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Abstract. Future generations of Chip Multiprocessors (CMP) will pro-
vide dozens or even hundreds of cores inside the chip. Writing appli-
cations that benefit from the massive computational power offered by
these chips is not going to be an easy task for mainstream program-
mers who are used to sequential algorithms rather than parallel ones.
This paper explores the possibility of using Transactional Memory (TM)
in OpenMP, the industrial standard for writing parallel programs on
shared-memory architectures, for C, C++, and Fortran. One of the ma-
jor complexities in writing OpenMP applications is the use of critical
regions (locks), atomic regions and barriers to synchronize the execu-
tion of parallel activities in threads. TM has been proposed as a mecha-
nism that abstracts some of the complexities associated with concurrent
access to shared data while enabling scalable performance. The paper
presents a first proof-of-concept implementation of OpenMP with TM.
Some extensions to the language are proposed to express transactions.
These extensions are handled by our source-to-source OpenMP Mer-
curium compiler and our Software Transactional Memory (STM) library
Nebelung that supports the code generated by Mercurium. The current
implementation of the library has no support at the hardware level, so it
is a proof-of-concept implementation. Hardware Transactional Memory
(HTM) or Hardware-assisted STM (HaSTM) are seen as possible paths
to make the tandem TM-OpenMP more usable. The paper finishes with
a set of open issues that still need to be addressed, either in OpenMP or
in the hardware/software implementations of TM.

Keywords: Compiler, OpenMP, Software Transaction Memory, STM
Library.

1 Introduction

The trend towards incorporating more cores in Chip Multiprocessors (CMP)
will continue, with the potential for hundreds of cores for future technology
generations. Inefficient data access ordering and synchronization primitives such
as locking will limit programmer productivity and application performance for
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those future processors. Transactional Memory (TM) is a crucial mechanism to
tackle this problem by abstracting away the complexities associated by concur-
rent access to shared data [1] where multiple threads need to simultaneously
access shared memory locations atomically.

OpenMP [2], the industrial standard for writing parallel programs on shared-
memory architectures, for C, C++, and Fortran is a “traditional” programming
model in terms of mechanisms offered to guarantee mutual exclusion. It offers
a set of low-level primitives around locks and the high-level critical construct
to protect the access to shared data (through the ownership of one or more
locks). Lock-based mechanisms are complex to use and error prone especially
when trying to avoid deadlock situations or when trying to use fine-grain locking
to achieve better scalability on highly parallel hardware. Consequently there is
currently concern in the programming and computer architecture communities
that a parallel programming productivity/performance wall might be looming
in the horizon.

Transactional Memory (TM) is a promising mechanism to tackle this prob-
lem by abstracting some of the complexities associated with concurrent access to
shared data. With TM, multiple threads can simultaneously try to access multi-
ple shared memory locations within the scope of what is called a “transaction”.
The detection of memory access conflicts causes transactions to rollback.

When compared to TM, locks are pessimistic. With mutual exclusion, only
one thread can hold a given lock at a given time whereas with TM more than
one thread can access a given critical section simultaneously. Given that actual
conflicts are rare in many programs [3], the optimistic TM approach makes much
more sense as a future programming model. With TM the programmer specifies
intent rather than mechanism (i.e. the programmer can focus on determining
where atomicity is necessary, rather than the mechanisms used to enforce it),
resulting in a higher-level abstraction than locks.

Figure 1 shows an excerpt from the SpecOMP2001 AMMP program. In this
case the programmer uses a lock for each atom (a1->lock and a2->lock) to
protect the access to the fields of the two interacting atoms (a1 and a2). And this
is the lock that it is used in each critical region. Due to nature of the program, it
is very rare that more than one processor tries to access the critical region with
the same lock.

Some recently proposed programming models, such as Sun’s Fortress [4], IBMs
X10 [5] and Crays Chapel [6], include an atomic statement to define conditional
and/or conditional atomic blocks of statements that are executed as transactions.
In some cases, atomic can also be an attribute for variables so that any update to
them in the code is treated as if the update is in a short atomic section. OpenMP
also offers an atomic pragma to specify certain indivisible read-operation-write
sequences, for which current microprocessor usually provide hardware support.
For example through load linked-store conditional (LL-SC).

Two main TM implementation styles stand out: hardware- and software-
based. Historically, the earliest design proposals were hardware based. Software
Transactional Memory (STM) [7] has been proposed to address, among other
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#pragma omp parallel default(none)

shared(dielectric, lambda, a_number, atomall)

private (imax, i, a1, a2, xt, yt, zt, fx, fy, fz, a1fx, a1fy,

a1fz, ii, jj, ux, uy, uz, r, k, r0)

{ ... #pragma omp for schedule(guided)

for( i= 0; i< imax; i++) {

...

a1 = (*atomall)[i];

...

for( ii=0; ii< jj;ii++) {

a2 = a1->close[ii];

#ifdef _OPENMP

omp_set_lock(&(a2->lock));

#endif

ux = (a2->dx -a1->dx)*lambda + (a2->x -a1->x);

...

r =one/( ux*ux + uy*uy + uz*uz);

r0 = sqrt(r);

ux = ux*r0;

...

k = -dielectric*a1->q*a2->q*r;

r = r*r*r;

k = k + a1->a*a2->a*r*r0*six;

k = k - a1->b*a2->b*r*r*r0*twelve;

a1fx = a1fx + ux*k;

...

a2->fx = a2->fx - ux*k;

...

#ifdef _OPENMP

omp_unset_lock(&(a2->lock));

#endif

}

#ifdef _OPENMP

omp_set_lock(&(a1->lock));

#endif

a1->fx += a1fx ;

a1->fy += a1fy ;

a1->fz += a1fz ;

#ifdef _OPENMP

omp_unset_lock(&(a1->lock));

#endif

}

} /* omp parallel pragma */

Fig. 1. Excerpt from the SpecOMP2001 AMMP program

things, some inherent limitations of earlier forms of Hardware Transactional
Memory (HTM) [8] such as a lack of commodity hardware with the proposed
features, or a limitation to the number of locations that a transaction can access.
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Beyond these two main approaches, two additional mixed approaches have
recently been considered. Hybrid Transactional Memory (HyTM) [9], [10] sup-
ports transactional execution that generally occurs using HTM transaction but
which backs off to STM transactions when hardware resources are exceeded.
Hardware-assisted STM (HaSTM) combines STM with new architectural sup-
port to accelerate parts of the STMs implementation [11], [12]. These designs
are both active research topics and provide very different performance charac-
teristics: HyTM provides near-HTM performance for short transactions, but a
“performance cliff” when falling back to STM. In contrast, HaSTM may provide
performance some way between HTM and STM.

2 Basic Concepts

A transaction is a sequence of instructions, including reads and writes to mem-
ory, that either executes completely (commit) or has no effect (abort). When a
transaction commits, all its writes are made visible and values can be used by
other transactions. When a transaction is aborted, all its speculative writes are
discarded.

Commit or abort are decided based on the detection of memory conflicts
among parallel transactions. In order to detect and handle these conflicts, each
running transaction is typically associated with a ‘read set’ and a ‘write set’.
Inside a transaction, the execution of each transactional memory read instruc-
tion adds the memory address to the read set. Each transactional memory
write instruction adds the memory address and value to the write set of the
transaction.

Conflict detection can be either eager or lazy. Eager conflict detection checks
every individual read and write to see if there is a conflicting operation in another
transaction. Eager conflict detection requires that the read and write sets of a
transaction are visible to all the other transactions in the system. On the other
hand, with lazy conflict detection a transaction waits until it tries to commit
before checking its read and write sets against the write sets of other transactions.

Another fundamental design choice is how to resolve a conflict once it has been
detected. Usually, if there is a conflict it is necessary to resolve it by immediately
aborting one of the transactions involved in the conflict.

In order to support the execution of a transaction, a data versioning mech-
anism is needed to record the speculative writes. This speculative state should
be discarded on an abort or used to update the global state on a successful
commit. The two usual approaches to implement data versioning are based on
using an undo-log or using buffered updates. Using an undo-log, a transaction
applies updates directly to memory locations while logging the necessary in-
formation to undo the updates in case of abort. On the contrary, approaches
using buffered updates keep the speculative state in a transaction-private buffer
until commit time; if the commit succeeds, the original values before the store
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instructions are dropped and the speculative stores of the transaction are com-
mitted to memory.

HTM proposed systems keep the speculative state of the transactions mostly
in the data cache or in a hardware buffer area. Transactional loads and stores
can be kept in a separate “transactional cache” or in the conventional data
caches, augmented with transactional support. In both cases the modifications
are minimal since transactional support relies on extending existing cache co-
herence protocols such as MESI to detect conflicts and enforce atomicity. On
the contrary, STM implementations must provide mechanisms for concurrent
transactions to maintain their own views of the heap, allowing a transaction
to see its own writes as it continues to run, and allowing memory updates to
be discarded if the transaction ultimately aborts. In addition, STM implemen-
tations must provide mechanisms for detecting and resolving conflicts between
transactions.

3 Our “Proof-of-Concept” Approach

In order to explore how TM could influence the future design and implementation
of OpenMP, we have adopted a “proof-of-concept” approach based on a source-
to-source code restructuring process, implemented in Mercurium [13], and two
libraries to support the OpenMP execution model and to support transactional
memory: NthLib [14] and Nebelung [15], respectively. We also propose some
OpenMP extensions to specify transactions.

3.1 Is OpenMP ATOMIC a Transaction?

The atomic construct in OpenMP ensures that a specific storage location is
updated atomically, rather than exposing it to the possibility of multiple, simul-
taneous writing threads.

#pragma omp atomic
expression-statement

where expression-statement can have a limited number of possibilities, such as
x = x operator expr. Only the load and store of the object designated by x
are atomic; the evaluation of expr is not atomic (and should not include any
reference to x).

Some OpenMP compilers just replace atomic regions by critical regions, usu-
ally excluding from the critical region the evaluation of expr. Others make use of
the efficient machine instructions available in current microprocessors to atomi-
cally access memory or through the use of load-linked store-conditional. Figure 2
shows that for a simple example: the compiler generates code so that expression
on the right is computed first (in this case, a constant value 1). Once evaluated it
“saves” the current version of a(i) and applies the operator (+ in this case). Then
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!$omp parallel

do i = 1, n

!$omp atomic

a(i) = a(i) + 1

enddo

!$omp end parallel

(a)

atomic_expr_a = 1 atomic_old_a = a(i) atomic_new_a=atomic_old_a+

atomic_expr_a DO WHILE (0 .EQ.

atomic_update_4(a(i),atomic_old_a,atomic_new_a))

atomic_old_a = a(i)

atomic_new_a=atomic_old_a+atomic_expr_a

END DO

(b)

Fig. 2. Atomic region in OpenMP and a possible translation

it “tries” to update the shared variable, and if it fails, restores the original value
of a(i) and starts again applying the operator. The while loop finishes when the
atomic update 4 function returns successful (different than 0). So notice that
this is a simplified version, just for a single variable, of a transaction.

3.2 Is OpenMP CRITICAL a Transaction?

The critical construct in OpenMP restricts execution of the associated struc-
tured block to a single thread at a time (among all the threads in the program,
without regard to the team(s) to which the threads belong).

#pragma omp critical [(name)]
structured-block

An optional name may be used to identify the critical construct. All
critical constructs without a name are considered to have the same unspeci-
fied name. A thread waits at the beginning of a critical region until no other
thread is executing a critical region with the same name. The critical con-
struct enforces exclusive access with respect to all critical constructs with the
same name in all threads, not just in the current team.

OpenMP compilers usually replace critical regions with set lock/unset lock
primitives, declaring a different lock variable for each name used in critical con-
structs. From this usual implementation and the description above (taken from
the current 2.5 language specification) we understand that the code in the struc-
tured block can be never speculatively executed by a thread so that several
threads are executing it simultaneously.
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In this case, a first proposal to integrate TM in OpenMP would be to re-
lax the previous description so that “waiting at the begining of the critical
region” does not preclude the thread from executing the structured block spec-
ulatively as a full transaction. However, we prefered to first propose a set of
extensions (construct and clauses) to understant and explore how the TM ab-
straction could fit with the OpenMP programming style and execution model.
We could later see the minimum changes required in the current specification to
integrate transactional execution in OpenMP.

3.3 Proposed OpenMP Extensions for TM

The first extension is a pragma to delimit the sequence of instructions that
compose a transaction:

#pragma omp transaction [exclude(list)|only(list)]
structured-block

With this extension, the programmer should be able to write standard
OpenMP programs, but instead of using intrinsic routines to lock/unlock, atomic
or critical pragmas, he/she could use this pragma to specify the sequence of state-
ments that need to be executed as a transaction. The optional exclude clause
can be used to specify the list of variables for which it is not necessary to check
for conflicts. This means that the STM library does not need to keep track of
them in the read and write sets. On the contrary, if the programmer uses the
optional only clause, he/she is explicitly specifying the list of variables that need
to be tracked. In any case, data versioning for all speculative writes is needed for
all shared and private variables in case the transaction needs to be rolled-back.

Another possibility is the use of a new clause associated to the OpenMP
worksharing constructs:

#pragma omp for transaction [exclude(list)|only(list)]
for (...;...;...)

structured-block

or

#pragma omp sections transaction [exclude(list)|only(list)]
#pragma omp section

structured-block
#pragma omp section

structured-block

In the first case, each iteration of the loop constitutes a transaction, while in
the second case, each section is a transaction.

For OpenMP 3.0, a new tasking execution model is being proposed. Tasks
are defined as deferrable units of work that can be executed by any thread in
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the thread team associated to the active parallel region. Task can create new
tasks and can also be nested inside worksharing constructs. In this scenario, data
access ordering and synchronization based on locks will be even more difficult to
express, so transactions appear as an easy way to express intent and leave the
mechanisms to the TM implementation. For tasks we propose the possibility of
tagging a task as a transaction, using the same clause specified above.

#pragma omp task transaction [exclude(list)|only(list)]
structured-block

3.4 Nebelung Library Interface and Behavior

In order to have a complete execution environment supporting transactional
memory, we have implemented our own STM library, named Nebelung. A de-
tailed explanation of the library and its implementation is out of the scope for
this paper; therefore we present the relevant issues here. The library satisfies the
interface presented in the Figure 3. Nebelung library is typeless (work on a byte
level) so we also developed wrapper functions read and write around readtx
and writetx, which cast results into the proper types. Note that this interface
is similar to the ones provided by other current STM libraries [3].

The library functions have the following semantics: createtx and destroytx
create and destroy the required data structures for the execution of a transaction,
starttx starts the transaction, committx publishes (i.e., makes visible) the re-
sults (writes) of the transaction, aborttx cancels the transaction and retrytx
cancels the transaction and restarts it. readtx and writetx are function library
function calls for handling memory accesses. The transaction should be started
and ended with the code presented in the Figure 4.

The most important parts of the library are surely function calls readtx
and writetx and they require special attention. Both functions operate on the
byte level. writetx receives the real address where the data should be stored,
a size of data and the data itself. Function readtx receives the real address
which should be read and the size of the data, and returns the pointer to the

Transaction* createtx ();

void starttx (Transaction *tr);

status committx (Transaction *tr);

void destroytx (Transaction *tr);

void aborttx (Transaction *tr);

void retrytx (Transaction *tr);

void* readtx (Transaction *tr, void *addr, int blockSize);

void* writetx (Transaction *tr, void *addr, void *obj,

int blockSize);

Fig. 3. Nebelung library interface to support the code generated by the Mercurium
compiler
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{ Transaction* t = createtx(); while (1) {

starttx (t);

if (setjmp (t->context) == TRANSACTION_STARTED) {

(a)

if (COMMIT_SUCCESS == committx (t)) break;

else aborttx (t);

} else aborttx (t);

}

destroytx (t);

}

(b)

startTransaction();

// transaction body

endTransaction();

(c)

Fig. 4. Macros for (a) starting and (b) ending a transaction. (c) Code of the transaction
surrounded by the previous macros.

location which holds the requested data. Returned pointer does not need to be
the same as the original one and this is implementation dependent. This can be
the source of a memory leakage, because it is not clear who should release the
pointed memory. There are two possible implementations of function readtx.
The first implementation option can copy the data to a new location and return
the pointer, requiring the programmer to free it when it is not needed any more.
The other option, which we implemented, is that the library takes care about
everything and returns the pointer to the location which should be just read.
This pointer should not be used later for writing. If the same data should be
modified later, that should be done through function writetx and not directly
through returned pointer.

The current implementation of Nebelung library performs lazy conflict detec-
tion. Read and write sets are maintained dynamically and all memory operations
are performed locally for the transaction. At commit time, the library checks if
there is any conflict with other transactions. If conflict exists, the current transac-
tion is committed and other transactions are aborted. In this way the transaction
progress is guaranteed.

3.5 Source-to-Source Translation in Mercurium

The Mercurium OpenMP source-to-source translator transforms the code inside
the transaction block in such a way that for each memory access, a proper
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#pragma omp transaction {

ux = (a2->dx -a1->dx)*lambda + (a2->x -a1->x);

r =one/( ux*ux + uy*uy + uz*uz);

r0 = sqrt(r);

ux = ux*r0;

k = -dielectric*a1->q*a2->q*r;

r = r*r*r;

k = k + a1->a*a2->a*r*r0*six;

k = k - a1->b*a2->b*r*r*r0*twelve;

a1fx = a1fx + ux*k;

a2->fx = a2->fx - ux*k;

}

(a)

{ startTransaction(); {write(t, &ux, (*read(t, &((*read(t,

&a2))->dx))-

*read(t, &( ( *read(t, &a1))->dx))) *

*read(t,&lambda)+(*read(t,&((*read(t,&a2))->x))-

*read(t, &( ( *read(t, &a1)) ->x))));

write(t, &r, *read(t, &one) /( *read(t, &ux) *

*read(t, &ux) + *read(t, &uy) * *read(t, &uy) +

*read(t, &uz) * *read(t, &uz) ));

write(t, &r0, sqrt( *read(t, &r) ));

write(t, &ux, *read(t, &ux) * *read(t, &r0) );

write(t, &k, - *read(t, &dielectric) *

*read(t, &( ( *read(t, &a1) ) ->q) ) *

*read(t, &( ( *read(t, &a2) ) ->q) ) *

*read(t, &r) );

write(t, &r, *read(t, &r) * *read(t, &r) *

*read(t, &r) );

write(t, &k, *read(t, &k) +

*read(t, &( ( *read(t, &a1))->a) ) *

*read(t, &( ( *read(t, &a2))->a) ) *

*read(t, &r)* *read(t, &r0) * *read(t, &six));

write(t, &k, *read(t, &k)

*read(t, &((*read(t, &a1))->b) ) *

*read(t, &((*read(t, &a2))->b) ) *

*read(t, &r) * *read(t, &r) * *read(t, &r0) *

*read(t, &twelve));

write(t, &a1fx, *read(t, &a1fx)+ *read(t, &ux)* *read(t, &k) );

write(t, &( ( *read(t, &a2) ) ->fx ) ,

*read(t, &( ( *read(t, &a2) ) ->fx) )

*read(t, &ux) * *read(t, &k) );

} endTransaction(); }

(b)

Fig. 5. Code generated code for the first critical section in Figure 1 (excerpt from
AMMP SpecOMP2001)
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int f(int); int correct(int* a, int* b, int* x){

int fx;

#pragma omp transaction exclude (fx) {

fx = f(*x);

a += fx;

b -= fx;

}

}

(original code)

int correct(int* a, int* b, int* x){

int fx;

{ startTransaction();

{

fx = f(*read(t, x));

write(t, &a, *read(t, &a) + fx);

write(t, &b, *read(t, &b) - fx);

}

endTransaction();

}

}

(transactional code)

Fig. 6. Example using the exclude clause

STM library function call is invoked. The current version of Mercurium accepts
OpenMP 2.5 for Fortran90 and C.

Figure 5 shows how the first critical region in Figure 1 is specified using our
proposed extensions and the code generated by Mercurium. Figure 6 shows a
synthetic example using the exclude clause.

Finally, Figure 7 shows another example which operates on a binary tree,
inserting n nodes into the tree. We are using the current tasking proposal for
OpenMP 3.0. Notice that n tasks will be created and executed atomically in
parallel. Figure 8 shows the code generated by Mercurium.

3.6 Support for Hardware Transactional Memory

Researchers have not yet built a conscesnus about the best degree of harware sup-
port for transactional memory (i.e. full HTM, HaSTM or HyTM), particularly
when looking at future multicore architectures with large numbers of cores on a
chip and not necessarely cache coherent. This is part of our current work and or-
thogonal to the transformation process discussed in this paper, which can easily
be retargeted to support HTM: we only need to change the startTransaction
and the endTransactionmacros. Those macros should use the proper hardware
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ivoid ParallelInsert(struct BTNode** rootp, int n, int keys[], int

values[]){ #pragma omp parallel single {

for (int i = 0; i < n; ++i) {

int key = keys[i], value=values[i];

#pragma omp task capturevalue(key, value) captureaddress(rootp) {

int inserted, f;

BTNode* curr;

BTNode* n;

n = NewBTNode;

initNode(n,key,value);

inserted = 0;

f = 0;

#pragma omp transaction {

if (*rootp == 0) {*rootp = n;}

else {

curr = *rootp;

while (inserted == 0) {

if (curr->key == key){

curr->value = value;

curr->valid = 1;

inserted = 1;

f = 1;

} else if (curr->key> key) {

if (curr->left == 0) {curr->left = n; inserted = 1;}

else curr = curr->left;

} else {

if (curr->right == 0) {

curr->right = n;

inserted = 1;

} else curr = curr->right;

}

}

}

} // end oftransaction

if (f == 1) free(n);

} // end of task

} // end if for loop

} // end of parallel region

} // end of ParallelInsert function

Fig. 7. Function for parallel insertion of n nodes into a binary search tree, expressed
using the tasking execution model

ISA instructions for the start and the end of the transaction. The transformation
of loads and stores is not needed anymore. To illustrate this, in this paper we
chose to incorporate the HTM proposed by McDonald et. al [16] with instructions
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{ startTransaction(); { if ( *read(t, rootp) == 0 ) { write(t,

rootp, *read(t, &n) );

} else {

write(t, &curr, *read(t, rootp));

while ( *read(t, &inserted) == 0) {

if (*read(t, &((*read(t,&curr))->key))== *read(t, &key)) {

write(t, &((*read(t, &curr))->value), *read(t, &value));

write(t,&((*read(t,&curr))->valid),1);

write(t, &inserted, 1);write(t, &f, 1);

} else if (*read(t,&((*read(t, &curr))->key)) > *read(t, &key)) {

if(*read(t,&((*read(t, &curr))->left)) == 0 ) {

write(t, &((*read(t, &curr))->left), *read(t, &n) );

write(t, &inserted, 1);

} else

write(t, &curr, *read(t,&((*read(t,&curr))->left)) );

} else { if(*read(t,&((*read(t,&curr))->right)) == 0 ) {

write(t,&((*read(t, &curr))->right ), *read(t, &n) );

write(t, &inserted, 1);

} else write(t, &curr, *read(t, &((*read(t,&curr))->right)));

}

}

}

} endTransaction();}

Fig. 8. Code generated for the transaction inside the parallelInsert function

#define startTransaction() \

{ asm { xbegin }

#define endTransaction() \

asm { xvalidate \

xcommit \

} \

}

Fig. 9. Support for HTM. Definition in pseudo code, of startTransaction and
endTransaction macros in case hardware has instructions xbegin and xcommit for
the start and the end of the transaction, and xvalidate for the validation of the
transaction.

xbegin, xcommit and xvalidate (denoting the start, end and validation of
the transaction, respectively). In this case, the start and end macros would be
as shown in Figure 9. Note that endTransaction semantics require xvalidate
since [16] uses two-phase commit.

For those variables that do not need to be tracked, the HTM proposed in
[16] includes instructions imld and imst for load and store without changing
read and write sets. Figure 10 shows how the compiler would generate code for
a simple a = b + c statement, where c does not need to be tracked, for both
STM and HTM.
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4 Open Issues

In addition to the HTM implementation challenge mentioned in the previous
section, there are other issues that become important challenges when TM is
incorporated into OpenMP. Some issues are research challenges while other are
restrictions on the way OpenMP and TM can be combined.

The first issue refers to transaction nesting. Nested transactions can be sup-
ported in two different ways: closed nested or open nested. In a closed nested TM
system either all the transactions that are in a nested region commits or neither.
In comparison, in an open nested TM when an inner transaction commits its
effects are made visible for all threads in the system. The use of open nested
transactions can unleash more concurrency than closed nested ones. When an
open nested transaction commits, its write set is made visible to all other trans-
actions, so other transactions can see the modifications sooner and work with
this modified data. However open nested transactions increase the burden of the
programmer: compensating actions are needed when the outermost transaction
commits and when one of the surrounding transactions aborts. The handling of
this compensating code could be quite complex, and the programmer must have
an expert level grasp of the semantics of the code. For this reason, although
OpenMP-TM can incorporate closed-nested transactions relatively easily, open-
nested transactions are challenging because the compensating code could impact
the sequential nature of the program when it is compiled without OpenMP.

a = b + c;

(original code)

write(t, &a, *read(&b) + c);

(transformed STM code)

asm {

load r0, b

imld r1, c

add r0, r1

store a, r0

}

(transformed HTM code)

Fig. 10. Transformation of a simple statement using ii) STM or iii) HTM in pseudo
assembler code

The second issue refers to the use of I/O inside a transaction. I/O inside a
critical section is not a problem for OpenMP because such blocks are protected
and never rolled back. However, for TM the issue is different: suppose that inside
a transaction, a system call attempts to output a character to the terminal.
One solution is to execute the system call immediately; however it would be
very problematic if this transaction aborts later. Trying to “undo” the I/O by
deleting the character upon an abort would obviously lead to a very wobbly
system. In some cases, even executing the I/O operation may be difficult if
the data is buffered in HTM. A different approach to solve the I/O problem
would be to categorize I/O based on their abortive properties. By definition,
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an I/O call is undoable if its effects could be rolled back which in turn implies
that its effects are self-contained to the I/O operation only. Here, the challenge
is to allow maximum programmer expressiveness while avoiding too complex
implementations. Inevitably, programmers must be aware of certain kinds of
I/O operation that simply do not make sense to transparently perform as part
of a single atomic transaction: for instance, prompting the user for input and
then receiving and acting on the input. However note that those compensating
actions can also affect the sequential nature of the program when it is compiled
without OpenMP. We believe that a first-order approach is to forbid the I/O
operations in OpenMP-TM transactions.

Another issue is about the nesting of OpenMP constructs and transactions.
There are two cases that one needs to consider. In the first case, a transaction
might exist inside an OpenMP parallel region or worksharing construct. Note
that the transaction might be invoked from within a library call, so the pro-
grammer might not be aware of this. However, even with this added complexity,
this case is easy to handle: each thread in the team will be having a transac-
tion inside. The other case, where an OpenMP parallel or worksharing construct
appears inside the scope of a transaction, is more complicated. Note that for
this case as well, the programmer may not be aware that an OpenMP construct
exists within the transaction; this can happen if the programmer uses library
function inplemented in OpenMP. The complexity rises from the fact any of the
OpenMP threads are liable to be aborted at any time. This signifies that if one
created thread is aborted, then all the other threads must also abort unneces-
sarily due to the semantics of TM. This can be avoided using a mechanism like
close-nested transaction allowing to rollback only the conflicting thread if it is
possible to ensure that the conflict only affects this thread.

Finally, it would be interesting to include additional functionalities to the
basic transactional execution model offered by transaction. For example, we
could specify a condition; if the evaluation of the condition returns false then the
transaction is known to abort. Similarly, we could add a condition that needs
to be evaluated once a transaction is aborted; if the evaluation of the condition
returns false, it is known that a reexecution of the transaction will fail again. So
it is better no to execute it until the condition is true. These conditions could
for example include operators to check that a shared variable has been accessed
(touch(var name)).

#pragma omp transaction [retrywhen(condition)][executeif(condition)]

structured-block

5 Conclusions

In this paper we have done a first exploration of how Transactional Memory
(TM) could provide a more graceful and natural mechanism to write parallel
programs than using lock-based mechanisms. Recently there is a flurry of re-
search activity to define and design Hardware and Software Transactional Mem-
ory, and our OpenMP community should follow this activity in order to take
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benefit as soon as possible. This paper has covered a basic proposal to extend
OpenMP with transactions and identified some significant future challenges in
the OpenMP-TM tandem. However, the biggest challenge is to make the adop-
tion of Transactional Memory by the (OpenMP) programmer community as
smooth as possible through HW/SW design; effective mechanisms for support-
ing TM are crucial to fulfilling the promise of improved application performance
on future many-core CMPs.

During the preparation of this version of the paper, we realized that a paper
on a similar topic was accepted for publication [17]. However, only the abstract of
the other paper was available to us, so we were not able to make any comparisons
at this point.
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