Transactional Patterns for Reliable Web Services

Compositions
- - -* . . -
Sami Bhiri Claude Godart Olivier Perrin
DERI LORIA-INRIA LORIA-INRIA
National University of Ireland BP 239, F-54506 BP 239, F-54506
IDA Business Park, Galway, Vandoeuvre-lés-Nancy Cedex, Vandceuvre-lés-Nancy Cedex,
Ireland France France
sami.bhiri@deri.org godart@Iloria.fr operrin@Ioria.fr
ABSTRACT 1. INTRODUCTION

Reliability is one of the main challenge that encounter Web services Web services approach is extending the Web from an informa-
compositions. Due to the inherent autonomy and heterogeneity of tion support to a B2B middelware. One of the main concept that
Web services it is difficult to predict the behavior of the overall offers this technology is the ability to define a new composite ser-
composite service. vice using existing services. In this paper, we are interested in how

Current related technologies are unable to resolve this problemto ensure reliable Web services compositions. By reliable compo-
efficiently. These technologies rely on two existing strong approa- Sition we mean a composition where all its executions are correct
ches: transactional processing and workflow systems. In one hand(from a business point of view). An execution is correct if it reach
transactional processing ensures reliability. However, they are tooits objective or fails according to the designers requirements. Due
rigid to support process based applications like composite Web ser-to the inherent autonomy and heterogeneity of Web service it is
vices. On the other hand, workflow systems focus mainly on coor- difficult to predict the overall behavior of a composite service.
dination and organizational aspects and ignore reliability issues. Current related technologies are unable to resolve this problem

In this paper we propose a new solution that combines the busi- efficiently. These technologies rely on two existing strong approa-
ness process adequacy of workflow systems and the reliability of ches: transactional processing and workflow systems. Transac-
transactional processing. We introduce the concept of transactionaltional processing aim to ensure correct execution of a set of opera-
patterns to ensure reliable composite services. A transactional pat1tions encapsulated inside a treatment unit called transaction. Work-
tern can be seen as a convergence concept between workflow patflow systems deal with coordination and organizational aspect of
terns and advanced transactional models. We show how we usebusiness processes. Taken separately, these two technologies are
it to define composite services and how we ensure their reliability unable to ensure reliable Web services compositions.

according to the designers specific needs. In one hand, Advanced Transaction Models (ATM) [5], although
powerful and providing a nice theoretical framework, are too data-
Categories and Subject Descriptors base-cer_wtric, Iinjit_ing thgir possibilitie; and scope [2] i_n this context
(e.g. their inflexibility to incorporate different transactional seman-
H.3.5 [Information Storage and Retrieval]: Online Information tics as well as different behavioral patterns into the same structured
Services-Web-based service$l.2.4 [Database Managemerit transaction [8]). On the other hand, workflow systems [16], as the
Systems—fransaction Processing<.4.4 [Computers and Soci- key technology for business process automation [12], lack sound

ety]: Electronic Commerce-Bistributed commercial transactions mechanisms for reliability and correctness.

In this paper, we introduce the concept of transactional patterns
General Terms a convergence concept between ATM and workflow patterns [15].
: e Transactional patterns combine the workflow process adequacy and
Design, Reliability - - o . .
the transactional processing reliability. We show in particular how
we use transactional patterns to define composite services and how

KeyWOI'dS to ensure their reliability according to designers specific needs.
Web services compositions, Reliability, Workflow patterns, Trans- ~ The remainder of the paper is organized as follows. Section 2
actional processing. presents a motivating example showing the limits of workflow sys-

tems and ATM to ensure reliable composite services. In section 3
we detail the main elements required to model Web services com-
positions. Sections 4 introduce the concept of transactional pat-
terns. In section 5, we show how we use transactional patterns to
*Dr. Sami Bhiri started this work as a PhD in LORIA-INRIA. He define composite services and how to ensure their reliability. Sec-
joined after DERI, as a postdoctoral researcher, where he is deep-ion 6 presents some related work and shows how our approach can

ening it. This material is based upon works supported by the EU complement outgoing current efforts while section 7 concludes.
funding under the DIP project (FP6 - 507483)

2. MOTIVATING EXAMPLE
Copyright is held by the author/owner(s).

ICWE'06, July 11-14, 2006, Palo Alto, California, USA. We consider an application for online travel arrangement (OTA
ACM 1-59593-352-2/06/0007. ' ' for short), carried out by a composite service as illustrated in fig-

137

ure 1. The customer specifies its requirements for destination andto be pivot if once it successfully completes, its effects remains
hotels. The composite service launches in parallel hotel and flight for ever and cannot be semantically undone. Naturally, a service
booking. Then, the customer is requested to pay online. Once thiscan combine properties, and the set of all possible combinations is
is done, travel documents are sent to the customer. To deal with{r; cp; p; (r, cp); (r,p)}.

failures, the designers of the composite service may augment the Every service can be associated to a life cycle statechart that
control flow described above with a set of transactional require- models the possible statuses through which the executions of this

ments. For instance, they may require the servicé&sandT DU
to be sure to complete and the servie® to be compensatable.
Then, they may speciff’ DU as an alternative fof' DF' E fails.
They may also require to compens#& when the hotel booking
fails.

HB: Hotel TDFE: Tickets

Booking /
OP: Online 2,)
Payment N \

conipensate f
/D

D]
FB:Flight /
Booking
ure to complete,

compensatable sure to complete

Figure 1: A composite service for online travel arrangement.

Delivery with
Fedex

CRS: Customer
Requirements
Specification

activate

Ez4

TDU: Tickets

Delivery with
uPs

Modeling this example with ATM or workflow systems is not
easy.

In one hand, ATM are too rigid to enable a such control

service can go, and the possible transitions between these statuses
[4]. The set of states and transitions depend on the service transac-
tional properties. Each service has a minimal set of statédgl,
aborted, active, cancelled, failed, complétatid a minimal set of
transitions ébort(), activate(), cancel(), fail(), complet&()When

a service is instantiated, the state of the instangetial. Then this
instance can be eith@bortedor activated Once it isactive the
instance can normally continues its execution or it caodeeelled
during its execution. In the first case, it can achieve its objective
and successfullgomplete®r it canfail. A compensatable service
has in addition, a state compensated and a transiborpensate()

A retriable service has in addition a transititry().

Within a transactional service, we distinguish between external
and internal transitions. External transitions are fired by external
entities. Typically they allow a service to interact with the out-
side and to specify composite services orchestration (see next sec-
tion). The external transitions that we are considering aat&
vate(), abort(), cancel(), and compensaté(ternal transitions are

structure, and they do not support bottom-up applications des'gn’fired by the service itself (the service agent). Internal transitions we

starting from predefined business process and using pre-existingare considering areomplete(), fail(), and retry()We noteT WS
systems or services with diverse semantics [8]. On the other hand,,[he set of all transactional Wéb ser\l/ices

workflow systems lack functionalities to assess that the specified
transactional behavior ensure the required reliability. In our ex-
ample, if the servic® P may fail, causing the travel arrangement
abortion, flight and hotel booking should be undone.

3.2 Transactional composite Web service: TCS

A composite Web service is a conglomeration of existing Web
services working in tandem to offer a new value-added service [12].
It orchestrates a set of services, as a workflow based composition,
3. TRANSACTIONAL WEB SERVICES to achieve a common goal [1].

MODEL A transactional composite (Web) service (TCS for short) is a

In this section, we introduce our Web services composition model COMPosite Web service of which the component services are TWS.
We distinguish in particular between the coordination and the trans- SUch a service takes advantage of component services transactional
actional aspects of a composite Web service (CWS for short). In Properties to specify failure handling and recovery mechanisms.

one hand a CWS can be seen as a flow of autonomous and het- 21 Com ition of tran tional Web servi
erogenous services. On the other hand, it can be considered as § ' omposition or transactional VYWeb services

structured transaction where the component services are the sub- A TCS defines a set of preconditions on each component ser-
transactions and the interactions are the dependencies. vice’s external transition in order to define the orchestration schema.
The section 3.1 introduces the concept of a transactional Web These preconditions specify for each component service when it
service. We present the transactional properties we are consid-Will be aborted, activated, canceled, or compensated.
ering and we show how we model a Web service behavior ac- For example, the OTA service in figure 1 specifies Bdt will
cording to its transactional properties. The section 3.2, illustrates be activated after the completion 83 and F'B. That means the
how we combine a set of transactional Web services to create aPrecondition of the transitioactivate() of OP is the completion
new value-added service. We show how we model the orches- of H B and the completion of 5.
tration schema at different levels of abstraction. We distinguish, ~ Thus, a TCS can be defined as the set of its component services
in particular, thecontrol flow (coordination aspects) and the —and the set of the preconditions defined on their external transitions.
transactional flow (transactional aspect) of a CWS. The More formally we define a TCS as following.
section 3.3 details the relation between the control flow and the
transactional flow of a CWS. DEFINITION 1. A transactional composite Web serviess is
. . a coupletcs = (ES C TWS, Prec) whereES is the set of its
3.1 Transactional Web service: TWS component Web services afithec is a function that defines for
In this paper, by Web service we mean a self-contained modular each component service’s external transition a precondition for its
program that can be discovered and invoked across the Internet. Aactivation.
transactional Web service is a Web service of which the behavior

manifests transactional properties.

Preconditions on services’ external transitions specify for each

The main transactional properties of a Web service we are con- how it reacts to the other states change and how it acts on their

sidering areretriable, compensatable and piv{it3]. A service
s is said to beretriable if it is sure to complete after several fi-
nite activations. s is said to becompensatablef it offers com-
pensation policies to semantically undo its effects. Thdn,said

138

behaviors. Actually, the functioRrec defines for each component
service’s external transitiot{) a set of preconditions to activate it.
It is worthy to note that these preconditions aselusive Thus,
we distinguish for each component servieg,a set of exclusive

preconditions for each of its external transitiaativate() abort(),
cancel() andcompensate()

For instance, the OTA service specifies tHa@DU will be ac-
tivated either after the completion @®P * (exclusively) or af-
ter the failure of TDFE. That meansPrec(TDU.acti-vate())=
{(OP.completeg\ TDU chosen for delivery)TDFE.failed}.

We note7CS the set of all transactional composite Web ser-
vices. We define the functiorervices: TCS — P*(TWS) that
returns the set of component services of a given TCS.

3.2.2 Dependencies between a TCS’s component se

vices

to s, existsiff the failure ofs; may fire the activation of,. More
formally and according to the definition 2:

depAlt(s1,s2) ef dep(si.fail(), s2.activate()).

Regarding its definition, an alternative dependethgyAlt(s1, s2)

is defined according t®rec(sz.activate()) and more precisely
according to the alternative condition ©f. The alternative condi-
tion of a services, AltCond(s), specifies whenr will be activated

as an alternative of other(s) service(s).

r- For instance the OTA composite service shown in figure 1 de-
fines an alternative dependency fradhD F'E to T DU such that

T DU will be activated wherl' DF'E fails. That means

Preconditions express at a higher abstract level relations (suc- 1tCond(TDU) = {TDFE failed}.

cessions, alternatives, etc) between component services in form o
dependencies. These dependencies express how services are co

pled and how the behavior of certain component service(s) influ-

Note that the activation condition of the transitiectivate() of
Y services is defined bys activation condition (as a successor),
ActCond(s), and bys alternative conditiomdl¢Cond(s):

ences the behavior of other one(s). For example the preconditionPrec(s.actiwte()) = ActCond(s) | AltCond(s).

on the external transitioactivate()of TDU expresses (i) a suc-
cession relations (or dependency) betwé&and TDU and (ii)
an alternative relation (or dependency) betw@®¥FE and TDU.
More formally:

DEFINITION 2. Let becs a TCS,s; and sz two component
services ofcs, s1.t1() a transition ofsi, and s2.t2() an exter-
nal transition ofs2, a dependency from .t1() to s2.t2(), noted
dep(si1.t1(), s2.t2()), exists if the activation of;.¢1() may fire the
activation ofsz.t2().

Abortion dependency and abortion condition

An abortion dependency allows to propagate failures (causing the
TCS abortion) from one service to its successor(s) by aborting them.
An abortion dependency fromy to s, existsiff the failure, can-
celation or the abortion of; may fire the abortion of>. More
formally and according to the definition 2:

depAbr(si1, s2) def dep(s1.abort(), s2.abort()) \/
dep(s1.fail(), sz.abort()) \/ dep(si.cancel(), s2.abort()).

Dependencies express relation between services, however they

do not describe precisely interactions between services. A depen-

dencydep(s1.t1(), s2.t2()) does not specify whes,.t2() will be
activated (followingsi.t1() activation). dep(si.t1(), s2.t2()) is
defined according t®rec(sz2.t2()).

In our approach, we consider activation, alternative, abortion,
compensation and cancelation dependencies which we detail in th
following.

Activation dependency and activation condition

e

An abortion dependencygepAbr(si1, s2) is defined according
to Prec(sz.abort()). Prec(s.abort()) defines the abortion de-
pendency ofs, AbrCond(s), which determines wher will be
aborted.

Compensation dependency and compensation
condition

A compensation dependency allows to define a backward recovery
mechanism by compensation. A compensation dependency from

An activation dependency expresses a succession relation between: t0 s existsiff the the failure or the compensation of may

two services. An activation dependency fremto s» existsiff the
completion ofs; may fire the activation of>. More formally and
according to the definition 2:

depAct(s1, s2) Lof dep(s1.complete(), sa.activate()).

An activation dependency from to s2 expresses only a succes-
sion relation between them. However, it does not specify when
will be activated (following the termination of;). Regarding its
definition, an activation dependendypAct(s1, s2) is defined ac-
cording toPrec(sz.activate()) and more precisely according to
the activation condition of2. The activation condition of a service

fire the compensation of.. More formally and according to the
definition 2:

depCps(s1, s2) dof dep(s1.fail(), s2.compensate()) \/
dep(s1.compensate(), s2.compensate()).

A compensation dependendypCps(s1, s2) is defined accord-
ing to Prec(s2.compensate()). Prec(s.compensate()) defines
the compensation condition ef CpsCond(s), which determines
whens will be compensated.

The composite service in figure 1 defines a compensation depen-
dency fromH B to F'B such thatF'B will be compensated when

s (as a successor) determines when it will be activated as a succes# B fails. That mean€psCond(FBy {HB.failed}.

sor for other(s) service(s). We note the activation condition of a
services ActCond(s).

For example, the composite service shown in figure 1 defines an

activation dependency frol B and F'B, to OP such thatOP
will be activated after the completion éf R and F'R. That means
ActCond(OP) = {HR.completed)\ FR.completed}.

Alternative dependency and alternative condi-
tion

Alternative dependencies allow to define execution alternatives as a

forward recovery mechanisms. An alternative dependency fiom

'whereT DU is chosen for delivery
2P(S) denotes the set of all subsetsHf

139

Cancelation dependency and cancelation con-
dition

A cancelation dependency allows to signal a service execution fail-
ure to other service(s) being carried out in parallel by canceling
their execution if necessary. A cancelation dependency frpto

so existsiff the failure ofs; may fire the cancelation of,. More
formally and according to the definition 2:

depCnl(s1,s2) of dep(si.fail(), s2.cancel())

A cancelation dependendepCnl(s1, s2) is defined according
to Prec(sz.fail()). Prec(s.fail()) defines the cancelation con-
dition of s, CnlCond(s), which specifies whenwill be canceled.

3.2.3 Control and transactional flow of a TCS

More generally, a control flow implicitly tailors all possible re-

We call transactional dependencies the compensation, cancelafovery mechanisms. We call a potential transactional flow of a

tion and alternative dependencies. Activation and transactional de-
pendencies express at a higher abstract level respectivalgtite
rol flow and thetransactional flow ofaTCS.

Control flow

The control flow of a TCS specifies the partial ordering of
component services activations. Intuitively the control flow of a
TCS is defined by the set of its activation dependencies. Formally,
we define a control flow as a TCS of which the only dependencies
are activation dependencies.

DEFINITION 3. Acontrol flow isaTCS¢f = (ES, Prec)
such thatvs € ES CondAlt(s) = false; CondCps(s) = false;
CondCnl(s) = false.

We noteC Flow the set of all control flows. We define the function
getC Flow that returns the control flow of a given TCS.

DEFINITION 4. We define the function getCFlow that returns
thecontrol flow ofa TCS.
getCFlow: 7CS8S — CFlow
sc = (ES,Prec) +— fc=(ES' P'rec)
suchthattS’ = ES andVs € ES P'rec(s.activer()) = Cond—
Act(s); P'rec(s.annuler()) = false; P'rec(s.compenser()) =
false.

Transactional flow

The transactional flow of a TCS specifies the recovery

mechanisms. Intuitively, a transactional flow of a TCS is defined by
its component services transactional properties and its set of trans
actional dependencies. Formally we define a transactional flow as

a TCS of which the only dependencies are transactional dependen-

cies.

DEFINITION 5. A transactional flow isa T TCS,tf =
(ES, Prec) such thatvs € ES CondAct(s) = false.

We note7 Flow the set of all transactional flows. We define the
function getT Flow that returns the transactional flow of a given
TCS.

DEFINITION 6. We define the function getTFlow that returns
thetransactional flow ofa TCS.
getTFlow: TCS8S — T Flow
sc = (ES,Prec) +—— fc=(ES, P'rec)
suchthatt S’ = ES andVs € ES P'rec(s.activer()) = Cond—
Alt(s).

A TCS, tcs, is well defined by its control flowgetC Flow(tcs),
and its transactional floyet T Flow(tcs).

3.3 Relation between the control flow and the
transactional flow of a TCS
The transactional flow is tightly related to the control flow. In-
deed, the recovery mechanisms (defined by the transactional flow)

given control flowef the transactional flow including all transac-
tional dependencies (i.e the recovery mechanisms) that can be de-
fined w.r.t tocf. More formally, each component servicg,has
according to the TCS control flow:

e ptCpsCond(s): its potential compensation condition that
specifies wher may eventually be compensated.

e ptAltCond(s): its potential alternative condition that speci-
fies whens may eventually be activated as an alternative.

e ptCnlCond(s): its potential cancelation condition that spec-
ifies whens may eventually be canceled.

Back to our example, according to the OTA service control flow
F B may eventually be compensated (i) either after the failure (ex-
clusively) or the compensation 6fP (ii) (exclusively) or after the
failure of H B. That meanptCpsCond(FB¥ {OP.failed, OP.com-
pensated, HR.failed

Given a control flone f, several TCSs can be defined according
to it. Each of these TCS will adoptf as its control flow and will
extend it by a transactional flow included dif potential transac-
tional. More formally, given a TC%cs the following holds:

Vs a component service o€s, CpsCond(s) € PtCpsCond(s),
CpsChnl(s) € PtCnlCond(s) and
AltCond(s) € PtAltCond(s)

For example, the transactional flow of the OTA service is in-
cluded in its potential transactional flow. For instance the compen-
sation condition ofF' B is the failure of H B which is included in

its potential compensation condition.
As a recapitulation of this section it is worthy to maintain that:

e ATCS s well defined by its control flow and its transactional
flow.

Defining a TCS control flow returns to define for each com-
ponent service, its activation conditioActCond(s).

Defining a TCS transactional flow returns to define for each
services, its transactional properties, its compensation con-
dition CpsCond(s), its cancelation conditio6'nlCond(s),

and its alternative conditioAltCond(s).

A TCS transactional flow is included in the TCS potential
transactional flow.

A TCS potential transactional flow depends on the TCS con-
trol flow. A TCS potential transactional flow is defined by
the potential compensation, cancelation and alternative con-
ditions of each component service. These potential condi-
tions are defined w.r.t the TCS control flow.

4. TRANSACTIONAL PATTERNS

In this section, we introduce the concept of transactional pattern,

depends on the execution process logic (defined by the control flow).a new paradigm we propose to ensure reliable Web services compo-

For example, regarding the OTA composite service, it is possible to
defineT’ DU as an alternative t6'D F'E because (according to the
XOR-split control flow operator) they are defined on exclusive

sitions. Transactional patterns extend workflow patterns with trans-
actional dependencies, thus allowing to bridge their transactional
lack.

branches. Similarly, it is possible to define a compensation de- As defined in [7], a pattern “is the abstraction from a concrete

pendency fronH B to F'B because (according to theND-join
control flow operator) the failure aff B requires the compensation
of the partial work already done which is the flight booking.

140

form which keeps recurring in specific non arbitrary contexts”. Re-

garding that, a workflow pattern [15] can be seen as an abstract
description of a recurrent class of interactions. For example, the

AND-join pattern [15] (see figure 2.b) describes an abstract ser- e {m },
vices interactions as followsa service is activated after the com- - [\ Bocking] 7| Pockine]\
pletion of several other services /\ . ‘ /
Pattern based modeling is interesting for many reasons. Patterns e AV EBFl | /_r,'m F
are relatively simple (compared to workflow language) thanks to T 1 Booking by | Booking
the abstraction they ensure. Patterns are practical since they are de- ¥ — D
duced from the practice. In addition they enhance reusability and) {TT?P‘E?“INTW‘ Controlflow
comprehension between designers. Pattern based modelling allow A Fedes 0 > Compensation
also modular and local processing. 0}}’: Onling / } | — — —» Alternative
In the section 4.1 we present the workflow patterns and put them in Jm;‘ R \\ (IDU- Tiekets) !/ | e ~ Cancellation
the context of our TCS model. Then we show, in the section 4.2, ST ﬁ Delivery with }//
how we extend them to define transactional patterns. ® o

4.1 Workflow patterns Figure 2: AND-split, AND-join and XOR-split patterns and
Regarding our TCS model, the basic workflow patterns [15] con- their corresponding potential functions applied to a given sets

sider only the control flow side. Thus, they can be considered as of services.

control flow patterns. Formally, we define a control flow pattern as

a function that returns a control flow given a set of services.

(CRS: Customer

OP: Online

Requirements Payment

Specification

DEFINITION 7. A control flow patterrpat, is a functionpat: o ActCond(so) = \,_, ,, si.-completed
P(TWS) — CFlow, that returns a control flowat(S) given a
set of transactional services o Vi, 1 <i<n ActCond(s;) = external event tef.

We notePattern the set of all control flow patterns. In our ap- Figure 2.b illustrates the control flow result of the application of
proach, we consider the following patterns: sequeAd¢D-split AND-join pattern to the set of servic§g{ B, ' B, OP}.

OR-split XOR-split AND-join, OR-join, XOR-join and m-out-of- _enli

n [15]. Due to the lack of spaces, we put emphasis onAN®- 4.1.3 XOR-split pattern

split, AND-join and XOR-splitpatterns (we are using in our illus- [15] defines anXOR-split pattern as a point in the work-

trative example). flow process where, based on a decision or workflow control data,
] one of several branches is chosen. According to our approach,

4.1.1 AND-split pattern an XOR-split pattern is a function that specifies that a service,

[15] defines arAND-split pattern as a point in the workflow ~ @mong many others, is activated after the completion of another
process where a single thread of control splits into multiple threads S€rvICce.
of control which can be executed in parallel, thus allowing activities

to be executed simultaneously or in any order. According to our DEFINITION 10. We define the XOR-split pattern as the func-

approach, al\ND-split pattern is a function that specifies that a tl(>)(nC:)R-spIit PTWS) . CFlow
set of services are activated after the completion of another service. S ={s0, 51 sn} — cf = (BS, Prec)
DEFINITION 8. We define the AND-split pattern as the func- Such that
tion: _
AND-split PTWS) — CFlow o ES={s0,51,...,5n},
S ={so,s1,...,8n} +— cf =(ES, Prec) e ActCond(so) = external event te f
such that
o Vi,1 <i<n ActCond(s;) = so.completed] c; | there is
e ES ={s0,51,...,8n}, always a one only; evaluated to true after the completion
e ActCond(so) = external event te f of so.
o Vi,1 <i<mn ActCond(s;) = so.completed. Figure 2.c illustrates the control flow result of the application of

XOR-split pattern to the set of servicg® P, TDFE, TDU}.
Figure 2.a illustrates the control flow result of the application of . .
AND-split pattern to the set of servicd€' RS, H B, FB}. 4.2 Extending workflow patterns with trans-
- actional dependencies
4.1.2 A.ND_Jom pa.ltt.em o A workflow patternpat defines a control flowat(S) given a
[15] defines anAND-join pattern as a point in the workflow set of services. As all control flowat(S) possesses a potential
process where multiple parallel subprocesses/activities converge inteansactional flow. We define for each workflow pattepat, a
one single thread of control, thus synchronizing multiple threads. fynction potential,.: that returns, given a set of servics the
According to our approach, aRND-Join pattern is a function potential transactional flow ofat(S). potentialya: defines for
that specifies that a service is activated after the completion of a seteach service its potential compensation, alternative and cancelation
of other services. conditions according to the semantics of the control flow defined

DEFINITION 9. We define the AND-join pattern as the function: by pat. In the following, we detail the potential functions of the

AND-join: P(TWS) . CFlow patternsAND-split , AND-join , andXOR-split
such that S={s1,-..,sn, 50t +— cf = (ES,Prec) 4.2.1 AND-split potential function
The potential function of the patteAND-split , denotecot—
e ES =1{s0,81,---,5n}, ential AN p—spis¢ defines for a given set of servicgsy, sq, ...,

141

HB: Hotel
Booking

HB: Hotel |
4 Booking T yed
(/ N OP: Online {/‘ 7/ .
\ Payment A /
.| FB:Flight ' “5.| FBFlight /

Booking Booking

R —

Figure 3: Two transactional patterns derived from the
AND-join pattern.

OP: Online
Payment

4.2.3 XOR-split potential fucntion

The potential function of the patteXOR-split , denotechot—
ential xor—spiir defines for a given set of servicgso, s1, .. .,
sn } the following transactional dependencies: each seric®an
alternative fors; wherel < 4,5 < n and: # j. Each service;
(1<i<n) will compensate, when it fails or is compensated.

DEFINITION 13. The potential function of the patterdOR-

splitis defined as follows:
potential x o R—split: POWVS) — T Flow

{s0,51,...,8n} +— tI=(ES,Prec)

wheret f is the potential transactional flow fOR-split (S)

sn} the following transactional dependencies: a compensation de- gnd such thafsS = S and Prec is defined as follows:

pendency frons; (1 < ¢ < n)to s according to the synchroniza-
tion policy of s, . .

. Sp.

DEFINITION 11. The potential function of the patte&AND-
splitis defined as follows:
potential AN D—split: P(TWS) — T Flow
{s0,81,...,8n} +— tf=(ES;Prec)
wheret f is the potential transactional flow &ND-split (S)
and such thaZS = S and Prec is defined as follows:

PtAltCond(s;) =0V0<i<n

CondPtAlt(s;) = faux
PtCpsCond(so) = {PtCpsCond(s;) | i = 1..n}

e V1 < i< n PtCpsCond(s;) = defined by the used syn-

chronization pattern,

PtCnlCond(so) = false,

e V1 < i < n PtCnlCond(s;) = defined by the used syn-

chronization pattern

Figure 2.a, illustrates the potential function of the patt&iD-
split applied to(CRS,HB,FB)

4.2.2 AND-join potential function

The potential function of the patteAND-join , denotechot —
ential AN D—join defines for a given set of servicgs, . . ., sn,s0}
the following transactional dependencies: each seryjogill be

e PtAltCond(so) = false

o V1 <i<nPtAltCond(s;) = {s;.failed | j =1..n,i #
j}

e PtCpsCond(so) = {s;.failed | j = 1..n,i # j}

e V1 <i<n PtCpsCond(s;) = external event tdf,

e PtCnlCond(so) = false,

e 1 <i<nPtCnlCond(s;) = false

Figure 2.c illustrates the potential function of the patt&¥MR-
split applied to(PL,SDF,SDD).

4.2.4 Definition

A transactional pattern derived from a workflow pattest is
an instance opat extended by a transactional flow included in its
potential transactional flow.

DEFINITION 14. Letpat a pattern, we call a transactional pat-
tern derived fronpat each TCS cs such that:

getC'Flow(cs) = pat(services(cs)) and
getT Flow(cs) C potentialpa:(services(cs))

Many transactional patterns can be derived from the same con-
trol flow pattern. Figure 3 illustrates two transactional patterns de-
rived form theAND-join pattern. Both extend an instance of the
AND-join pattern with a transactional flow included in its poten-
tial transactional flow.

compensated or canceled (according to its current state) when a

services; fails (wherel < 4,7 < n andi # j). Each service;
(1 <7 < n) will be compensated whesy fails or is compensated.

DEFINITION 12. The potential function of the pattetAND-
join is defined as follows:
potential AN D—join P(TWS) — T Flow
{s1,...,8n,80} +— tf=(ES,Prec)
wheret f is the potential transactional flow @&ND-join(S)
and such tha?S = S andPrec is defined as follows:

PtAltCond(s;) = falseV0 <i<n

PtCpsCond(so) = external event

e V1 < i< nPtCpsCond(s;)={so.failed, so.compensated,

sj.failed |1 <j<mn,j#i}
e PtCnlCond(so) = false,

e V1 < i< nPtCnlCond(s;) = {s;.failed | 1 < j <
n,j #i}.
Figure 2.b illustrates the potential function of the pattAMD-
join applied to(HB,FB,0OP)

142

5. RELIABLE WEB SERVICES
COMPOSITIONS USING
TRANSACTIONAL PATTERNS

We use transactional patterns as the basic brick to specify com-
posite Web services. A TCS can be defined as a set of transactional
patterns connected together (having common component services)
in an eventual nested way. Figure 4 illustrates how we can specify
the OTA service as the following transactional patterns composi-
tion: trans anp—split traNSAND—join transxor—split-

Connecting together a set of transactional patterns can lead to a
control and transactional (flow) inconsistency. Control flow incon-
sistency can raise, for instance, when@R-split is followed
by anAND-join . Transactional inconsistency can raise, for in-
stance, when a component service can eventually fail, causing the
entire TCS abortion, without compensating the partial work already
done.

A TCS is reliable if its control flow and transactional flow are
consistent. For example, the OTA service defined in figure 4 is not
retriable since) P can eventually fail without compensatidgB.

In the following we show how we ensure a TCS reliability.

Gi — s | Sequence (G;,G;) A |
AND-Split (go,gh...,gn)[)’ |
OR-split (Go,G1,...,Gn)C |
XOR-Sp”t (go, gl, . ,gn) D |
Sequence (G;,G;) A — Sequence (G;, G;) Sequence (G;,Gr) A |
Sequence (G;, G;) AND-split (G;,G1,...,Gn) B|
Sequence (G;,G;) OR-split (G;,b1,...,bn)C |
Sequence (G;, G;) XOR-split (G;,G1,...,Gn) D |
Sequence (G;, G;)
AND-split (Go,G1,...,Gn) B — AND-split (Go,Gu,...,Gn) AND-join (G1,...,Gn,Gnr1) €|
AND-split (Go,G1,...,Gn) OR-join (Gi1,...,Gn,Gnt1) € |
AND-SplIt (go7 gh ey gn) XOR-jOin gl, ey gn, gnﬂ) & |
AND-split (Go,G1,...,Gn) m-out-of-n (G1,...,Gn,Gnt1) €|
OR-SpIit (go, gl, ey gn) C — OR-SpIit (go, Ql, ey gn) OR-join (gl, ey Qn, gn+1) E |
OR-Spllt (go, gl, ey gn) XOR-jOin (gl, ey gn, gn+1) & |

XOR-split (Go,...,Gn) D — XOR-split (Go,...,Gn) XOR-join (G1,...,Gn,Gnt+1) & |
XOR-split (Go,...,Gn)
goin (G1,...,Gn,Gny1) € — -join (G1,...,Gn, Gni1) Sequence (Gnt1,G0) A |

—join (gh ey gn, gn+1) AND-SpIit (gn+17 gn+2, Ceey gn+p) B |
[join (Gi,...,Gn,Gn+1) OR-split (Gnt1,Gn+2,---,Gn+p) C |
-join (Ql, ey gn, Qn+1) XOR-Sp”t (gn+1, gnJrQ, . ,gner) D |
'jOin (g1,~~~7gn7gn+l)

Table 1: Left contextual grammar defining the language of consistent control flows.

(i \ TDFE: Tickets e each service target of a compensation dependency is com-
HB: Hotel compensate compgnsate Delivery with
Booking v R) R pensatable,
(CRS: Customer A/ N at Z oP: ()nlinc\ X/ : . A .
ﬁcqu;?u.t;nm \ compensate | AN ent J* O e each service source of a compensation, cancelation, or alter-
ospecicaton \ bt R - . . .
! N FBFlicht [. " TDU: Tickets native dependency is not retriable.
Bo.oki;g Delivery with
{508 s - nUP ioR By applying these rules to the OTA services shown in figure 4
~ / ransXOR_ . .
£rans yp joim o we can deduce thd@t DU is retriable contrary t& P andT DF'E.

We can also deduce th&tB and F'B are compensatable.

The second step consists in ensuringirgnitive valid
transactional flow. Arintuitive valid transactional flow
can be characterized by the following three propertid3:) fol-
lowing a service failure, it tries first to execute an alternative if it
exists, (P.) otherwise (in case of a fatal failure causing the overall

5.1 Ensuring control flow consistency composite service failure) it compensates the work already done
) and (Ps) cancel all running executions in parallel.

To ensure the control flow consistency, we propose the left con- g, example, the composite service shown in figure 4 is not
textual grammar described in table 1. This grammar defines theintuitively valid since it does not respect, among others

language of consistent control flows. It ensures consistent con-ha propertyP; for the servicel’ DF 2 and the property for the
nection between the patterns. It postulates that (i) a consistentggryiceO P.

control flow should start with either a sequence, or a split pat- \ye propose a set of rules to generate suggestions to designers in

Figure 4. The OTA service defined as a connection of a set of
transactional patterns.

tern, (ii) asequence pattern can be followed by any split pattern, o ger to define aintuitive valid transactional flow (given
(iii) an AND-split pattern can be followed by any join pattern, (he computed transactional properties). We supposethaneans
(iv) anOR-split pattern can be followed by aDR-join or an F is eventually true¥ component service,

XOR-join pattern, and (v) arXOR-split pattern can be fol-

lowed only by anXOR-join pattern. In addition, a component 1. V ptAltCond;(s) € AltCond(s),

service in a given TCS can be itself a composite service where its O(ptAltCond;(s)) A\ ptAltCond;(s) ¢ AltCond(s) =
control flow is consistent (respects the above grammar); thus allow- AltCond(s) = AltCond(s) |J ptAltCond;(s).

ing to use patterns in a nested way inside a composition. 2.V ptCpsConds(s) € ptCpsCond(s).

5.2 Ensuring transactional flow consistency O(ptCpsCondi(s)) A ptCpsCondi(s) & CpsCond(s) =

The first step to ensure consistent transactional flow consists in (a) s must be compensatable and
determining component services transactional properties. If these (b) CpsCond(s) = CpsCond(s) |J ptCpsCond;(s).
transactional properties are not known, we apply the following rules
(in the given order) to compute them: 3. V ptCnlCond;(s) € ptCnlCond(s),
O (ptCnlCond;i(s)) A\ ptCnlCond;(s) ¢ CnlCond(s) =
e each service is by default retriable and pivot, CnlCond(s) = CnlCond(s) | ptCnlCond;(s).

143

Due to lack of space we explain only the first rule. The second
and third rules can be understood similarly. The first rule aims to
ensure the above properB;. It postulates that each potential al-

ternative condition ok, pt AltCond;(s), eventually true must be
considered as an alternative conditionsofFor example, the po-
tential alternative condition &F DU, TDF'E. failed is eventually

true (sincel’DFE is not retriable) and is not considered as one
of its alternative conditions. By applying this rule we can generate

the suggestion to add an alternative dependency ffan¥'E to

TDU. Similarly by applying the second rule, we can also gener-

ate the suggestion to add a compensation dependencydiBrio
FB.

It is worthy to note that during the first and the second step the
designers have the final decision about component services trans-
actional properties or which suggestions consider and which ones
refuse. Like this, our approach allows to take into account design- 2]
ers specific requirements that may violate the well behavior prop-

erties introduced above.

6. RELATED WORK

show how we use them to define composite Web services and how
we ensure their reliability.

The main contribution of our approach is the convergence of
workflow approach and transactional processing. Our approach
presents also the advantages of any pattern based modeling like
simplicity, practice and modularity. As a future work we plan to
consider more workflow patterns especially those supporting repet-
itive processing and multi instantiation. We aim also to integrate
the concept of scope of services to allow different processing lev-
els.

8. REFERENCES

[1] P. Albert, L. Henocque, and M. Kleiner. Configuration-based

workflow composition. INCWS pages 285292, 2005.

G. Alonso, D. Agrawal, and A. E. Abbadi. Process

Synchronisation in Workflow Management Systems3tim

IEEE Symposium on Parallel and Distributed Processing

(SPDS’97) New Orleans, Louisiana, October 1996.

[3] I. BEA and Microsoft. Business process execution language
for web services (bpel4ws). 2003.

We classify the current related technologies in two classes, work- [4] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure

flow based like WSBPEI [3] and WS-CDL [9] and transactional
based like WS-AtomicTransaction [10], WS-BusinessActivity [11]

and WS-TXM (Acid, BP, LRA) [6].

atomicity of composite web services. MWW pages
138-147, 2005.
[5] A. Elmagarmid.Transaction Models for Advanced Database

We can say that these technologies are standardized versions (us- Applications Morgan-Kaufmann, 1992.

ing XML as an exchange format and the Web as an invocation in-
frastructure) of the workflow approach or ATM adapted to work in
a peer to peer environment. Consequently, they inherit the limita-
tion of these two approaches: ensure reliability on behalf of process [7]
adequacy or the opposite. We believe that our approach can com-

plement these efforts.

In one hand, WSBPEL and WS-CDL follow a workflow ap-
proach to define services compositions and services choreographies.
Like workflow systems these two language meet the business process
need in term of control structure. However, they are unable to en-
sure reliability especially according to the designers specific needs.
Our approach can be used on top of them. We can use our approach
to define reliable compositions. Then the defined model can be de-
scribed either using WSBPEL or WS-CDL. Obviously, we need to
extend these two languages to support cancelation and alternativd 10l

interactions.

[6] D. B. et al. Web services transaction management (ws-txm)
version 1.0. InArjuna, Fujitsu, IONA, Oracle, and Suduly

28 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidesign
Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, Reading, Massachusetts, 1995.

[8] N. Gioldasis and S. Christodoulakis. Utml: Unified
transaction modeling language.Pnoceedings of the 3rd
International Conference on Web Information Systems
Engineering pages 115-126. IEEE Computer Society, 2002.
[9] N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web
services choreography description language version 1.0.
http://www.w3.0rg/TR/ws-cdl-10, October 2004.

D. Langworthy and al. Web services atomic transaction
(ws-atomictransaction).

On the other hand, WS-AtomicTransaction, WS-BusinessActivity [11] D. Langworthy and al. Web services business activity

and WS-TXM rely on ATM to define transactional coordination

framework (ws-businessactivity).

protocols. Like ATM these protocols are unable in most cases [12] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu,

to model Business process due to their limited control structure.
Our approach allows to extend these protocols to support complex
structure while preserving reliability. Indeed, a transactional pat-

and A. K. EImagarmid. Business-to-business interactions:
issues and enabling technologighe VLDB Journal
12(1):59-85, 2003.

tern taken alone as a composition of transactional patterns can bg13] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A

considered as a transactional protocol.

A one important step to integrate our approach is to extend Web

transaction model for multidatabase systemsCIDCS
pages 56-63, 1992.

services description to describe their transactional properties. This[14] D. Roman, H. Lausen, and U. Keller(eds). Web service
is possible thanks to the sematic Web services languages. For in- modelling ontology, wsmo deliverable d2 version 1.1. In
stance, the transactional properties we are considering can be easily http://www.wsmo.org/2004/d2/v1.1

described in the non functional block of a WSMO service [14].

7. CONCLUSION

In this paper, we propose an approach to ensure reliable Web
services compositions. The main idea is to combine the process
adequacy of workflow systems and the reliability of transactional
processing. We introduce the concept of transactional patterns.
Transactional patterns extend workflow patterns with transactional
dependencies, thus allowing to bridge their transactional lack. We

144

[15] W. M. P. van der Aalst, P. Barthelmess, C. Ellis, and
J. Wainer. Workflow Modeling using Proclets. In O. Etzion
and P. Scheuermann, editobsh IFCIS Int. Conf. on
Cooperative Information Systems (CooplS;0@)mber 1901
in LNCS, pages 198-209, Eilat, Israel, September 6-8, 2000.
Springer-Verlag.

[16] W. M. P. van der Aalst and K. M. van He@/lorkflow
Management: models, methods and toGlsoperative
Information Systems. MIT Press, 2002.

