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Abstract

Concurrency control is mostly based on locks and is therefore notoriously difficult
to use. Even though some programming languages provide high-level constructs,
these add complexity and potentially hard-to-detect bugs to the application. Trans-
actional memory is an attractive mechanism that does not have the drawbacks of
locks, however the underlying implementation is often difficult to integrate into an
existing language. In this paper we show how we have introduced transactional
semantics into Smalltalk by using the reflective facilities of the language. Our ap-
proach is based on method annotations, incremental parse tree transformations and
an optimistic commit protocol. The implementation does not depend on modifica-
tions to the virtual machine and therefore can be changed at the language level. We
report on a practical case study, benchmarks and further and on-going work.

Keywords. Transactional Memory, Concurrent Programming, Language Con-
structs and Features

1 The need for transactions

Most dynamic programming languages have inherently weak support for con-
current programming and synchronization. While such languages relieve the
programmer of the burden to allocate and free memory by using advanced
garbage collection algorithms, they do not provide similar abstractions to ease
concurrent programming [1].
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We chose to build our prototype implementation in Smalltalk, because this
dynamic language has excellent support for reflection [2] that goes beyond the
level of objects and classes and allows us to easily reify aspects of method com-
pilation. Smalltalk, and other dynamic languages such as Ruby, Python and
Scheme, provide libraries to work with concurrent processes, but only provide
little help to control and synchronize the access of shared data. Smalltalk-80
[3] offers semaphores as the only mean for synchronizing processes and guar-
anteeing mutual exclusion. The ANSI standard of Smalltalk [4] does not refer
to synchronization at all.

Only a few current Smalltalk implementations provide more sophisticated syn-
chronization support. VisualWorks Smalltalk provides a reentrant lock that
allows the same process to reenter the lock multiple times. Other processes
are blocked until the owning process leaves the critical section. Unfortunately
lock-based approaches have their drawbacks and are notoriously difficult to
use [5]:

Deadlocks. If there are cyclic dependencies between resources and processes,
applications may deadlock. This problem can be avoided by acquiring re-
sources in a fixed order, however in practice this is often difficult to achieve.

Starvation. A process that never leaves a critical section, due to a bug in
the software or an unforeseen error, will continue to hold the lock forever.
Other processes that would like to enter the critical section starve.

Priority Inversion. Usually schedulers guarantee that processes receive CPU
time according to their priority. However, if a low priority thread is within
a critical section when a high priority process would like to enter, the high
priority thread must wait.

Squeak Smalltalk [6] includes an implementation of monitors [7], a common
approach to synchronize the use of shared data among different processes. In
contrast to mutual exclusion with reentrant locks, with monitors, a process can
wait inside its critical section for other resources while temporarily releasing
the monitor. Although this avoids deadlock situations, the use of monitors
is difficult and often requires additional code to specify guard conditions [8].
Moreover, if the process is preempted while holding the monitor, everybody
else is blocked. Beginners are often overwhelmed by the complexity of using
monitors as Squeak does not offer method synchronization as found in Java.

Transactional memory [9,10] provides a convenient way to access shared mem-
ory by concurrent processes, without the pitfalls of locks and the complexity
of monitors. Transactional memory allows developers to declare that certain
parts of the code should run atomically: this means the code is either ex-
ecuted as a whole or has no effect. Moreover transactions run in isolation,
which means they do not affect and are not affected by changes going on in
the system at the same time. Upon commit the changes of a transaction are
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applied atomically and become visible to other processes. Optimistic transac-
tions do not lock anything, but rather conflicts are detected upon commit and
either lead to an abort or retry of the transaction.

Most relational and object databases available in Smalltalk provide database
transactions following the ACID properties: Atomicity, consistency, isolation,
and durability. However, they all provide this functionality for persistent ob-
jects only, not as a general construct for concurrent programming. These im-
plementations often rely on external implementations of transactional seman-
tics. GemStone Smalltalk [11] is a commercially available object database,
that directly runs Smalltalk code. As such, GemStone provides transactional
semantics at the VM level. Guerraoui et al. [12] developed GARF, a Smalltalk
framework for distributed shared object environments. Their focus is not on
local concurrency control, but on distributed object synchronization and mes-
sage passing. They state that “A transactional mechanism should however be
integrated within group communication to support multi-server request atom-
icity.” [13]. Jean-Pierre Briot proposed Actalk [14], an environment where Ac-
tors communicate concurrently with asynchronous message passing. The use
of an Actor model is intrusive. It implies a shift of the programming paradigm
to one where there is no global state and therefore no safety issues.

In this paper we present an implementation of transactions in Squeak based
on parse-tree transformation. In this way most code is free of concurrency
annotations, and transactional code is automatically generated only in the
contexts where it is actually needed.

The specific contributions of this paper are:

• The implementation of transactional semantics in a dynamic language, using
the reflective capabilities of the language without any changes to the low-
level VM implementation.
• A mechanism to specify context-dependent code using method annotations,

for example to intercept the evaluation of primitive methods.
• Incremental, on-the-fly parse tree transformation for different execution con-

texts.
• Efficient, context-dependent code execution using the execution mechanisms

of a standard VM.

This article extends our previous work [15] as follows: (1) we describe how
our approach applies to dynamically typed languages in general, not just the
implementation language of our prototype, (2) we devote a section to related
work, (3) we explain how nested transactions are handled, and (4) we enhance
the validation section with results of additional benchmarks.

Outline. Section 2 presents some basic usage patterns of our implementa-
tion. Section 3 shows the implementation of transactions in Squeak without
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modifying the underlying VM. Section 4 validates our approach by running a
collection of benchmarks and by applying the concept to a real world applica-
tion. Section 5 compares our approach with other approaches that have been
taken to integrate transactional memory in programming languages. Section 6
concludes this article with some remarks about ongoing and future work.

2 Programming with transactions

Transactions offer an intuitively simple mechanism for synchronization con-
current actions. They do not require users to declare specific locks or guard
conditions that have to be fulfilled. Moreover transactions can be used without
prior knowledge of the specific objects that might be modified. Transactions
are global, yet multiple transactions can run in parallel. The commit protocol
checks for conflicts and makes the changes visible to other processes atomi-
cally.

tree := BTree new.
lock := Semaphore forMutualExclusion.

” writing ”
lock critical: [ tree at: #a put: 1 ].

” reading ”
lock critical: [ tree at: #a ].

tree := BTree new.

” writing ”
[ tree at: #a put: 1 ] atomic.

” reading ”
tree at: #a.

Fig. 1. Lock-based vs. Transactional accesses of a shared data structure.

On the left side of Figure 1 we see the traditional way of using a semaphore
to ensure mutual exclusion on a tree data structure. The key problem is that
all read and write accesses to the tree must be guarded using the same lock to
guarantee safety. A thread-safe tree must be fully protected in all of its public
methods. Furthermore, we cannot easily have a second, unprotected interface
to the same tree for use in a single-threaded context.

On the right side of Figure 1 we present the code that is needed to safely
access the collection using a transaction: the write access is put into a block
that tells the Smalltalk environment to execute its body within a transaction.
The read access can happen without further concurrency control. As long
as all write accesses occur within the context of a transaction, read accesses
are guaranteed to be safe. The optimistic commit protocol of the transaction
guarantees safety by (i) ensuring that no write conflicts have occurred with
respect to the previous saved state, and (ii) atomically updating the global
object state.

To make the code using transactions as simple as possible we provide two
methods for running code as part of a transaction. These methods are exten-
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sions to the standard Smalltalk library, and do not affect the language syntax
or runtime.

• sending #atomic causes the receiving block closure to run as a new transac-
tion. Upon termination of the block, any changes are committed atomically.
If a conflict is detected, all modifications are cancelled and a commit conflict
exception is raised.
• sending #atomicIfConflict: causes the receiving block to run as a new transac-

tion. Instead of raising an exception if a conflict occurs, the block argument
is evaluated. This enables developers to take a specific action, such as retry-
ing the transaction or exploring the conflicting changes.

Further convenience methods can easily be built out of these two methods,
for example a method to retry a transaction up to fixed number of times, or
only to enter a transaction if a certain condition holds.

3 Inside transactions

We introduce transactions to Smalltalk without modifying the underlying Vir-
tual Machine (VM). Our approach is based on earlier proposals in which
source code is automatically and transparently transformed to access opti-
mistic transactional object memory, rather than directly accessing objects
[16,17]. The key advantage of this approach is that most source code can
be written without embedding any explicit concurrency control statements.
Transactional code is automatically generated where it is needed. Furthermore,
in contrast to the earlier approaches, we generate the needed transactional
code dynamically where and when it is needed, and caching the generating
code for future invocations.

In a nutshell, our approach works as follows:

• Every method in the system may be compiled to two versions: one to be
executed in the normal execution context, and the other within a transac-
tional context. Contrary to the other approaches we do this incrementally
and on the fly using a compiler extension.
• State access in transactional methods is automatically transformed to use

an indirection through the transaction context.
• We use method annotations to control the automatic code transformation

or to provide different code. Unlike other implementations of transactional
memory, we take into account the use of primitives, exception handling and
file-system access by providing alternative code to be used in a transactional
context.
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• When entering a transactional context we record the transaction (an object)
in the current process (also an object).
• During a transaction, snapshots of all touched objects are taken. Each snap-

shot consists of two copies of the original object: one that reflects the initial
state and one that is altered during the transaction. For efficiency rea-
sons immutable objects are excluded from snapshots. This strategy gives
us repeatable reads, however since snapshots are made at different times
a transaction might read inconsistent state and will abort when trying to
commit the changes.
• Upon commit we check for conflicts by atomically comparing the state of

the object at the beginning of the transaction to the current version in
memory. If no conflict is detected, the changes are committed. In case of a
conflict the system is left in the state as it was before the transaction and an
exception is raised that provides information for further reflection, namely
all the changes, the conflicting changes and the transaction object itself.

The key novelties of our approach lie in the use of annotations and reflection
to lazily generate the transactional versions of methods, and the ability to
provide alternative code to use in place of primitives during transactions.

In the following two sections we describe (1) the compilation to transactional
code, and (2) the implementation of the transactional object model.

3.1 Compiling to transactional code

We transform methods by changing read and write accesses to make use of
transactional object memory. Methods are transformed using the behavioral
reflection framework Geppetto [18] which is based on sub-method reflection
[19], allowing us to declaratively reify and transform an abstract syntax tree
(AST) before compiling to byte-code.

 

selector
parseTree

CompiledMethod

selector
*

methods

 

/selector
/parseTree

AtomicMethod

atomicMethod
1

method

1

 

name
superclass
subclasses
instanceVariables

Class

Fig. 2. Static Compilation Model

Whenever the source code of a method is compiled, as seen in Figure 2, our
compiler plugin creates an additional compiled method that implements the
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behaviour to be used within the context of a transaction. The following basic
transformations are performed:

(1) Reading from instance variables and global variables is transformed to
send the messages #atomicInstVarAt: or #atomicValue respectively. This
allows us to implement these two messages to read the current value from
within a transactional context instead of directly accessing the variables
within the receiving object.

(2) Writing to instance and global variables is transformed to send the mes-
sages #atomicInstVarAt:put: or #atomicValue: respectively. Again this al-
lows us to intercept state access and handle it from within the current
transaction.

(3) Sending a message from inside a transactional method will actually send
a different message name, namely we prepend # atomic to the original
selector name.

BTree�at: aKey put: anObject
| leaf |
leaf := root leafForKey: aKey.

leaf insertKey: aKey value: anObject.
root := leaf root.
ˆ anObject

BTree� atomic at: aKey put: anObject
| leaf |
leaf := (self atomicInstVarAt: 1)

atomic leafForKey: aKey.
leaf atomic insertKey: aKey value: anObject.
self atomicInstVarAt: 1 put: leaf atomic root.
ˆ anObject

Fig. 3. Original vs. transformed code.

Having applied these three transformations to the code, the two compiled
methods are stored in the method dictionary of their owning class. To tell
the two methods apart, the atomic version of the method has # atomic

prepended to its name. These methods are hidden, and are only called from
generated code within an atomic context. Transactional methods are filtered
from the code editors, so they are not visible to the developer and development
tools but only to the VM. On the left side of Figure 3 we present the code of
a method as the developer implemented it, whereas on the right side we show
the same method as it is compiled for the atomic context.

A transaction is created by sending the message #atomic to a block containing
normal (non-transactional) Smalltalk code. The code within such a block is
statically transformed to evaluate within a transactional context. We have
seen an introductory example for such a call in Figure 1. Methods that send
#atomic are special, because the code outside this block is compiled normally,
whereas we apply the transformations as described above to the inside of the
block closure.

Squeak includes a few primitive methods that access and modify state. The
most prominent of these are #at: and #at:put: to access the elements of
variable-sized objects. Moreover there are also some key collection and stream
methods that are implemented within the VM for efficiency. As primitive op-
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In presence of annotation do transform take source code from

(no annotation, default) yes method body

<atomic:> yes argument

<atomicDoNotTransform> no method body

<atomicDoNotTransform:> no argument

Fig. 4. Method annotations are used to control how the compiler transforms source
code for the transactional context.

erations are written in C and statically compiled into the VM, we cannot use
Geppetto to modify state-access. The only possibility to reify these methods
is to replace them with non-primitive methods.

We make use of annotations to further control the way in which transactional
code may be generated. Figure 4 summarizes the effect of the following anno-
tations:

<atomicDoNotTransform> avoids doing any code transformation. This means
the normal and the transactional method will be the same, so no transforma-
tion is needed. In the current implementation this is mostly used for exception
handing, as this code should continue to work through the boundaries of trans-
actions. It is also used for infrastructural code, as shown in the example below.

Transaction�signalConflict
”Signal a conflict within a transaction.”

<atomicDoNotTransform>
CommitConflictException new

transaction: self;
signal

<atomic:> uses the method identified as its argument as the source for the
code transformation. We use this for primitives that are implemented for ef-
ficiency reasons only. For example the method #replaceFrom:to:with:startingAt:

in the class Array calls the primitive 105 and is used to copy elements from one
collection to another one. With the method annotation we tell the compiler
that it should instead transform and install the method #atomicReplaceFrom:-
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to:with:startingAt: which has the same behavior but is implemented in Smalltalk
and can therefore be transformed automatically.

Array�replaceFrom: start to: stop with: repl startingAt: repStart
”Primitive. This destructively replaces elements from start to stop in the
receiver starting at index, repStart, in the collection, repl.”

<primitive: 105>
<atomic: #atomicReplaceFrom:to:with:startingAt:>
super replaceFrom: start to: stop with: repl startingAt: repStart

Array�atomicReplaceFrom: start to: stop with: repl startingAt: repStart
| index repOff |
repOff := repStart - start.
index := start - 1.
[ (index := index + 1) <= stop ]

whileTrue: [ self at: index put: (repl at: repOff + index) ]

<atomicDoNotTransform:> uses the method identified as its argument as un-
transformed atomic code. We use this mainly in infrastructural code to dis-
patch primitive requests that access state to the working copy of the receiver.
For example indexed slot access is handled through primitives in Squeak. The
method #at: in the class Object calls the primitive 60 to fetch the contents of
an indexed element. The method annotation tells the compiler to use #atom-

icAt: instead. This method delegates the request to the current working copy
of the object.

Object�at: index
”Primitive. Assumes receiver has indexed slots. Answer the value of an indexable
element in the receiver. Fail if the argument index is not an Integer or is out
of bounds.”

<primitive: 60>
<atomicDoNotTransform: #atomicAt:>
self primitiveFail

Object�atomicAt: index
ˆ self workingCopy at: index’

Compiling all the methods of the system is costly both in time and memory.
Most methods available in the system are never called from within a transac-
tional context and therefore do not need to be translated. The dynamic nature
of Smalltalk makes it difficult to determine statically the required set of trans-
actional methods, however it allows us to compile methods lazily when they
are about to be executed. This produces a slowdown the first time a method is
executed within a transactional context, but subsequent invocations are dis-
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patched using the normal mechanisms of the VM and therefore run at full
speed.

Most transactional systems prohibit I/O or other side effects that cannot
be undone (system calls, file system access) during transactions [20,21]. Our
approach allows replacement code to be specified for use within a transactional
context. For example, when deleting a file the action is recorded with a custom
change object and atomically applied together with the other changes upon
successfully committing the transaction:

FileDirectory�deleteFile: aString
<primitive: ’primitiveFileDelete’ module: ’FilePlugin’>
<atomicDoNotTransform: #atomicDeleteFile:>

FileDirectory�atomicDeleteFile: aString
Processor activeProcess currentTransaction

addChange: (CustomChange onApply: [ self deleteFile: aString ])

Our model also allows exceptions to be thrown and handled inside the trans-
action boundaries. An exception that leaves the boundaries of a transaction
causes that transaction to abort and the exception to be re-raised in the non-
transactional context.

3.2 Transactions at runtime

When entering a transaction we create a new transaction object and store it
in an instance variable of the current process, as depicted in Figure 5. When
leaving a transaction we set the current transaction reference back to nil. In
this way we can efficiently determine the current transaction from anywhere
in our application. Moreover we capture an escape continuation upon entry,
to be able to abort the current transaction by doing a non-local jump to the
calling context.

apply
hasChanged
hasConflict

 
Change

object

*
changes

Process 0..1
currentTransaction

do: aBlock
retry: aBlock
checkpoint
abort: anObject

escapeContext
Transaction

 

previousCopy
workingCopy

ObjectChange

 

applyBlock
conflictTestBlock

CustomChange

*

0..1parent

Fig. 5. Dynamic model of transactions at runtime
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After having entered a transactional context, all the executed code is in its
transformed form. This means that state access goes through special accessor
methods and all message sends are redirected to their transactional counter-
parts. The execution of transactional code consequently works the same as
normal code execution: it shares the same object memory but it uses a differ-
ent access strategy to access state.

a

b

c

a

b

c

a' a''

b' b''

(1) (2)

a

b

c

a' a''

b' b''

(3)

a

c

(4)

Transaction

Change Object a:

Change Object b:

b
eg

in

co
m
m
it

Fig. 6. Removing node b from a linked list. (1) The list before the transaction starts.
(2) As the list is traversed, change objects for a and b are created, each containing a
working copy a′ and b′ and a previous copy a′′ and b′′. (3) As b is removed from the
list, the reference from a′ to b is changed to point to c. At this point the change is
not visible from outside the transaction, the original object a is left unchanged. (4)
Upon commit, the previous copies a′′ and b′′ are compared with a and b to detect
conflicts. The changes to a are copied from a′ to a. As b isn’t referenced anymore,
it will eventually be garbage collected.

We adopt a conventional optimistic transaction protocol [8]. Whenever an ob-
ject is touched within the context of a transaction for the first time (read or
written), the transaction instantiates a new change object ObjectChange. This
change object contains references to two copies of the object. The previousCopy

contains an immutable copy for detecting conflicts. The workingCopy is a mu-
table copy of the object being used during the transaction. The change object
knows if it has a conflict (the original object is not the same as the previous
copy) and if it has changed (original object is not the same as the working
copy). Both the previousCopy and the workingCopy are shallow copies, this means
that the copies reference the same values as the original. See Figure 6 for a
practical example clarifying the steps above.

We also provide a custom change object CustomChange that is used to record
irreversible actions that should only be applied during the atomic commit
phase if there are conflicts. We have seen the use of such a custom change in
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Section 3.1, where we presented a possible solution for file-deletion within a
transactional context.

At the end of the transaction we have to acquire a form of “global lock” on
the object memory to be able to check for conflicts and commit the changes.
We use #valueUnpreemptively implemented on block closures to ensure that no
other process is running at the same time. As a first step we check if any
of the changes we gathered during the transaction has a conflict and raise
an exception if this is the case. Otherwise we copy the changes from the
working copies to the original objects. The time required to hold the lock and
to validate and apply the changes linearly depends on the number of objects
involved in the transaction.

These are some important properties of our transactional model [22]:

Repeatable read. Reads are repeatable. Since data that is read within a
transaction is copied, repeated reads from within a transaction are consis-
tent. Changes outside the transaction are not visible after a first read.

Optimistic write. Our transactional memory writes optimistically [23]. The
transaction boundaries are controlled by working on copies of the objects.

Lazy version management. We create copies of objects that are read and
written within transactions. This requires an extra redirection for accessing
the state and a considerable amount of memory and processing time for
copying the involved objects. Aborting a transaction is cheap as no state
has to be restored.

Lazy conflict detection. Assuming that conflicts are rare, conflicts are
checked before committing data. This check happens atomically together
with the commit.

Lazy conflict resolution. Conflicts are resolved by dropping (or retrying)
the transaction that produces the conflict when committing. The changes
are eventually collected by the garbage collector.

Real object references. Objects do not change their representation within
a transaction — they are neither wrapped nor replaced with different ob-
jects. Identity comparisons work as one would expect from non-transactional
code. The only thing that changes is their behavior of objects, namely access
to state is reified trough the current transaction context (see Figure 6).

Nested transactions. Every transaction references its parent transaction or
nil, if this is the outermost transaction. Upon commit of a nested transaction,
the changes are tested for conflicts and then added to the change-list of the
outer transaction. This enables opacity of library calls, even if these libraries
themselves use transactional semantics.
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4 Validation

First we assess the cost of transactions by means of benchmarks that compare
the running time of actions performed with and without transactions. Then
we compare the cost of thread-safety realized with semaphores to that of our
implementation with transactional memory.

4.1 Micro benchmarks

We performed several micro benchmarks to establish the runtime cost of using
our implementation of transactional memory for Smalltalk. Figure 7 shows
the times and ratios of performing basic actions, such as invoking a method
or accessing state. t1 is the time required to perform the action 107 times
outside a transactional context, and t2 is the time required to perform the
same action within a transactional context. The benchmarks were performed
on an Apple MacBook Pro, 2.16 GHz Intel Core Duo in Squeak 3.9. The
required transactional methods were compiled in advance.

Operation t1 t2 ratio

Activation 2.75 85.27 31.03

Method invocation 1.98 1.98 1.00

Special method invocation 1.14 2.00 1.75

Instance variable read 1.03 20.72 20.08

Instance variable write 1.13 21.04 18.60

Indexed variable read 1.11 19.92 17.93

Indexed variable write 1.21 20.22 16.75

Global variable read 1.03 20.89 20.25

Global variable write 1.15 21.72 18.92

Fig. 7. t1: time in seconds for 107 runs in a non-transactional context, t2: time in
seconds for 107 runs in a transactional context, ratio: t2/t1, the penalty when used
in a transactional context.

The activation time is the time required to enter a transaction as compared to
the time required to evaluate a block closure. The ratio indicates that entering
a transaction is 31 times slower than entering a block closure. This results from
the fact that entering a transactions requires several objects to be instantiated
to track the changes of the transaction. Moreover the transaction is recorded

13



in the current process and an escape context must be captured to be able to
abort a running transaction.

Normal method invocation does not show any speed penalty. In all the bench-
marks we assume that the transactional methods are already compiled. For
some common selectors, such as #+, #*, #=, #size, #at:put:, #new, #class,
etc., Squeak uses special byte codes to make the invocation about twice as fast
as a normal message send. In a transactional context these byte codes cannot
be used anymore and have to be replaced by normal message sends, resulting
in a penalty for special method invocations.

State access within a transactional context is fairly expensive. For instance,
indexed and global variable reads and writes produce very similar results: in
the current implementation these are about 20 times slower than their non-
transactional counterparts. As we have seen in Section 3.2, accessing state
of an object requires to lookup the current transaction, the change object
and to dispatch the state access to its working copy. This whole procedure
involves several message sends that cannot be easily optimized in Smalltalk.
Further improvements are possible by writing primitives (or introducing new
byte-codes) that can more efficiently dispatch that kind of request.

Here we have been comparing the cost of thread-safe actions to unsafe actions.
A fairer comparison would be that between thread-safe actions implemented
with semaphores and thread-safe transactions. We discuss this in the following
section.

4.2 Real world example using transactional memory

We applied our transactional model to Pier, a web-based content management
system [24, Chapter 3]. Pier uses a tightly-connected graph of objects to rep-
resent pages and their content. Edit operations on pages use the Command
design pattern. Many operations, such as adding or removing a page, require
the system to walk through the whole object graph to invalidate links. We
have two lock-based approaches for Pier: one acquiring a global lock while
executing the command, and another one using a more fine-grained locking
on the level of individual pages. While the first approach is much simpler in
implementation, it potentially holds the lock for a longer time and blocks all
other commands, even though edit operations rarely conflict with each other.

Before executing a command Pier checks for conflicts on the current page,
to avoid changes of other users from being accidently overridden. It does not
check for conflicts that could be caused by the need to update links in other
parts of the object model. Pier normally does not lock read operations, such as
browsing the web site, as they are very common and would introduce a major
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bottleneck. In rare cases users could therefore encounter an inconsistent state
of a particular page.

0.0!

100.0!

200.0!

300.0!

400.0!

500.0!

600.0!

700.0!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90! 100!

non-synchronized! fine-grained locking! global-locking! transactional!

n

t [ms]

Fig. 8. Average execution time for non-synchronized, fine-grained locking, glob-
al-locking and transactional execution time t to complete n = 1..100 concurrent
edit operations in Pier.

To assess the effectiveness of transactional memory for Smalltalk, we remove
the global lock in Pier and wrap the execution of the command within a
transactional context. This means that edit commands can now be evaluated
concurrently while still ensuring consistency. Moreover we could remove the
manual checks for conflicts as these are now detected and handled by the
transaction in a complete manner. Page views are now guaranteed to see a
consistent state of the web site, as all the changes are applied atomically
through a transaction.

Figure 8 shows the average execution time of an edit command that changes
the contents of a single page. Using a script we simulated n = 1..100 concurrent
edit operations on different pages, so no conflicts could occur. Interestingly
the overhead is consistently just over 100 ms for transactions over locks. The
transactions are short, and involve only few objects and very little state access.
Memory requirements are moderate: the edit operation touches 39 objects,
for each of which the transaction requires 2 copies to track changes. In this
particular use case, a single transaction consumes 2556 bytes of additional
memory.

We believe that the transactional approach would be considerably faster than
the lock-based one, if the Squeak VM would exploit multiple CPUs to process
concurrent requests.
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5 Related work

The use of software transactional memory is simple and straightforward. Im-
plementors of transactional memory however have chosen a variety of different
strategies, each with its own advantages and disadvantages:

Harris et al. [5] propose an implementation of software-based transactions in
Java. They make use of a modified compiler and VM. A secondary method
table is added to every class, holding the transformed code to be used within a
transaction. Similar to our approach, transactional code is only generated on
demand. The implementation keeps ownership tables and version numbers of
objects, with the price of changing the internal memory management of Java.
Conflicts are detected before a non-blocking commit phase. The implemen-
tation does not allow native methods to be executed within a transactional
context, with the exception of a few special cases handled explicitly.

Hindman et al. [16] implemented atomicity in Java that neither modifies the
compiler nor the VM. Their implementation is based on a source-to-source
translation that happens as a pre-compilation step before the normal Java
compilation. All instances are extended with an extra field holding the cur-
rent owner of the object. Read and write accesses are rewritten to check the
ownership and to acquire an object lock if necessary. Special measures are
taken to avoid deadlocks. The drawback of this approach is that all sources
must be available at compile time and that certain classes cannot be easily
changed as their definition is assumed by the VM.

Scheme 48 [25] provides proposals for optimistic transactional semantics. Dur-
ing transactions a thread references a log of provisional read and write ac-
cesses. As there is no automatic code transformation, developers use special
provisional accessor primitives to read and write state during a transaction.
Writes are delayed until all read and write accesses are checked for consis-
tency upon commit. Calling library code during a transaction is not possible.
Kimball et al. [26] avoid the shortcomings of this approach by swapping out
the bytecode dispatch table during the transaction. Write access is logged and
directly performed on the involved objects. If the thread is preempted, the
transaction is aborted, changes are undone and the scheduler is advised to
give the transaction a longer uninterrupted time slice the next time. This ap-
proach is efficient, however it only works well for relatively short transactions
and systems that use one operating system thread only.

16



6 Conclusion and future work

Smalltalk VMs traditionally offer poor support for concurrency control. Ex-
isting Smalltalk dialects provide only lock-based concurrency control, with
the exception of GemStone Smalltalk, which provides transactions only for
database code. In this paper we have presented an implementation of opti-
mistic transactions for Squeak Smalltalk without modifying the underlying
VM.

Our prototype implementation demonstrates that any Smalltalk can profit
from having a transactional model. The implementation can be potentially
ported to any of today’s available Smalltalk platforms, as it is purely based
on parse tree transformation of source code. The fact that the whole imple-
mentation is written in Smalltalk makes it an ideal platform to experiment
with different transaction policies and implementation strategies. Changes to
the transactional runtime system and transactional code can be applied and
compiled on the fly, so there is no need to restart or rebuild the system.

Our approach works well with external libraries. New code that is loaded
into the Smalltalk environment is transformed lazily within the context of a
transaction. Primitive methods, filesystem I/O and exceptions work well to-
gether with transactions, as special transformation rules can be specified using
method annotations. Contrary to other approaches our implementation inte-
grates well with garbage collection, as the transactions are fully implemented
in the object system of Smalltalk.

State access within a transaction is about 20 times slower than usual, which
is a big penalty to pay. The integration of transactions with the object model
at the VM level would certainly lead to much better performance, however we
would also lose the flexibility to be able to quickly change the semantics of
the transactional mechanisms. Code not using transactions continues to work
exactly as before. The traditional mechanisms used for concurrency control
can be even mixed with transactions.

As future work we would like to investigate how to further improve the speed
of our model. We would like to investigate other areas of applicability, such
as atomic loading of source code. In Smalltalk this is traditionally done in
an incremental manner and poses certain problems, for example when the
application is supposed to continue running while loading.

Furthermore we would like to see how to apply our approach to other dynamic
programming languages, such as Python or Ruby. We expect the implementa-
tion in Ruby to be much more difficult than in Smalltalk, as this language has
major parts of its library implemented in C. The lack of support to transform
source code using high-level AST representations can be avoided in Python
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by using PyPy, an implementation of Python in itself [27]. We expect it to
be possible to introduce transactional semantics using the PyPy translator
toolchain in a similar way, as we did for Smalltalk.

Our approach to implementing optimistic transactions in Smalltalk can be
seen as a special case of context-oriented programming [28], a programming
paradigm that supports context-dependent behaviour. Transactional behaviour
is automatically dispatched whenever we enter a transactional context. We
believe that this approach can be extended more generally to support other
forms of context-dependent concurrency control: instead of littering code with
explicit calls to specific concurrency mechanisms, one should be able to sim-
ply annotate code with the concurrency properties one would like to ensure,
and depending on the runtime context the appropriate behaviour will be au-
tomatically selected. We also intend to explore more efficient approaches to
implementing contextual behaviour, in particular the use of scoped reflection
[29] to control the temporal and spatial context in which reflective behaviour
is active.
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