
Transactional Memory Support
for Scalable and Transparent

Parallelization of Multiplayer Games

Daniel Lupei, Bogdan Simion
Don Pinto, Mihai Burcea

Matthew Misler, William Krick
Cristiana Amza

University of Toronto

2

Multiplayer games

• More than
100k
concurrent
players

Game server is the bottleneck

3

State-of-the-art

• Previous parallelizations of Quake
– Lock-based [Abdelkhalek et. al ‘04] shows that

false sharing is a challenge
– Zyulkyarov et. al ’09
– Gajinov et. al ’09

4

Game interactions

Action bounding box

Game map

5

Collision detection

Action bounding box

Game map

6

Conflicting player actions
Game map

T1

T2

Need for
synchronization

7

Player actions
Compound action:

- move, charge

weapon and shoot

healthpack

ammunition
Requirement:

consistency and atomicity
of whole game action

8

Conservative locking

Subaction 1

Subaction 2

Subaction 3

Lock 1, Lock 2, Lock3

Unlock 1,2,3

G
A

M
E

A
C

TI
O

N

Conservatively acquire
all locks at beginning

of action

Problem 1:
Unnecessarily long

conflict duration

9

Conservative locking
Conservative estimate of

impact range at
beginning of action

Problem 2:
Unnecessarily high

number of locked objects

Estimated impact radius

10

Fine-grained locking alternative?

Subaction 1

Subaction 2

Subaction 3

Lock 1

Unlock 1

Lock 2

Unlock 2

Lock 3

Unlock 3

G
A

M
E

A
C

TI
O

N Not possible !

Problem:
- No atomicity for

whole action

11

Fine-grained locking alternative?

Subaction 1

Subaction 2

Subaction 3

Lock 1

Lock 2

Lock 3

Unlock 1, 2, 3

G
A

M
E

A
C

TI
O

N Not possible !

Problem:
- Deadlocks

12

Software Transactional Memory

• Alternative parallelization paradigm
– Implement game actions as transactions
– Track accesses to shared and private data
– Conflict detection and resolution

• Automatic consistency and atomicity
– Transaction commits if no conflict
– Transaction rolls back if conflict occurs

13

STM - Synchronization

Subaction 1

Subaction 2

Subaction 3

BEGIN Transaction

COMMIT Transaction

G
A

M
E

A
C

TI
O

N

Problems solved:

- Deadlocks
- Atomicity

Handled automatically

14

STM - Synchronization

Estimated impact radius

15

STM - Synchronization
Collision detection

optimized:

- split action into subactions

- perform collision detection
gradually for each subaction

16

Transactional Memory vs. Locks

• Advantages of STM
– Simpler programming task
– Transparently ensures correct execution

(deadlock problems and atomicity)

• Disadvantages
– Software (STM) access tracking overheads

Never before shown to be competitive with
lock synchronization for real applications

17

Contributions

• Case study of parallelization for games
– synthetic version of Quake (SynQuake)

• We compare 2 approaches:
– lock-based and STM parallelization

• We showcase the first application where
STM outperforms locks ☺

18

Outline

• Application environment: SynQuake game
– Data structures, server architecture

• Parallelization issues
– False sharing
– Load balancing (true sharing)

• Experimental results

19

Environment: SynQuake game

• Same as Quake:
– Gameplay

• entities
• interactions

– Data structures
– Server design

20

Environment: SynQuake game

• Different from Quake
– 2D maps
– World physics

• Facilitates workload
generation
– Game map
– Bots
– Quests

21

Game map representation

• Fast retrieval
of game objects

• Quake spatial
data structure:
Areanode Tree

22

Game map Areanode tree

Root node

Areanode tree

23

A B

Game map Areanode tree

A B

Areanode tree

24

A1

A2

B1

B2

A B

A1 A2 B1 B2

Game map Areanode tree

Areanode tree

25

Areanode tree

A1 A2 B1 B2

A B

Game map Areanode tree

A1

A2

B1

B2

26

Spawn threads

Receive &
Process
Requests

1

2

3

Server fram
e

Client
requests

Server frame

Barrier

Barrier

Barrier

Barrier

Admin
(single
thread)

Form &
Send
Replies

Client
updates

Parallelization:
request processing

27

Outline

• Application environment: SynQuake game
• Parallelization issues

– False sharing
– Load balancing

• Experimental results

28

Action bounding box

Move range

Shoot range

29

False sharing

Action bounding box with TM

Action bounding box with locks

Move range

Shoot range

30

Synchronization algorithm: Locks

Top-view of worldAreanode tree

Lock corresponding leaves

Overlapping
regions

Leaf locking: True Sharing

31

Synchronization algorithm: Locks

Object
lists

Objects overlap 2 regions

Non-Overlapping
regions

Parent node locking: False Sharing

32

Outline

• Application environment: SynQuake game
• Parallelization issues

– False sharing
– Load balancing

• Experimental results

33

Load balancing tradeoff

Good load distribution

High synchronization

Bad load distribution

Low synchronization

Cross-border conflicts (true sharing) => synchronization

34

Locality-aware load balancing

• Dynamically detect player hotspots and
adjust workload assignments

• Compromise between load balancing and
reducing synchronization

35

Dynamic locality-aware LB

Game map Graph representation

36

Dynamic locality-aware LB

Game map Graph representation

T0 T1

T2 T3

37

Experimental results

• Test scenarios: 1 – 8 quests, short/long
range actions

• Performance comparison
– Locks vs. STM scaling and performance
– Influence of load balancing on scaling

• In the paper:
– Varying the access tracking granularity for STM

38

Quest scenario: high contention

128

256

384

640

768

896

1024

512

0 128 256 384 640 768 896 1024512

- Quest 1

X

Y

39

Quest scenario: medium contention

- Quest 3

128

256

384

640

768

896

1024

512

0 128 256 384 640 768 896 1024512

- Quest 4

X

Y

- Quest 1 - Quest 2

40

Scalability 8 core machine

0 1 2 4 83 5 6 7

1

2

3

4

5

Threads

medium contention
high contention

low contention

N
or

m
al

iz
ed

 s
ca

lin
g

fa
ct

or

Locks

STM scales better in all 3 contention scenarios

1 2 4 83 5 6 7
Threads

STM

41

Processing times Medium
contention

42

Baseline load balancing policies
Round-robinY

256

768

1024

512

0 256 768 1024512
X

- Thread 3 - Thread 4- Thread 1 - Thread 2

Spread

256

768

1024

512

0 256 768 1024512

Y

43

Load balancing

0 1 2 4 83 5 6 7

1

2

3

4

5

N
or

m
al

iz
ed

 s
ca

lin
g

fa
ct

or

locality-aware
spread
round robin

Locks

STM
locality-aware
spread
round robin

Threads

Medium contention
Long range actions

44

Conclusions
• First application where STM outperforms

locks:
– Overall performance of STM is better at 2,4,8

threads in all scenarios

• STM eliminates false sharing through on-
the-fly collision detection
– Unlocks the potential of using locality-aware

load balancing to reduce true sharing

45

SynQuake vs. Quake

• SynQuake - thorough evaluation of tradeoffs
• Quake

– More complex graphics
– More world physics computation

• More physics computation STM overhead
becomes negligible

• Performance results expected to hold for
complex 3D games

46

Thank you !

47

STM: access tracking granularity

48

STM - Overheads

49

Processing times

50

Load balancing
- low false sharing -

51

LibTM

• LibTM: goal of providing high flexibility
– Concurrency control
– Access tracking granularity

• Widespread reliability problems among
existing TM systems available at the time
– e.g. Memory management limitations
– Dragojevic ’08 – “Dividing transactional memories

by zero” – DSTM2, RSTM, TL2, TinySTM

52

LibTM statistics
• Locality-aware load balancing
• Over 2 million transactions

