descriptor is InPrep, helps complete the commit if
InProg, and in all cases uninstalls the descriptor from the CASObj in which it
was found. Similar actions occur when a thread is forced to abort or reaches the
end of its transaction and attempts to commit (lines 39–58). Whether helping
or acting on its own behalf, a thread performing an MCNS must verify that the
descriptor is still responsible for the CASObj through which it was discovered
(line 9) and (if committing) that the values in the read set are still valid (line 25).
After CAS-ing the status to Committed or Aborted, the thread uninstalls the
descriptor from all associated CASObjs, replacing pointers to the descriptor
with the appropriate updated values (lines 31 and 34). Once uninstalling is
complete, the owner thread calls cleanup routines (line 55) for a commit or
deallocates tNew-ed blocks (line 43) for an abort.

Our design adopts invisible readers and eager contention management for
efficiency and simplicity. Eager contention management admits the possibility
of livelock—transactions that repeatedly abort each other—and therefore guar-
antees only obstruction freedom. Lazy (commit-time) contention management
along with some total order of descriptor installment might allow us to pre-
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1 void TxManager::txBegin() {
2 desc->readSet->clear(); desc->writeSet->clear();
3 status.store((status.load() & ~3) + 4);
4 }
5 T CASObj::nbtcLoad() {
6 retry:
7 {val,cnt} = val_cnt.load();
8 if (cnt % 2) { // is descriptor
9 if (val == desc) {

10 startSpeculativeInterval();
11 return desc->writeSet[this].newVal;
12 } else val->tryFinalize(this, {val,cnt});
13 goto retry; // until object has real value
14 }
15 ... /* Record ‘this’ and ‘cnt’ to be added to readSet */
16 return val;
17 }
18 void Composable::addToReadSet(CASObj<T>* obj, T val) {
19 ... /* Retrieve ‘cnt’ by ‘obj‘ */
20 mgr->readSet[obj] = {val,cnt};
21 }
22 bool CASObj::nbtcCAS(T expected,T desired,bool linPt,bool pubPt){
23 retry:
24 {val,cnt} = val_cnt.load();
25 if (cnt % 2) { // is descriptor
26 if (val != desc) { // not own descriptor
27 val->tryFinalize(this, {val,cnt});
28 goto retry; // until object has real value
29 }
30 startSpeculativeInterval();
31 } else if (val != expected) return false;
32 if (pubPt) startSpeculativeInterval();
33 if (inSpeculativeInterval()) { // Is critical CAS
34 desc->writeSet[this] = {val,cnt,desired};
35 bool ret = true;
36 if (!(cnt % 2)) ret = this->CAS({val,cnt},{desc,cnt+1});
37 if (!ret) desc->writeSet.remove(this);
38 if (linPt and ret) endSpeculativeInterval();
39 return ret;
40 } else return CAS(expected, desired);
41 }

Figure 5: Pseudocode for installing phase of MCNS.
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1 bool Desc::stsCAS(uint64 d, STATUS expected, STATUS desired) {
2 d = d & ~3; return status.CAS(d + expected, d + desired);
3 }
4 bool Desc::setReady(){return stsCAS(status.load(),InPrep,InProg);}
5 bool Desc::commit(uint64 d){return stsCAS(d,InProg,Committed);}
6 bool Desc::abort(uint64 d){return stsCAS(d,d & 1,Aborted);}
7 void Desc::tryFinalize(CASObj* obj, uint128 var) {
8 uint64 d = status.load();
9 if (obj->val_cnt.load() != var) // ensure d indicates right tx

10 return;
11 if (d & 3 == InPrep) {
12 abort(d);
13 uint64 newd = status.load();
14 if (newd & ~3 != d & ~3) return; // serial number mismatch
15 d = newd;
16 }
17 if (d & 3 == InProg) {
18 if (validateReads(d)) commit(d);
19 else abort(d);
20 }
21 uninstall(status.load());
22 }
23 bool Desc::validateReads() {
24 for (e:*readSet)
25 if ({e.val,e.cnt} != e.addr->load()) return false;
26 return true;
27 }
28 void Desc::uninstall(uint64 d) {
29 if (d % 3 == Committed)
30 for (e:*writeSet)
31 e.addr->CAS({this,e.cnt+1}, {e.newVal,e.cnt+2});
32 else // Aborted
33 for (e:*writeSet)
34 e.addr->CAS({this,e.cnt+1}, {e.oldVal,e.cnt+2});
35 }
36 struct TxManager {
37 threadLocal vector<Function> cleanups, allocs;
38 threadLocal Desc* desc;
39 void txAbort() {
40 uint64 d = desc->status.load();
41 desc->abort(d);
42 desc->uninstall(d);
43 for (f:allocs) f(); // undo tNew
44 throw TransactionAborted();
45 }
46 void txEnd() {
47 if (!desc->setReady()) txAbort();
48 else {
49 uint64 d = desc->status.load();
50 if (!desc->validateReads()) desc->abort(d);
51 else if (d & 3 == InProg) desc->commit(d);
52 d = desc->status.load();
53 if (d & 3 == Committed) {
54 desc->uninstall(d);
55 for (f:cleanups) f();
56 } else txAbort();
57 }
58 }
59 };

Figure 6: Pseudocode of methods that finalize transactions.
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serve lock freedom for structures that provide it [35], but would significantly
complicate the tracking and retrieving of uncommitted changes, and would not
address starvation, which may be a bigger problem than livelock in practice;
we consider these implementation choices orthogonal to the effectiveness of the
NBTC methodology, and defer them to future work.

4 Persistent Memory

Transactions developed, historically, in the database community; transactional
memory (TM) adapted them to in-memory structures in multithreaded pro-
grams. The advent of cheap, low-power, byte-addressable nonvolatile memory
(NVM) presents the opportunity to merge these two historical threads in a way
that ideally leverages NBTC. Specifically, where TM aims to convert sequential
code to thread-safe parallel code, NBTC assumes—as in the database world—
that we are already in possession of efficient thread-safe structures and we wish
to combine their operations atomically and durably. Given this assumption,
it seems appropriate (as described at the end of Sec. 3.1) to assume that the
programmer is responsible for the “glue” code between operations, and to focus
on the atomicity and durability of the composed operations.

4.1 Durable Linearizability

On machines with volatile caches, data structures in NVM will generally be
consistent after a crash only if programs take pains to issue carefully chosen
write-back and fence instructions. To characterize desired behavior, Izraelevitz
et al. [21] introduced durable linearizability as a correctness criterion for persis-
tent structures. A structure is durably linearizable if it is linearizable during
crash-free execution and its long-term history remains linearizable when crash
events are elided. Equivalently [11], each operation should persist between its
invocation and response, and the order of persists should match the linearization
order.

Many durably linearizable nonblocking data structures have been designed
in recent years [3, 9, 11, 44]. Several groups have also proposed methodologies
by which existing nonblocking structures can be made durably linearizable [12,
13, 21]. Other groups have developed persistent STM systems, but most of
these have been lock-based [4, 5, 24, 40]. OneFile [33] and QSTM [1] are, to the
best of our knowledge, the only nonblocking persistent STM systems. OneFile
serializes transactions using a global sequence number, eliminating the need for
a read set and improving read efficiency, but introducing the need for invasive
data structure modifications and a 128-bit wide CAS. QSTM employs a global
persistent queue for active transactions, avoiding the need for wide CAS and
invasive structural changes, but with execution that remains inherently serial.
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4.2 Lowering Persistence Overhead

Unfortunately, write-back and fence instructions tend to have high latency.
Given the need for operations to persist before returning, durable linearizability
appears to be intrinsically expensive. Immediate persistence for STM introduces
additional overhead, as metadata for transaction concurrency control must also
be eagerly written back and fenced.

To move high latency instructions off the application’s critical path, Izrael-
evitz et al. [21] introduced the notion of buffered durable linearizability (BDL).
By allowing a modest suffix of pre-crash execution to be lost during post-crash
recovery (so long as the overall history remains linearizable), BDL allows write-
back and fence instructions to execute in batches, off the application’s critical
path. Applications that need to ensure persistence before communicating with
the outside world can employ a sync operation, reminiscent of those in traditional
file systems and databases.

First proposed in the context of the Daĺı persistent hash table [32], periodic
persistence was subsequently adopted by nbMontage [2], a general-purpose sys-
tem to create BDL versions of existing nonblocking structures. The nbMontage
system divides wall-clock time into “epochs” and persists operations in a batch
at the end of each epoch. In the wake of a crash in epoch e, the system recovers
all structures to their state as of the end of epoch e− 2. To maximize through-
put in the absence of crashes, nbMontage also distinguishes between data that
are semantically significant (a.k.a. “payloads”) and data that are merely perfor-
mance enhancing (e.g., indices); the latter can be kept in DRAM and rebuilt
during recovery. As an example, the payloads of a mapping are simply a pile of
key-value pairs; the associated hash table, tree, or skiplist resides in transient
DRAM. The payloads of a queue are 〈serial number, item〉 pairs.

To ensure that post-crash recovery always reflects a consistent state of each
structure, every nbMontage operation is forced to linearize in the epoch with
which its payloads have been labeled. Operations that take “too long” to com-
plete may be forced to abort and start over. The nbMontage system as a whole
is lock free; sync is actually wait free.

4.3 Durable Strict Serializability

Linearizability, of course, is not suitable for transactions, which must remain
speculative until all operations can be made visible together. STM systems
typically provide strict serializability instead: transactions in a crash-free history
appear to occur in a sequential order that respects real time (if A commits before
B begins, then A must serialize before B) [34, Sec. 3.1.2]. For a persistent version
of NBTC, we need to accommodate crashes.

Like Izraelevitz et al. [21], we assume a full-system crash failure model:
data structures continue to exist after a crash, but are accessed only by new
threads—the old threads disappear. Under this model:

Definition 4. An execution history H displays durable strict serializability
(DSS) if it is strictly serializable when crash events are elided.
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Like durable linearizability, this definition requires all work completed before a
crash to be visible after the crash. The buffered analogue is similar:

Definition 5. An execution history H displays buffered durable strict serializ-
ability (BDSS) if there exists a happens-before–consistent cut of each inter-crash
interval such that H is strictly serializable when crash events are elided along
with the post-cut suffix of each inter-crash interval.

4.4 Merging Medley with nbMontage

The epoch system of nbMontage provides a natural mechanism with which to
provide failure atomicity and durability for Medley transactions: if operations
of the same transaction always occur in the same epoch, then they will be
recovered (or lost) together in the wake of a crash. Building on this observation,
we merge the two systems to create txMontage. Payloads of all operations in a
given transaction are labeled with the same epoch number. That number is then
validated along with the rest of the read set during MCNS commit, ensuring
that the transaction commits in the expected epoch. While nbMontage itself is
quite complex, this one small change is all that is required to graft it (and all
its converted persistent data structures) onto Medley: persistence comes into
transactions “almost for free.”

5 Correctness

In this section, we argue that histories comprising well-formed Medley transac-
tions are strictly serializable, that Medley is obstruction free, and that txMon-
tage provides buffered durable strict serializability.

Definition 6. A Medley transaction is well-formed if

1. it starts with txBegin and ends with txEnd, optionally with txAbort in between;

2. it contains operations of NBTC-transformed data structures; and

3. all other intra-transaction code is nonblocking and free from any side effects
not managed by handlers for the TransactionAborted exception.

5.1 Strict Serializability

Lemma 1. At the implementation level (operating on the array of words that
comprises system memory), nbtcLoad, nbtcCAS, tryFinalize, txAbort, and txEnd
(MCNS) are linearizable operations.

Proof (sketch). Follows directly from Harris et al. [16]. Their RDCSS compares
(without changing) only a single location, and their CASN supports the update
of all touched words, but the proofs adapt in a straightforward way. In particu-
lar, as in RDCSS, an unsuccessful tryFinalize or txEnd can linearize on a (failed)
validating read or a failed CAS of its status word. A tryFinalize or txEnd whose

15



status CAS is successful linearizes “in the past,” on the first of its validating
reads. (Ironically, this means that MCNS, at the implementation level, does not
have an immediately identifiable linearization point.)

Lemma 2. In any history in which transaction t performs an nbtcLoad or
nbtcCAS operation x on CASObj o, and in which t’s txEnd operation y suc-
ceeds, no tryFinalize or txEnd for a different transaction that modifies o succeeds
between x and y.

Proof (sketch). Suppose the contrary, and call the transaction with the conflict-
ing tryFinalize or txEnd u. If u’s nbtcCAS of o occurs between x and y, it will
abort and uninstall t’s descriptor, or cause read validation to fail in y, contra-
dicting the assumption that t’s txEnd succeeds. If u’s nbtcCAS of o occurs before
x, then x will abort and uninstall u’s descriptor, contradicting the assumption
that u’s tryFinalize or txEnd succeeds after x.

Theorem 3. Histories comprising well-formed Medley transactions are strictly
serializable.

Proof (sketch). In an NBTC-transformed data structure, all critical memory
accesses will be performed using nbtcLoad or nbtcCAS. These will be followed,
at some point, by a call to txEnd. If that call succeeds, no conflicting tryFinalize
or txEnd succeeds in the interim, by Lemma 2. This in turn implies that our
Medley history is equivalent to a sequential history in which each operation takes
effect at the nbtcLoad or nbtcCAS corresponding to the linearization point of the
original data structure operation, prior to NBTC transformation. Moreover, all
operations of the same transaction are contiguous in this sequential history—
that is, our Medley history is strictly serializable.

5.2 Obstruction Freedom

Theorem 4. When used to build well-formed transactions that retry on abort,
Medley is obstruction free.

Proof (sketch). In any reachable system state, if one thread continues to execute
while others are paused, every nbtcLoad or nbtcCAS that encounters a conflict
will first finalize (commit or abort) the encountered descriptor, uninstall it,
and install its own descriptor. If the thread encounters its own descriptor, a
nbtcLoad will return the speculated value and a nbtcCAS will update the write
set if the argument matches the previous new value in the write set. In either
case, the MCNS will make progress. If it eventually aborts, it may repeat one
round of a brand new MCNS which, with no newly introduced contention, must
commit.

5.3 Buffered Durable Strict Serializability

Theorem 5. Histories comprising well-formed txMontage transactions exhibit
buffered durable strict serializability.
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Proof (sketch). Each transaction reads the current epoch, e, in txBegin. It then
validates this epoch number during MCNS commit. Per Lemma 1, this MCNS
must linearize inside e. With nbMontage-provided failure atomicity of all oper-
ations in the same epoch, the theorem trivially holds.

6 Performance Results

As noted in Section 1, we have used Medley to create NBTC versions of Michael
and Scott’s queue [29], Fraser’s skiplist [10], the rotating skiplist of Dick et al. [7],
Michael’s chained hash table [28], and Natarajan and Mittal’s binary search
tree [31]. All of the transformations were straightforward. In this section we
report on the performance of Medley and txMontage hash tables and skiplists,
comparing them to various alternatives from the literature.

Specifically, we tested the following transient systems:

Medley – as previously described (hash table and skip list)

OneFile – transient version of the lock-free STM of Ramalhete et al. [33] (hash
table and skip list)

TDSL – transactional data structure library of Spiegelman et al. [36] (authors’
skiplist only)

LFTT – lock-free transactional transform of Zhang et al. [43] (authors’ skiplist
only)

We also tested the following persistent systems:

txMontage – Medley + nbMontage (hash table and skiplist)

POneFile – persistent version of OneFile [33] (hash table and skiplist)

6.1 Experimental Setup

We report throughput for hash table and skiplist microbenchmarks and for
skiplists used to run a subset of TPC-C [6]. We also measure latency for skiplists.
All code will be made publicly available prior to conference publication.

All tests were conducted on a Linux 5.3.7 (Fedora 30) server with two Intel
Xeon Gold 6230 processors. Each socket has 20 physical cores and 40 hyper-
threads, totaling 80 hyperthreads. Threads in all experiments were pinned first
one per core on socket 0, then on the extra hyperthreads of that socket, and
then on socket 1. Each socket has 6 channels of 32 GB DRAMs and 6 channels
of 128 GB Optane DIMMs. We mount NVM from each socket as an indepen-
dent ext4 file system. In all experiments, DRAM is allocated across the two
sockets according to Linux’s default policy; in persistent data structures, only
NVM on socket 0 is used, in direct access (DAX) mode. In all cases, we report
the average of three trials, each of which runs for 30 seconds.

Our throughput and latency microbenchmark begins by pre-loading the
structure with 0.5 M key-value pairs, drawn from a key space of 1 M keys. Both
keys and values are 8-byte integers. In the benchmarking phase, each thread
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Figure 7: Throughput of transactional hash tables (log Y axis).
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Figure 8: Throughput of transactional skiplists (log Y axis).

composes and executes transactions comprising 1 to 10 operations each. Oper-
ations (on uniformly random keys) are chosen among get, insert, and remove in
a ratio specified as a parameter (0:1:1, 2:1:1, or 18:1:1 in our experiments).

In OneFile, we use a sequential chained hash table parallelized using STM.
In Medley, we use an NBTC-transformed version of Michael’s lock-free hash
table [28]. Each table has 1 M buckets. In OneFile and TDSL, skiplists are
derived from Fraser’s STM-based skiplist [10]. In LFTT and Medley, they are
derived from Fraser’s CAS-based nonblocking skiplist [10]. Each skiplist has up
to 20 levels.

For TPC-C, we are limited by the fact that Fraser’s skiplists do not sup-
port range queries. Following the lead of Yu et al. [42] in their experiments
with DBx1000[42], we limit our experiments to TPC-C’s newOrder and payment
transactions, which we perform in a 1:1 ratio. These are the dominant transac-
tions in the benchmark; neither performs a range query.

6.2 Throughput (Transient)

Throughput results for the hash table and skiplist microbenchmarks appear
in Figures 7 and 8, respectively. Solid lines represent transactions on transient
data structures; dotted lines represent persistent transactions. Considering only
the transient case for now, Medley consistently outperforms the transient ver-
sion of OneFile by more than an order of magnitude, on both hash tables and
skiplists, for anything more than a trivial number of threads. The gap becomes
larger when the workload has a higher percentage of writes. Despite its lack
of scalability, OneFile performs well at small thread counts, especially with a
read-mostly workload. We attribute this fact to its serialized transaction design,
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which eliminates the need for read sets.
As described in Section 1, TDSL provides (blocking) transactions over vari-

ous specially constructed data structures. While conflicts still occur on writes,
read sets are limited to only semantically critical nodes, and the authors report
significant improvements in throughput relative to general-purpose STM [36].
As shown in Figure 8, however, TDSL, like OneFile, has limited scalability, and
is dramatically outperformed by Medley. Somewhat to our surprise, TDSL also
fails to outperform OneFile on this microbenchmark, presumably because of the
latter’s elimination of read sets.

Among the various skiplist competitors, LFTT comes closest to rivaling
Medley, but still trails by a factor of 1.4–2× in the best (write-only) case.
Re-executing entire transactions in LFTT introduces considerable redundant
work—planning in particular. On read-mostly workloads, where Medley bene-
fits from invisible readers, LFTT trails by a factor of 2–2.7×.

As a somewhat more realistic benchmark, we repeated our comparison of
Medley, OneFile, and TDSL on the newOrder and payment transactions of TPC-
C. We were unable to include LFTT in these tests because it supports only static
transactions, in which the set of data structure operations is known in advance—
nor could we integrate its dynamic variant (DTT [23]), as the available version
of the code does not allow arbitrary key and value types. LaBorde et al. [23]
report, however, that DTT’s performance is similar to that of LFTT on simple
transactions. Given that DTT has to publish the entire transaction as a lambda
expression on all its critical nodes, we would expect DTT’s performance to be,
if anything, somewhat worse on the large transactions of TPC-C, and LFTT
was already about 2× slower than Medley on the microbenchmark.

TPC-C throughput for Medley, (transient) OneFile, and TDSL appears
in Figure 9. Because transactions on TPC-C are large, OneFile is impacted
severely. By ensuring the atomicity of only critical accesses, Medley still scales
for large numbers of threads and outperforms the competition by as much as
45×.
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Figure 10: Average latency on skiplists at 40 threads.
X labels are ratio of get:insert:remove.

6.3 Latency (Transient)

In an attempt to assess the marginal cost of transaction composition, we re-
ran our microbenchmark on Fraser’s original skiplist (Original—no transac-
tions), the NBTC-transformed skiplist without transactions (TxOff—no calls
to txBegin or txEnd), and the NBTC-transformed skiplist with transactions
(TxOn—as in Figure 8).

Figure 10a reports latency for structures placed in DRAM. Without trans-
actions, the transformed skiplist is 1.8× slower than the original. With trans-
actions turned on, it’s about 2.2× slower. These results suggest that the more-
than-doubled cost of CASes (installing and uninstalling descriptors) accounts
for about 2/3 of Medley’s overhead.

6.4 Persistence

To evaluate the impact of failure atomicity and durability on the throughput of
txMontage, we can return to the dotted lines of Figures 7, 8, and 9.

Throughput

In the microbenchmark tests, with strict persistence and eager cache-line write-
back, persistent OneFile is an order of magnitude slower than its transient
version. With periodic persistence, however, the txMontage hash table achieves
half the throughput of Medley at 40 threads on the write-only workload—almost
two orders of magnitude faster than POneFile. With a read-mostly workload
on the hash table, or with any of the workloads on the skiplist (with its lower
overall concurrency), txMontage is almost as fast as Medley. In the extreme
write-heavy case (80 threads on the 0:1:1 hash table workload), we attribute
the roughly 4× slowdown of txMontage to NVM’s write bottleneck [22]—in
particular, to the phenomenon of write amplification [20, 41].

Results are similar in TPC-C (Fig. 9). Transactions here are both large and
heavy on writes; allocating payloads on NVM limits txMontage’s throughput
to roughly a fifth of Medley’s, but that is still about 4× faster than transient
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OneFile. POneFile, for its part, spent so long on the warm-up phase of TPC-C
that we lost patience and killed the test.

Latency

Figure 10b shows the latency of skiplist transactions when txMontage payloads
are allocated on NVM (and indices on DRAM) but persistence is turned off
(no epochs or explicit cache line write-back). For comparison, we have also
shown the latency of the original, non-transactional skiplist with all data placed
in NVM. Figure 10c shows the corresponding latencies for fully operational
txMontage.

Comparing Figures 10a and 10b, we see lower marginal overhead for trans-
actions when running on NVM. This may suggest that the hardware write bot-
tleneck is reducing overall throughput and thus contention.

On the write-only workload (leftmost groups of bars), moving payloads to
NVM introduces an overhead of almost 50% (Fig. 10a versus Fig. 10b). On the
read-mostly workload (rightmost bars), this penalty drops to 5%. Again, we
attribute the effect to NVM’s write bottleneck. The high latency of the original
skiplist entirely allocated on NVM (green bars in Figure 10b) appears to confirm
this hypothesis.

Comparing Figures 10b and 10c, txMontage pays less than 5%, relative to
Medley on NVM, for failure atomicity and durability.

7 Conclusion

We have presented nonblocking transaction composition (NBTC), a new method-
ology that leverages the linearizability of existing nonblocking data structures
when building dynamic transactions. As concrete realizations, we introduced the
Medley system for transient structures and the txMontage system for (buffered)
persistent structures. Medley transactions are isolated and consistent; txMon-
tage transactions are also failure atomic and durable. Both systems are quite
fast: where even the best STM has traditionally suffered slowdowns of 3–10×,
Medley incurs more like 2.2×; txMontage, for its part, adds only 5–20% to the
overhead of nbMontage, allowing it to outperform existing nonblocking persis-
tent STM systems by nearly two orders of magnitude.

Given their eager contention management, Medley and txMontage main-
tain obstruction freedom for transactions on nonblocking structures. In future
work, we plan to explore lazy contention management, postponing installment
of descriptors until transactions are ready to commit. By sorting and installing
descriptors in canonical order, the resulting systems would preserve lock free-
dom. Lazy contention management would also facilitate helping, as any installed
descriptor would have status == InProg, and any other thread could push it to
completion.

As currently defined in NBTC, speculation intervals are easy to identify,
but may unnecessarily instrument certain harmless helping instructions between
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publication and linearization. We are currently working to develop a more pre-
cise but still tractable definition of helping in order to reduce the number of
“critical” memory accesses that must be performed atomically in each transac-
tion.
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