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Abstract Adaptive indexing initializes and optimizes

indexes incrementally, as a side effect of query processing.

The goal is to achieve the benefits of indexes while hiding

or minimizing the costs of index creation. However, index-

optimizing side effects seem to turn read-only queries into

update transactions that might, for example, create lock con-

tention. This paper studies concurrency control and recov-

ery in the context of adaptive indexing. We show that the

design and implementation of adaptive indexing rigorously

separates index structures from index contents; this relaxes

constraints and requirements during adaptive indexing com-

pared to those of traditional index updates. Our design adapts

to the fact that an adaptive index is refined continuously and

exploits any concurrency opportunities in a dynamic way. A
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detailed experimental analysis demonstrates that (a) adaptive

indexing maintains its adaptive properties even when run-

ning concurrent queries, (b) adaptive indexing can exploit the

opportunity for parallelism due to concurrent queries, (c) the

number of concurrency conflicts and any concurrency admin-

istration overheads follow an adaptive behavior, decreasing

as the workload evolves and adapting to the workload needs.
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1 Introduction

This paper focuses on concurrency control for read-only

queries in adaptive indexing. Adaptive indexing enables

incremental index creation and optimization as automatic

side effects of query execution. The adaptive mechanisms

ensure that only tables, columns, and key ranges with actual

query predicates are optimized [12,14,16,26–29]. The more

often a key range is queried, the more its representation is

optimized; conversely, columns that are not queried are not

indexed, and indexes are not optimized in key ranges that are

not queried. Prior research has introduced adaptive indexing

in the forms of database cracking [20,26–28], adaptive merg-

ing [14,16] as well as hybrids [29] and benchmarking [12].

Past work focused on algorithms and data structures as well

as on the benefits of adaptive indexing over more traditional

index tuning and on workload robustness.

1.1 The problem: read queries become write queries

In adaptive indexing, queries executing scans or index

lookups may invoke operations that incrementally refine the
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304 G. Graefe et al.

database’s physical design as side effects of query execu-

tion. Refinement operations construct and optimize index

structures, causing logically “read-only” queries to update

the database. This enables high-performance data loads fol-

lowed immediately by efficient query processing, but raises

the question whether the concurrency control required to sup-

port these updates incurs serious overhead and contention.

1.2 Index contents versus index structure

With regard to the concurrency control required to coordinate

index updates, refining and optimizing an adaptive index dur-

ing read queries is much simpler than updating a traditional

index. Figure 1 illustrates the underlying intuition, compar-

ing the incremental refinement of adaptive indexing to the

explicit index updates involved in traditional indexing. The

heights of each pair of boxes roughly illustrate the relative

costs of various characteristics. Unlike traditional systems,

in adaptive indexing, execution of read-only queries can trig-

ger index updates and improves adaptively over time. On the

other hand, the index changes caused by read queries impact

only physical index structures, never logical index contents;

thus, (a) concurrency can be governed using only short-term

in-memory latches as opposed to transactional locks, and (b)

the purely structural updates are optional and can be skipped

or pursued opportunistically. These distinctions relax con-

straints and requirements with regard to concurrency control

of adaptive indexing compared to those of traditional explicit

index updates and enable new techniques for reducing the

performance overhead of concurrency control during struc-

tural index updates.

1.3 Incremental granularity of locking

Another powerful characteristic of adaptive indexing is that

the more an index is refined, the better its index structure sup-

ports concurrent execution by enabling a finer granularity
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Fig. 1 Adaptive versus explicit indexing

of locking. That is to say, refinements to an index’s struc-

ture enable updates to acquire increasingly precise locks.

This effect is shown in the right part of Fig. 1, which illus-

trates the number of conflicts decreasing as the workload

sequence evolves. Thus, as in query processing, concurrency

control for adaptive indexing dynamically adapts to the run-

ning workload.

1.4 Contributions

The current paper explores and proposes techniques for con-

currency control, logging, and recovery that reduce the over-

head imposed by adaptive indexing on read-only query exe-

cution to negligible levels. More specifically, we show the

following:

• Adaptive indexing maintains its adaptive properties dur-

ing the execution of concurrent queries.

• Concurrency conflicts adaptively decrease as adaptive

indexing adjusts to the running workload.

• Adaptive indexing can exploit concurrent queries to

increase parallelism.

In this paper, we focus on logically “read-only” queries

that update (refine) the index only as a side effect of process-

ing. We note that update algorithms for adaptive indexing

have already been studied in [28] and that read–write con-

flicts in concurrent access can be resolved with the techniques

reported here with minor modifications.

In the rest of the paper, we provide the necessary back-

ground on adaptive indexing; then, we discuss transactional

support for state-of-the-art adaptive indexing approaches,

and we present a detailed experimental analysis over a

column-store system.

2 Prior work

Adaptive indexing changes the trade-off between load band-

width (minimizing the number of optimized data structures

created at data load time) and query performance (mini-

mizing the effort spent on large scans and large, memory-

intensive join operations). The defining characteristic of

adaptive indexing is that indexes are created and refined

incrementally and continuously as a side effect of query

processing. This brings automatic adaptation of the physical

design to the workload, but also introduces concurrency con-

trol issues during (adaptive) indexing. Although recent sur-

veys on concurrency control and recovery [9,11] cover these

topics for B-tree indexes and have influenced our research, to

our knowledge, the present paper is the first to focus explicitly

on how adaptive indexing mechanisms can support the trans-

actional guarantees of the underlying database management

system, without imposing undue overhead on the processing

of read-only queries.
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Transactional support for adaptive indexing 305

Table 1 Locks and latches
index Locks Latches

Separate… User transactions Threads

Protect… Database contents In-memory data structures

During… Entire transactions Critical sections

Modes… Shared, exclusive update, intention, escrow, schema,

etc.

Reads, writes, (perhaps) update

Deadlock… Detection & resolution Avoidance

…by… Analysis of the waits-for graph, timeout, transaction

abort, partial rollback, lock de-escalation

Coding discipline, “lock leveling”

Kept in… Lock manager’s hash table Protected data structure

Before we discuss concurrency control and recovery meth-

ods for specific adaptive indexing techniques in Sects. 4

and 5, we first provide in this section the background neces-

sary for understanding adaptive indexing mechanisms.

2.1 Transactional indexing techniques

2.1.1 Locks versus latches

The usual understanding of physical data independence

focuses on tables and indexes. In addition, some data struc-

tures such as B-trees (and their variants) permit multiple rep-

resentations for the same logical index contents. For exam-

ple, a B-tree node may be compressed (shortened records) or

compacted (no free space fragmentation), and it may contain

“pseudo-deleted” “ghost” records (left by a deletion), etc.

Similarly, boundary keys between nodes might be chosen

by record count or by byte count, by length of the separator

key [2], by desired “fill factor” (e.g., 90 % during database

loading), etc.

The separation between logical index contents and phys-

ical data structure or representation affects the mechanisms

used to enact their concurrency control. Locks separate trans-

actions and protect logical contents, including the empty

gaps between existing keys in serializable key range locking,

whereas latches separate threads and protect data structures

present in memory. Table 1, taken from [9], summarizes their

differences. The crucial enabler is the separation of logical

contents and physical structure.

2.1.2 User transactions and system transactions

The separation of logical contents and physical structure

also affects the respective concurrency requirements of user

versus system transactions. User transactions perform the

database modifications requested by a user or application,

whereas system transactions modify data structures without

contents change. The purpose of system transactions is to

enable efficient user transactions. For example, a user trans-

action might mark a record “pseudo-deleted” or a ghost, and a

Table 2 User transaction and system transactions

User transactions System transactions

Invocation source User requests System-internal logic

Database effects Logical database

contents

Physical data

structure

Data location Database, buffer pool In-memory page

images

Parallelism Multiple threads possible Single thread

Invocation

overhead

New thread Same thread

Locks Acquire and retain Test for present locks

Commit overhead Force log to

stable storage

No forcing

Logging Full “redo” and “undo” Omit “undo” in cases

Recovery Backward Forward or backward

system transaction will later reclaim the space. System trans-

actions are also very useful for splitting and merging nodes,

load balancing between nodes, defragmentation, etc. Table 2,

taken from [11], summarizes how system transactions differ

from user transactions.

System transactions permit a number of optimizations

during logging and recovery. First, although system trans-

actions require a commit record just like user transactions,

they do not need to force a commit record to stable storage.

If a system transaction is not recovered after a system fail-

ure, only a representation change is lost, and if a subsequent

user transaction relies on a prior system transaction, it will

automatically, as a part of its own commit process, ensure

that both commit records have been written to stable stor-

age. Second, if a system transaction combines a log record

(such as erasing a ghost record) with a commit record such

that both occur in the same page of the recovery log, then

there never can be a need to reverse this system transaction.

Thus, system transactions can perform many clean-up tasks

with less total log volume than that required for immedi-

ate clean-up by user transactions. Third, system transactions

incomplete at the time of a system failure may recover by run-

ning to completion. Since system transactions do not affect

logical database or index contents, the choice between roll-
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back and completion cannot affect query results after system

recovery.

2.1.3 Hierarchical and incremental locking

In traditional systems, the granularity of locking is fixed

over time—multiple granularity choices may be available,

but once chosen remains fixed for the system as a whole.

For example, a workload made up of a multitude of con-

current small transactions might use fine-grained locking of

individual keys, whereas coarser locks would enable large

transactions to lock large ranges of keys efficiently without

having to acquire a multitude of locks.

In order to reduce the number of locks required, hierarchi-

cal locking within an index can be employed. Hierarchical

locking is a special case of multi-granularity locking that

enables multitudes of small and large transactions to execute

concurrently [8]. The key idea of hierarchical locking is that

database objects must be locked according to their contain-

ment hierarchies. For example, a transaction that wanted to

lock a leaf page in a B-tree index would first acquire a read

lock on the table or view, then lock the index or index par-

tition, and then finally lock the page. Multiple transactions

could thus concurrently lock various leaves, and a subse-

quent large transaction could easily identify whether it can

lock a partition without having to check each individual leaf’s

status.

Several designs for hierarchical locking in index exist,

e.g., key range locking on separator keys within a B-tree

index or on key prefixes of various lengths [8]. For example,

if the artificial leading key field in a partitioned B-tree (see

Sect. 2.2) is a 4-byte integer, Tandem’s “generic lock” applied

to the 4-byte prefix effectively locks an entire partition [8,36].

Hierarchical locking is limited to a predefined hierarchy

of data structures, e.g., key, page, and index. The key idea

of incremental locking is that the lock granularity can be

changed dynamically, to adapt to the current workload. For

example, given a workload that consists entirely of a mul-

titude of small transactions in the morning and then shifts

in the afternoon to eventually consist entirely of key range

operations, an incremental locking system would automati-

cally and dynamically shift from locking individual keys to

locking key ranges. The partitions created by database crack-

ing are naturally conducive to incremental locking; in that,

the partitions created as a side effect of index refinement also

represent sub-objects that can then be locked by subsequent

operations.

2.1.4 Allocation-only logging

Allocation-only logging, sometimes also known as “minimal

logging,” means that only operations that impact space allo-

cation are logged. Updates to page contents are not logged;

instead, page contents are forced to storage (traditionally,

to disk) prior to transaction commit (“force” commit pol-

icy). These forced, non-logged, pages are included in the

next transaction backup. Many commercial database systems

use allocation-only logging in order to reduce log volume

by orders of magnitude, compared to a naive logging tech-

nique for index operations. Allocation-only logging applies

to index operations, e.g., creating a new secondary index, and

to page operations, e.g., load balancing among two sibling

nodes in a B-tree.

After a page operation moves records between two-page

images in the buffer pool, the affected pages are written to

storage in such a sequence that the destination page is written

before the source page. This ensures that no records can be

lost in a system failure.

For an index operation, rollback simply releases the new

index pages as free space. Commit of an index operation with

allocation-only logging forces all new index pages to perma-

nent storage [10]. Moreover, the next backup of the recovery

log should include these pages; otherwise, a sequence of log

backups may not permit correct recovery of a media failure.

2.2 Partitioned B-trees

Offering a simple and efficient mechanism for partitioning

the contents of a single B-tree, partitioned B-trees provides an

ideal foundation for adaptive indexing in the form of adaptive

merging.

There are three differences between a partitioned B-tree

and a B-tree partitioned in a traditional parallel database man-

agement system. First, and most importantly, a partitioned

B-tree is a single B-tree, whereas a traditional partitioned

index employs a B-tree per partition. In fact, each individual

B-tree in a traditional partitioning scheme might actually be

a partitioned B-tree in order to support efficient index cre-

ation and incremental loading. Second, partitions in a tradi-

tional partitioning scheme are listed in the database catalogs,

whereas a partitioned B-tree contains multiple partitions sim-

ply by means of distinct values in the artificial leading key

field. Third, partitions in a traditional partitioning scheme

require catalog updates with the attendant concurrency con-

trol protocols, e.g., exclusive locks on data and metadata of

a table, whereas partitions in a partitioned B-tree appear and

disappear simply by insertion and deletion of records with

appropriate values in the artificial leading key field.

For example, Fig. 2 illustrates data that have been loaded

into a partitioned B-tree. Each partition holds as much data as

could be sorted in-memory. The advantage of this approach is

that the data could be loaded into the B-tree without requiring

a full sort. The disadvantage is that queries against the tree

should now account for the multiple partitions.

In a partitioned B-tree, each initial run forms its own par-

tition. Similarly, when partitions are merged, the results may
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Fig. 2 Data loaded into a partitioned B-tree

form a new partition. Partition contents are managed using

a table of content data structure. Earlier work has proposed

alternative data structures for the table of contents [15].

2.3 Online index operations

For a detailed discussion of online index operations, readers

are referred to [10], which the following text briefly summa-

rizes. Online index functionality enables concurrent queries

and updates during index maintenance tasks, e.g., creation

of a new secondary index. Online index creation permits

concurrent transactions to also update the table, including

insertions and deletions, with the updates correctly applied

to the index before index creation commits. There are two

principal designs for online index operations. In the “no side

file” approach, concurrent updates are applied to the struc-

ture still being built [10]. Alternatively, concurrent updates

are captured elsewhere in a “side file” and applied after main

index creation activity is complete [34]. The recovery log

may serve as the “side file.” Srinivasan and Carey further

divide “side file” online algorithms for index creation accord-

ing to whether concurrent updates are captured in a list or in

an index [39]. (Srinivasan and Carey do not consider captur-

ing updates in the recovery log.)

The “side file” design lets the index creation proceed with-

out regard to concurrent updates, but requires at least one

“catch-up” phase that in turn requires either quiescent con-

current update activity or a race between capturing updates

and applying them to the new index [10]. The “no side

file” design requires the index creation process work around

records in the future index inserted by concurrent update

transactions. For example, concurrent update transactions

may need to delete a key in a key range not yet inserted

by the index creation process because index creation is still

being sorting records to be inserted into the new index. Such

deletions can be represented by a negative or “anti-matter”

record [10]. When the index creation process encounters an

anti-matter record, the corresponding record is suppressed

and not inserted into the new index, after which the anti-

matter record, having served its function, can be removed

from the B-tree.

2.4 Adaptive indexing

Many prior index tuning and management approaches focus

on optimizing decisions related to the management of full

index structures that cover all key ranges [3–6,21,24,37].

Some approaches recognize that some data items are more

heavily queried than others and support partial indexes [35,

40], while others recognize that not all decisions about index

selection can be taken up front and provide online index oper-

ations [3,37]. For these prior approaches, explicitly creating

and refining index structures using independent operations

does not impose additional concurrency overhead upon the

processing of read-only queries. Full or partial indexes are

created either up front or periodically, interleaving query exe-

cution. The interested reader may find a detailed description

and study of these basic adaptive indexing techniques in [25].

2.4.1 Database cracking

“Database cracking” pioneered focused, incremental, auto-

matic optimization of the representation of a data collection

—the more frequently a key range is queried, the more its

representation is optimized for future queries [20,26–28,30].

As its name suggests, database cracking splits an array of

values into increasingly refined partitions. Developed in the

context of the column-store database MonetDB, to work on

byte-addressable in-memory data, one can think of it as an

incremental quicksort where each query may result in a par-

titioning step. Index optimization is entirely automatic and

occurs as a side effect of queries over key ranges not yet fully

optimized.

For example, Fig. 3 shows data being loaded directly, with-

out sorting, into an unsorted array. A read-only query on the

range “d–i” then arrives. As a side effect of answering that

query, the array is split into three partitions: (1) keys before

“d”; (2) keys that fall between “d” and “i”; and (3) keys after

Fig. 3 Database cracking
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“i.” Then, a new query with range boundaries “f” and “m”

is processed. The values in partition (1) can be ignored, but

partitions (2) and (3) are further cracked on keys “f” and “m,”

respectively. Subsequent queries continue to partition these

key ranges until the structures have been optimized for the

current workload.

2.4.2 Adaptive merging

Inspired by database cracking, and developed in the con-

text of page-access storage, “adaptive merging” also refines

index structures during query processing [14,16]. While

database cracking resembles an incremental quicksort, with

each query resulting in at most two partitioning steps, adap-

tive merging resembles an incremental external merge sort,

but with the merge effort expended only on demand and with

both run generation and merging realized as side effects of

query execution. In adaptive merging, the first query with a

predicate against a given column produces sorted runs. Each

subsequent query against that column then applies at most

one additional merge step to each record in the desired key

range. All records in other key ranges are left in their initial

or current places. As with database cracking, this merge logic

takes place as a side effect of query execution.

In adaptive merging using partitioned B-trees, a run in the

sort logic equals a partition in the B-tree. The first step creates

as many new partitions as required to capture all new index

entries in runs. Subsequent steps scan key ranges in the ini-

tial partitions and merge them into the final partition. Earlier

work has proposed alternative data structures for the table of

contents [15]. For very large tables and very limited merge

fan-in, multiple merge levels may be required. Each com-

plete merge level moves each record once; in other words,

in many cases, each record participates in only one merge

step. In all cases, records are not duplicated between parti-

tions; each record logically resides in only one partition at a

time.

In its first step, adaptive merging scans the database table

(or other data source) and creates initial partitions using tra-

ditional techniques for run generation, i.e., read–sort–write

cycles using quicksort or continuous replacement selection

using a priority queue. For example, Fig. 4 shows an initial

read-only query that creates equally sized partitions and sorts

them in-memory to produce four sorted runs. In subsequent

steps, it merges specific key ranges using traditional tech-

niques for range queries and for external merge sort. Contin-

uing the previous example, while a second query with range

boundaries “d” and “i” is processed, relevant values would be

retrieved (via index lookup because the runs are sorted) and

merged out of the runs and into a “final” partition. Similarly,

results from a third query with range boundaries “f” and “m”

are merged out of the runs and into the final partition. Sub-

sequent queries continue to merge results from the runs until

Fig. 4 Adaptive merging

the “final” partition has been fully optimized for the current

workload.

2.4.3 Hybrid adaptive indexing

Database cracking and adaptive merging have distinct

strengths; our adaptive indexing “hybrid” approach brings

together both sets of strengths in the context of an in-memory

column store [29]. Each step of database cracking is like a

single step in a quicksort, whereas the first step of adap-

tive merging creates runs, in which subsequent steps merge.

Thus, database cracking enjoys a low initialization cost, but

converges relatively slowly, whereas adaptive merging has a

relatively high initialization cost but converges quickly to an

optimally refined index.

Our hybrid adaptive indexing algorithms apply different

refinement strategies to initial versus final partitions, exploit-

ing the insight that in adaptive merging, once a given range

of data has moved out of initial partitions and into final par-

titions, the initial partitions will never be accessed again for

data in that range. A final partition, on the other hand, is

searched by every query, either because it contains the results

or because results are moved into it. Therefore, effort that

refines an initial partition is much less likely to “pay-off”

than the same effort invested in refining a final partition.

The hybrid algorithms combine the advantages of adap-

tive merging and database cracking while avoiding their dis-

advantages: fast convergence, but without the burden of fully

sorting the initial partitions. For example, Fig. 5 shows an ini-

tial read-only query that creates four equally sized unsorted

initial partitions. While a second query with range boundaries

“d” and “i” is processed, each initial partition is cracked on

the query’s boundaries, and the requested values are merged

out of the initial partitions and into a sorted “final” parti-

tion. Similarly, from a third query with range boundaries “f”

and “m,” the initial partitions that hold relevant values are

cracked, and the result values are merged out of the initial

partitions and into the final partition. Subsequent queries con-

tinue to crack initial partitions and merge results from them
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Fig. 5 Hybrid “crack-sort” adaptive indexing

until the “final” partition has been fully optimized for the

current workload.

2.4.4 Soft indexes

“Soft indexes” automatically and autonomously manage

indexes in response to a workload [32]. Like the monitor-and-

tune approaches, this approach continually collects statistics

for recommended indexes and periodically and repeatedly

automatically solves the index selection problem. Unlike typ-

ical monitor-and-tune approaches and like adaptive index-

ing approaches, [32] then generates (or drops) the recom-

mended indexes as a part of query processing. Unlike adap-

tive indexing approaches such as database cracking and adap-

tive merging, however, neither index recommendation nor

creation is incremental; explicit statistics are kept, and each

recommended index is created and optimized to completion

(although the command might be deferred). Although we

recognize soft indexes as a kin to database cracking and adap-

tive merging, in the remainder of this paper, we focus upon

the latter, i.e., incremental and adaptive indexing methods.

2.5 Blink-trees and foster B-trees

Adaptive indexing in the form of adaptive merging, which

is discussed in Sect. 4, potentially physically restructures a

B-tree’s nodes with every query. In order to reduce the likeli-

hood of latch contention, particularly in the context of multi-

core backed by fast persistent memories, we recommend the

use of Foster B-tree mechanisms when implementing adap-

tive merging in a B-tree.

The classic latching technique would advocate that the

root-to-leaf pass for an insertion retains an exclusive latch

until it passes through a “safe” node that has sufficient free

space for a local insertion in case a child node must split and

post a new branch key (and thus cannot require a split) [1].

This potentially results in an exclusive latch on every node

involved in the root-to-leaf search for the insertion point.

Improving upon Blink-trees,[31], Foster B-trees require

only two latches at a time during a structural modification.

Their design introduces left-to-right sibling pointers in addi-

tion to parent-to-child pointers. Each level of the B-tree data

structure forms a singly linked list. When a node overflows

and a new node is required, the overflowing node holds a

pointer to the new node together with a key value that sepa-

rates key values retained in the old node and those moved to

the new node. Because the parent node does not participate in

the split operation, two latches suffice to protect the overflow-

ing node and the new node. Soon thereafter, the pointer and

the branch key are copied to the parent node, which requires

latches only on the sibling and the parent nodes. If thereupon

the parent node overflows, the same techniques are applied

there.

Like Blink-trees,Foster B-tree relationships avoid the need

for root-to-leaf exclusive latches for insertions. Foster B-trees

have three unique characteristics that help them avoid latch

contention:

1. Every node in the tree has only a (single) incoming

pointer at all times.

2. A node may temporarily provide the single incoming

pointer to a sibling node, a relationship described using

the terms “foster parent” and “foster child.” Like Blink-

trees before them [31], Foster B-trees require only two

latches at a time during a structural modification. For

example, when a node is first split, because the parent

node does not participate in the split operation, only two

latches are needed—one to protect the overflowing node

and one to protect the new node.

3. Any structural change (e.g., the split of an overflowing

node, the insertion of a new node, or the deletion of an

underflown node) can be represented as a sequence of

three independent incremental operations, none of which

requires more than two latches at any time. For exam-

ple, the intermediate state during a leaf split is transient

and resolved quickly after it has been created, but it may

persist long enough to be observed by other threads or

other transactions. Resolving it means moving pointer

and branch key from the formerly overflowing sibling

node to the parent.

We refer interested readers who would appreciate a more

detailed discussion to a prior publication [13].

3 Approach

While our prior work on adaptive indexing [12,14,16,20,26–

30] has focused on data structures and algorithms, transac-

tional guarantees are also required for integration of new

techniques into a database management system. We are

informed by recent surveys on concurrency control and

recovery [9,11] that cover these topics for B-tree indexes. The

123



310 G. Graefe et al.

Fig. 6 Traditional online versus adaptive indexing

transactional ACID guarantees include (failure) atomicity,

consistency, isolation (synchronization atomicity), and dura-

bility. Database systems usually implement recovery (fail-

ure atomicity, durability) by write-ahead logging and con-

currency control (synchronization atomicity) by locking and

latching.

Adaptive indexing introduces new potential states to the

index life cycle. The diagram in Fig. 6 compares the relation-

ship between index states in traditional online index opera-

tions versus in adaptive indexing. State 2 is invisible and

of very short duration in most systems. An exception is

Microsoft SQL Server, where this state is called a “disabled

index.” In State 3, the index is partially populated, i.e., it

contains fewer index entries than there are rows in the under-

lying table, but the index is fully optimized. That is, those

key ranges already in the index are in their final position

within the index. Table and index can be updated (that is the

“online” aspect of traditional online index creation), but the

index cannot be used for search during query processing.

Adaptive indexing refinements take place in State 4, where

the index is fully populated but the index structure is not fully

optimized. In other words, all index entries exist but not yet

in their final position. In this state, the fully populated, par-

tially optimized index is available for both read-only query

processing and read-write update processing, whereas the

partially populated, fully optimized partial index in online

index creation requires effort in all updates but does not

contribute to read-only query processing. Optimization of

the index is left to future query execution and will affect

only those index entries relevant to actual queries, i.e., key

ranges in actual predicates. Optimization of other key ranges

is deferred until relevant queries are encountered, possibly

indefinitely. A single user transaction might encounter mul-

tiple such cases, e.g., querying and updating multiple key

values in a single index, which is being optimized by adap-

tive indexing techniques.

This section discusses at a general level how to provide

transactional guarantees to concurrent queries and refinement

operations against an index that is in State 4. We consider

concurrency control mechanisms that ensure that concurrent

transactions can operate in isolation, how to provide dura-

bility while minimizing the performance overhead of log-

ging, and how to recover from failures without losing prior

refinement efforts or sacrificing failure atomicity. For each

topic, we discuss general techniques that facilitate the task

in the context of adaptive indexing. Next, in Sects. 4 and 5,

we demonstrate how to apply those techniques to adaptive

merging and database cracking, respectively.

Fundamentally, two factors mitigate the potential com-

plexity and overhead that adaptive indexing incurs when exe-

cuting queries that are logically “read-only” but which refine

index data structures. First, with read-only queries, adaptive

indexing performs only structural modifications to the phys-

ical representation of the index, leaving the logical contents

of the index unmodified. This separation between user data

and system state is very powerful and gives the system trans-

actions of adaptive indexing independence from user trans-

actions, even if they run within the same execution thread.

For example, if a user transaction rolls back for some reason,

there is no need to reverse its index optimization already

achieved. More subtly, the user transaction (and its query)

might run in a low transaction isolation level, e.g., read com-

mitted, whereas the index optimization must achieve com-

plete correctness and synchronization atomicity with respect

to all other transactions active in the system.

Second, the adaptation of index data structures to conform

to the current workload enables the automatic and dynamic

adaptation of the lock granularity of locks needed to coordi-

nate structural changes. That is, as the workload progresses

and the physical data structures become increasingly refined,

not only do structural changes become less likely, but also the

objects locked by refinement operations become increasingly

finer-grained, reducing the likelihood of contention.

3.1 Concurrency control

The following focuses on a single-threaded query with index

optimization and on concurrency control with respect to other

queries. This scenario is particularly relevant with regard to

State 4 as shown in Fig. 6, where an index has been created

and added to the catalogs, but the index has not yet been

fully optimized for this workload, so queries may still result

in updates to index structures.

3.1.1 Concurrency control by latching

Since index optimization affects only index structure, not

logical index contents, the thread and system transaction per-

forming the index reorganization may rely entirely on latches.

There is no need for acquisition of any locks, although it is

required to verify that no concurrent user transaction holds

conflicting locks. The latches (on index pages) are retained

during a quick burst of reorganization activity; as in stan-

dard system designs, user transactions cannot request locks
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on a page or on key values within an index page without first

acquiring the latch on the page.

3.1.2 Conflict avoidance

Index reorganization in adaptive indexing is optional. Adap-

tive indexing treats each read query as an opportunity to

improve the physical design. All actions are optional, as adap-

tive indexing inherently operates on incomplete, not fully

optimized indexes. In other words, if an individual query

fails to optimize the index, some other query will do so soon

thereafter if necessary—and the bigger the potential impact

of the refinement action, the more likely that it will eventually

take place. Thus, if a query intends to optimize an index but

finds that some concurrent user transaction holds conflicting

locks, the query can simply forgo the index optimization.

3.1.3 Early termination

Some forms of adaptive indexing can terminate an optimiza-

tion step at any time yet leave behind a consistent and search-

able index, which subsequent queries and their side effects

may optimize further. Thus, if a user transaction attempts

to access pages latched by an active system transaction per-

forming index optimization, the system transaction may ter-

minate instantly, release its exclusive latches, or downgrade

them to shared latches, permitting the concurrent user query

to proceed.

Concurrency contention is one of two possible cases for

early termination of system transactions engaged in index

optimization. The other case is discussed below in the context

of recovery.

3.2 Implicit multi-version concurrency control

Finally, adaptive indexing lends itself naturally to multi-

version concurrency control. Because index structures are

independent from contents, two transactions may each oper-

ate upon their own copy of a contended index structure, which

may be assigned version numbers.

3.3 Logging

As adaptive indexing creates and optimizes (typically)

optional indexes, and since this process might move each

data item multiple times, minimal overhead is crucial. In

other words, both creation of the initial index (State 2 in

Fig. 6) and each optimization step (State 4) should log at

most key ranges, page allocation actions, etc. but not the

contents of records and of index pages. The most closely

related technique in traditional index creation is “allocation-

only logging,” which, as described in Sect. 2.1.4, saves most

of the naive logging effort (by logging allocation of pages but

not page contents) and which we adapt to adaptive indexing.

3.3.1 Retaining old pages

The separation of logical contents versus physical structure

again permits multiple optimizations. User transactions and

system transactions have different requirements, not only

with respect to failure atomicity but also with respect to

durability. In other words, until a subsequent user transac-

tion updates the logical index contents and that user transac-

tion’s commit processing forces all prior log records to sta-

ble storage, a system transaction can be recovered by “undo”

(compensation). This can be as simple as dropping modified

(dirty) pages in the buffer pool and thus retaining the data

pages valid prior to a reorganization step in an index.

3.3.2 Small system transactions

In online index creation, which focuses on concurrent queries

and user updates, one transaction builds the index and another

transaction, executing in another thread, applies updates [34].

In adaptive indexing, structural index optimization runs

within the same thread as the main user query but individ-

ual transactions, user and system transaction, separate user

query and index optimization.

A further technique exploiting system transactions is the

following. Instead of a single large system transaction, many

small system transactions can accomplish the same effect.

Low invocation and commit overheads limit the cost of a

large number of transactions. Rather than supporting termi-

nation of system transactions due to newly arrived conflicting

transactions, the system may let active system transactions

finish and merely not start new ones.

3.3.3 Dedicated update partitions

In both adaptive indexing methods, database cracking and

adaptive merging, concurrent user transactions may apply

their updates to storage locations dedicated to the purpose.

Subsequent reorganization steps can work recently added

records into the main index including deletions initially rep-

resented by insertion of “anti-matter” records. The user trans-

actions log their initial insertions in the normal way; subse-

quent reorganization can benefit from the log optimizations

above.

3.4 Recovery

3.4.1 Starting over

Again, as adaptive indexing creates and optimizes (typically)

optional indexes, one possible recovery after a system or
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media failure is to drop the index. In fact, one could argue

that this approach may reduce the restart and recovery time.

The approach is conceivable even as recovery from a failed

transaction. However, even if most system transactions for

index optimization succeed, this seems a rather drastic mea-

sure after failure of a single transaction as it loses all past

index optimization effort.

3.4.2 Leveraging prior query patterns

Even when the index structure is corrupted or lost, informa-

tion about prior query patterns may still be intact. If that infor-

mation is still available, then one recovery strategy is to de-

allocate the index, but pro-actively start optimizing the index

based on prior query patterns. For example, a query log or

some equivalent data structure could guide initial optimiza-

tion of the index structure, possibly by re-invoking earlier

queries for the benefits of their side effects.

3.4.3 Selective undo and redo

The traditional recovery technique performs complete “undo”

or “redo” recovery. If a reorganization step is committed and

the recovery logic finds the commit record in the recovery log,

a subsequent user transaction might depend on the reorgani-

zation’s effects. Therefore, only “redo” recovery is accept-

able. This is subject to the rules for “restricted repeating of

history” [11].

Without a commit record in the recovery log, the recovery

logic is free to choose between “undo” (compensation) and

“redo” recovery, because index reorganization affects only

the index structure, not index contents. For example, if the

reorganization step is complete with only the commit record

missing, e.g., because system transactions do not force their

commit records to stable storage, then recovery can be much

more efficient if it completes the reorganization by simply

adding the missing commit record.

3.4.4 Early termination

In fact, the recovery logic may even commit a partially com-

plete reorganization step. The only requirement is that the

index is in a consistent state after recovery, i.e., the index con-

tains precisely the correct index entries exactly once. Thus,

early termination of a reorganization step can aid not only

concurrency control but also efficient recovery.

3.5 Summary

In summary, efficient concurrency control and recovery

requires strict separation of logical index contents and phys-

ical index structure. Reorganization of an index, whether

database cracking or adaptive merging, does not affect its

logical contents. Thus, index optimization can avoid con-

flicts with user transactions and locks. Instead, it can rely

on system transactions, latches, and many small transactions

with low overheads for invocation and commit processing.

These system transactions must respect existing locks held

by user transactions, but the system transactions have no need

to acquire and retain locks.

Moreover, some optimizations are specific to content-

neutral index operations. In case of concurrency contention,

a system transaction may simply stop, commit work already

completed, and defer further planned work to a subsequent

system transaction. In case of a system failure during index

optimization, recovery may choose to “redo” or “undo” a sys-

tem transaction and its index reorganization, and it may even

choose partial “redo” and partial “undo” as long as the recov-

ery remains contents-neutral like the original system transac-

tion. We are currently considering whether these properties

are more general, e.g., apply to all system transactions, not

only index optimization in adaptive indexing techniques.

4 Adaptive indexing with B-trees

The recommended data structure for adaptive merging is a

partitioned B-tree, preferably one that also employs Foster

B-tree mechanisms. Therefore, many techniques designed

for B-tree indexes can be used, not only with respect to data

structures, storage management, etc., but also with respect to

concurrency control, logging, and recovery.

4.1 Transactions and partitioned B-trees

Transactional guarantees in adaptive merging rely on com-

bining partitioned B-trees with the techniques outlined in

Sect. 3. However, no special latching mechanisms are needed.

Recall that a partitioned B-tree is implemented using a single

B-tree and that conceptually partition identifiers are simply

artificial keys prepended to the keys within a given parti-

tion. Merging records from one partition into another is thus

simply a matter of updating the keys associated with those

records, substituting one partition’s identifier for another’s.

For example, concurrency control and recovery can rely on

the techniques explored in earlier research and development,

e.g., [9,11,19,22,33]. In the following, we point out specific

techniques for B-trees and adaptive merging with particularly

low overhead and low contention.

In adaptive indexing, no individual query and its execu-

tion rely on a specific earlier query and its optimization of

an index structure or even completion of the B-tree index.

Thus, several techniques for efficient concurrency control

and recovery rely on interpreting any requested index opti-

mization as optional. For even more flexibility, input and

output pages in merge steps can enable multi-version con-
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currency control to separate read-only queries and queries

with index optimization as side effect.

Adaptive merging relies on a form of differential files [38]

for high update rates. During a single load operation, multi-

ple new partitions might be created in a partitioned B-tree.

Typically, the size of each new partition is equal to (or twice)

the size of the memory available for sorting arriving records.

Concurrent update transactions may apply their updates and

deletions immediately in place or defer them by insertion of

“anti-matter” (deletion markers), which are used routinely

in online index creation and in incremental maintenance of

materialized views [10]. Insertions may be collected in new

partitions within the partitioned B-tree or they may be applied

to an existing partition. We recommend new partitions for key

ranges not yet fully optimized, i.e., key ranges with records

still scattered in multiple partitions, and immediate mainte-

nance of the existing, final partition for fully optimized key

ranges.

4.2 Concurrency control

At each query, adaptive merging potentially optimizes index

structures by moving records from one partition to another,

raising two challenges. First, concurrent queries upon over-

lapping key ranges potentially increase the possibility of lock

contention. Second, even if two optimization actions do not

contend for logical locks, they could potentially contend for

physical latches. We bypass the first challenge by observing

that index optimization actions impact only the database’s

organization, as opposed to its contents, and thus may be

skipped. We address the second challenge by leveraging the

Foster B-tree mechanisms described in Sect. 2.4.4. We fur-

ther discuss both of these challenges below.

4.2.1 Locking

Early research on concurrency control in B-trees failed to

separate short-term protection of the data structure versus

long-term protection of B-tree contents. The distinctions of

contents versus representation, user transactions versus sys-

tem transactions (outlined in Table 2), locks versus latches

(sketched in Table 1), etc., are now standard in sophisti-

cated B-tree implementations. Key range locking for leaf

keys is also standard, and key range locking for separator

keys explicitly relies on the structure of B-trees (page lock-

ing). Thus, all these techniques immediately apply to adap-

tive merging implemented with partitioned B-trees.

That is to say, refinement of index structures is effected by

system transactions, which test for locks, but do not acquire or

retain them. Thus, the transactions that realize adaptive merg-

ing’s index refinements will never create lock contention for

user transactions. Just as important, as described in Sect. 3,

a system transaction that encounters an exclusive lock on a

page it intends to modify can abort without any impact on

database contents because index refinement is an optional

activity.

Furthermore, the partitioned B-tree recommended for

adaptive merging is naturally conducive to concurrency

control. A partitioned B-tree is a valid B-tree index, with

respect to both contents and representation, independent

of the merge steps completed. The original partitioned B-

trees [7] exploited this property in various ways. It can also

be exploited for concurrency control in adaptive merging. In

particular, concurrency control conflicts should, when pos-

sible, be resolved by instantly committing an active merge

step and its result.

Finally, merge steps take records from many existing B-

tree pages and write new pages in a new B-tree partition.

Although the record-to-be-merged may need be merged with

each other, they will at worst be interleaved with the contents

of the “final” partition. These separate sets of pages readily

enable a limited form of multi-version concurrency control,

with shared access to the old pages and exclusive access to

the new pages until they are committed.

Therefore, if one transaction attempts to merge index

entries but finds (e.g., by latch conflicts) that the key range

of interest is being merged already by another transaction, it

should simply scan the key range, forgo any side effect, and

return the desired query result.

4.2.2 Latching

As described in Sect. 2.4.4, traditional latching techniques

require two adaptive merging optimization actions that write

to separate pages within the “final” partition to each obtain

and retain exclusive latches for each node encountered along

the insertion root-to-leaf pass until it passes through a “safe”

node. The two optimization actions could thus find them-

selves contending for an exclusive latch on interior nodes,

even though they will insert content into different leaf nodes.

Adaptive merging thus particularly benefits from the at

most two exclusive latches required by Foster B-tree opera-

tions. For example, Fig. 7 shows a portion of a B-tree cor-

responding to part of an adaptive merging final merge par-

tition. Two independent yet concurrent optimization actions

each want to merge records into separate pages. The records

to be merged along with their target destinations are outlined

in blue (left) and in purple (right), indicating that they are

associated with separate system transactions. The blue (left)

transaction results in records that lie in the range between

20 and 39. Previous queries have partially refined this range,

and thus the results of the current query must be interleaved

with preexisting records that were added to the final partition

by prior queries. For the sake of simplicity, these records are

represented in the figure by the keys ‘25’, ‘30’, ‘40’, etc.,

but in realistic situations (too complex to draw here) likely
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Fig. 7 Records being merged into the final index partition by concur-

rent system transactions (blue and purple) (color figure online)

Fig. 8 One system transaction (blue) holds two latches; the other (pur-

ple), holds one (color figure online)

would represent ranges of keys. With foster child relation-

ships, at this point, only the target nodes need to be exclu-

sively latched, indicated by the dotted blue and purple lines.

Figure 8 shows an intermediate state, where the merged

records have been inserted, and latches are just being

released. The blue- and purple-dotted boxes indicate the node

latches that are about to be released by the two system trans-

actions. Note that the (left) blue transaction resulted in the

split of a leaf node being split and the creation of a fos-

ter child, whereas the (right) purple transaction relation was

able to complete the merge without any node splits.

Algorithm 1 sketches the process of how latches are

acquired and released by a system transaction such as the

ones illustrated in Figs. 7 and 8 that logically merges records

from run partitions into a leaf node of the final partition.

4.3 Logging

With the focus here on adaptive indexing, we assume that

index updates initiated by users and applications employ

standard logging. Automatic index creation and optimiza-

tion, on the other hand, must be prevented from producing

excessive log volumes, just like traditional index utilities.

The goal, therefore, is adaptive merging with allocation-

only logging yet with recovery comparable to fully logged

index operations. In the following, we assume allocation-

only logging for both run generation and all incremental steps

in adaptive merging, i.e., both for saving future index entries

in multiple runs (B-tree partitions) and for merging entire

Algorithm 1 MergeResultsIntoLeaf(recordToMerge)

Insert a record-to-be-merged into a leaf node while protecting

the leaf node with latches. Although it is now shown, if any

latch attempt fails, the merge attempt aborts.

1: // Find the leaf node where the record-to-be-merged belongs.

2: readLatch(RootNode );

3: node = RootNode.lookup(recordToMerge);

4: readLatch(node );

5: unlatch(Root);

6: while ! node.isLeaf() do

7: nextNode = RootNode.lookup(recordToMerge);

8: readLatch(nextNode );

9: unlatch(node);

10: node = nextNode;

11: writeLatch(node);

12: // Insert the record.

13: node.insert(recordToMerge);

14: // Split the leaf if necessary.

15: if node.size() >= splitThreshold then

16: node.split();

partitions or limited key ranges during index optimization.

While allocation-only logging reduces the logging overhead

incurred by adaptive merging, the difficulty is in ensuring

correct and complete recovery from all failure.

4.4 Recovery

Recovery of the index contents from log records is not possi-

ble after allocation-only logging—the new index’s contents

must be completely re-created. Even so, adaptive indexing

offers better recovery techniques than simply re-creating an

index by running the entire index creation logic from start

to finish. Below, Sect. 4.4.1 describes how the replacement

index may be created incrementally, e.g., broken into initial

extraction of future index entries and incremental optimiza-

tion of the index structure. Next, Sect. 4.4.2, proposes a sec-

ond, novel, alternative, which avoids having to completely re-

create the entire index by exploiting the single-page recovery

of all pages in the index, despite allocation-only logging.

4.4.1 Incremental index re-creation

For any optional index, a possible recovery technique is to

start over with an entirely new index. Note that adaptive

indexing offers more options for recovery techniques than

just re-creating an index, running the entire index creation

logic from start to finish: the replacement index may be

created incrementally, e.g., broken into initial extraction of

future index entries and incremental optimization of the index

structure. Moreover, these individual steps can again be side

effects of query execution. Finally, the same techniques for

concurrency control, logging, and recovery apply during a

first and any subsequent attempt to build an index.
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For example, adaptive merging indexes can benefit from

a technique for recovering B-tree indexes that are created

by sorting the future index entries. The technique exploits

knowledge of prior query patterns, by permitting preferential

treatment of certain key ranges during run generation in order

to reduce the merge effort for those key ranges only. It is

adapted from a sorting technique that produces the lowest

key values with lower merge effort and even no merge effort

at all. Specifically, memory is divided during run generation

into two workspaces for “low” and “other” key values. The

fraction of memory for “low” key values is larger than the

fraction of “low” key values in the input data.

One effect of this division is that runs are smaller and more

numerous; the other effect is that few runs contain the lowest

keys. For example, if 10 % of the records fall into the “low”

key range and 50 % of memory is used for each workspace,

run generation produces almost twice as many runs but only

about 10 % of those runs contain “low” keys. Thus, if the

merge fan-in is limited, merge effort for the “low” keys is

reduced. If the fraction of “low” keys is very small, merging

might be avoided entirely. If the sort operation is used to pre-

pare B-tree creation, the “low” keys can be any favored key

range instead. If the query pattern or interesting key ranges

are known from prior queries, re-creation of an index during

recovery can optimize the sort algorithm accordingly.

The flexibility of partitioned B-trees readily permits early

termination during recovery. In other words, recovery may

undo an incomplete merge step, redo and complete it, or redo

it for some of the key range and undo it for the remainder. The

last option is particularly valuable if it permits the recovery

process to leave most on disk pages in their current state, thus

speeding up the entire recovery process.

4.4.2 Single-page logical recovery

Whereas the preceding subsection outlined how to recover an

entire adaptive index incrementally, we delineate here a sim-

ple strategy for recovering from partial failures—for exam-

ple, if just a certain key range of the adaptive index is lost.

This strategy extends our earlier research on single-page fail-

ures, their detection, and recovery. The recommended strate-

gies apply logical recovery, i.e., re-deriving index contents,

rather than physical recovery, i.e., copying lost index contents

from the log [18,41,42]. Strategies differ for initial index

partitions and for intermediate or final index partitions. The

former are derived from a table’s primary storage container,

e.g., a clustered index or index-organized table, and recov-

ery re-derives index contents from the same source. Merge

output is obtained from earlier partitions (runs) and recovery

re-derives index contents by invoking the appropriate merge

logic. Moreover, recovery strategies differ by the scope of

the data loss, which may affect an entire index partition or

merely an individual page (or a few individual pages).

Fig. 9 Traditional recovery

If a traditional system suffers a system or media failure

during index creation, recovery of the newly created sec-

ondary index relies on repeating the entire index operation,

i.e., it reaches back to the base table. Recovery of the index

contents from log records is not possible after allocation-

only logging—the new index’s contents must be completely

re-created.

Figure 9 schematically illustrates the problem of the tradi-

tional recovery process. Runs in the external merge sort are

shown as partitions of a B-tree; the final merge step creates

the desired B-tree index; and recovery after failure reaches

back to the base table, i.e., repeats the entire effort of index

creation.

The preceding section indicates a better alternative,

namely re-creating an index incrementally over time, prefer-

ably as side effect of query execution. But better yet, incre-

mental recovery pertains not only to the traditional failure

modes (i.e., transaction failure, media failure, system fail-

ure) but also to a fourth failure mode added only recently,

single-page failure [17]. Such failures may be due to defec-

tive B-tree code, lower software levels within the database

management system, or software and hardware serving the

database management system, e.g., storage-area networking

and snapshot file systems.

The following discussion focuses on failure and recovery

of individual leaf pages or groups of leaf pages in B-tree

indexes. For efficient single-page recovery of all pages in a B-

tree index, non-leaf pages, typically only 1–0.1 % of all pages

in a B-tree, should be fully logged such that existing recovery

techniques suffice, e.g., log-based single-page recovery [17].

Recovery from single-page failures requires an earlier

image of the page plus a continuous list of detailed log records

for all changes between this “backup” image and the present.

Allocation-only logging is advantageous for traditional index

creation and for adaptive merging precisely because it avoids

details in log records. Thus, it seems that allocation-only

logging is incompatible with efficient, “pin-point” recovery

from single-page failures. However, as we describe below,

partitioned B-trees and adaptive merging enable single-page

recovery without such log records, namely by re-deriving

lost contents from retained prior data. This is due to index

operations proceeding in distinct simple steps with valid and

useful states in between, even if each merge step merges only

a small key range.
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Fig. 10 Single-step recovery: run generation (color figure online)

Should one of the initial runs become unreadable, it can

be recovered if the appropriate part of the primary data struc-

ture can be identified, retrieved, and re-sorted. If only a key

range within an initial run becomes unreadable, this key range

translates to a predicate when re-scanning the primary data

structure, which reduces the sort effort but not the scan effort.

Figure 10 illustrates the technique, where recovery of a

single run (center, red) reaches back to the original table

(left, blue) but scans only a part of it (left, red). The final

index (right) does not participate in this scenario. It might

not even exist yet and is thus drawn with dashed lines.

Such recovery works very efficiently if each partition in

the new index maps to a specific segment of the source data

structure. Ideally, a table’s primary data structure is a B-

tree index (a clustered index also known as index-organized

table), the scan providing input to run generation uses the

index order (as opposed to an allocation-order scan), and run

generation proceeds in read–sort–write cycles (e.g., using

quicksort, not using a continuous process such as replace-

ment selection). In this case, the read–sort–write cycles and

the index order scan provide a simple mapping from a run

in the new index to a key range in the data source, and the

primary index provides efficient access to just that key range.

In contrast, run generation by replacement selection permits

only less precise mappings, and an allocation-order scan or a

primary data structure other than an index requires an unusual

predicate on a page range rather than a standard predicate on

a key range.

If only a single page within a run is unreadable, it can

be re-derived efficiently using a partial scan of the original

table. Differently from the partial table scan in Fig. 10, this

partial scan applies a predicate matching the key range of the

unreadable page. If a B-tree represents each run or if a single

partitioned B-tree represents all runs, the parent page in the

B-tree structure can provide the required key range.

Figure 11 illustrates recovery of a single page in an adap-

tive merging partition. Scanning the appropriate fraction of

the data source quickly produces the index entries that belong

to the unreadable page of the index partitions.

When the number of partitions that produce results

exceeds the number that can be merged in a single step,

then instead of merging results into the final partition, some

results may be merged into new partitions. This is similar to

Fig. 11 Single-page recovery: run generation

Fig. 12 Single-step recovery: merging

Fig. 13 Single-page recovery: merging

the intermediate runs produced by an external merge sort. In

such cases, additional queries may be required before these

records are adaptively merged into the final partition, or if

they are not queries again, they may remain where they are.

Should an intermediate run or a key range within such an

intermediate partition become unreadable, recovery repeats

the merge logic for that key range. The same is true for the

final merge step producing the final, fully optimized index:

Should a part of the final index partition become unreadable,

it can be recovered by re-merging data from the final runs.

For example, Fig. 12 illustrates single-step recovery from

intermediate run partitions, i.e., it complements the single-

step recovery illustrated in Fig. 10. If intermediate runs still

exist, recovery of the final index can omit table scan and run

generation, instead repeating only the final merge step.

Figure 13 illustrates single-page recovery by partially

repeating a merge step. If a single page (or a small set of

pages) is unreadable in the final index partition, intermediate

runs stored in a B-tree permit direct access to the required

key range. A short merge operation can reproduce precisely

the unreadable key range without wasting any effort on other

key ranges.

During merge steps in a partitioned B-tree, e.g., during

adaptive merging, a limited merge fan-in reduces the memory
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allocation required for the side effect of query execution.

Thus, there is a trade-off between efficiency of a merge step

(favoring a high merge fan-in) and the overhead of memory

allocations (favoring a small merge fan-in).

In summary, efficient single-page recovery for index oper-

ations does not require logging the new index contents.

Instead, it merely requires retaining data structures, i.e.,

delaying their removal from temporary storage space. Doing

so enables efficient recovery of both large and small fail-

ures, e.g., single-page failures in intermediate data struc-

tures (e.g., runs during index creation) and in final index

structures. While the prior design for single-page recovery

requires extensive logging, the new design relies on data

structures created in the standard sequence of steps. Online

index operations, i.e., those database updates during index

creation, require additional application of single-page recov-

ery techniques, as detailed elsewhere [17].

5 Adaptive indexing for column-oriented databases

In this section, we study the implications of concurrency

control for adaptive indexing in a column-store environ-

ment. Adaptive indexing was originally proposed as a

column-store-specific index mechanism in the form of data-

base cracking [26] and has subsequently evolved to further

column-specific refinements such as sideways cracking [28]

and hybrid adaptive indexing techniques [29]. Given that the

same core principles apply for all adaptive indexing methods,

for simplicity of presentation, our discussion focuses mainly

on selection cracking [26].

5.1 Column-oriented storage and access

The storage and access patterns significantly affect the way

concurrency conflicts appear and how they can be resolved.

In a column-store system, data are stored one column at a

time; every attribute of a table is stored separately as a dense

array. This representation is the same both in memory and

on disk. All columns of the same table are aligned, which

allows for efficient positional access to collect all values

of a given tuple. For example, all attribute values of tuple

i of table R appear in the “i-th” position in their respec-

tive column. Such an example is shown in the left part of

Fig. 14.

During query processing, the system accesses one column

at a time in a bulk processing mode. The right part of Fig. 14

shows the steps of evaluating a simple select project query in

a column-store system. It first evaluates the complete selec-

tion over one column. Then, given a set of qualifying IDs

(positions), it fetches only the required values from another

column before computing the complete aggregation in one

go again.

Fig. 14 Storage and access in a column-store system

There are two column-store-specific features that adap-

tive indexing exploits. First, given the underlying represen-

tation of data in the form of fixed-length dense vectors, index

refinement actions can be implemented very efficiently. Sec-

ond, due to bulk processing, each column referenced in a

query plan is actually used for only a brief period of time

compared to the total time needed to process the complete

query. For example, as the right part of Fig. 14 shows, col-

umn A is relevant only for the select operator and is not used

for the remainder of the query plan. This means that adap-

tive indexing only needs to use short-term latches that do not

necessarily span the whole duration of a query plan.

5.2 Algorithms and data structures

In this subsection, we dive deeper into the details of original

database cracking [26] to highlight the design issues and data

structures that impact concurrency control.

Database cracking relies on continuous but small index

refinement actions. Each such action reflects a data reorga-

nization action of the dense array representing the cracking

index. In its original design, the cracker index for a column

consists of two data structures: (1) a densely populated array

of rowID–value pairs that holds an auxiliary copy of the orig-

inal column of key values, and (2) a memory resident AVL

tree that serves as a table of contents to keep track of the key

ranges that have been requested so far. Each select opera-

tor call uses the AVL tree to identify the parts of the index

that need to be refined. Figure 15 shows the basic cracking

array and AVL tree in action as it is affected by two consec-

utive queries. The first query finds a vanilla uncracked col-

Fig. 15 Database cracking data structures
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Fig. 16 Cracker array implementation and swap actions

umn and cracks into two new pieces, while the second query

may exploit and enhance the existing cracking information

by introducing more pieces.

The array is continuously physically re-organized (incre-

mentally sorted based on key values) as a side effect of query

processing. The nodes in the AVL tree point to the segments

(“pieces”) in the cracker array where requested key ranges

can be found after the respective reorganization step. Thus,

the AVL tree provides instant access to previously requested

key ranges and restricts data access as much as possible for

the case of a non-exact match, pointing to the shortest pos-

sible qualifying range for further cracking.

The latest generation of the cracking release uses a differ-

ent format for the cracker array. Instead of using an array of

rowID–value pairs, it uses a pair of arrays. In the latter case,

we have the rowIDs array and the values array. Figure 16

shows an example comparing both representations. Main-

taining separate areas can improve query processing perfor-

mance, e.g., by providing better cache locality for operators

that need to access only the rowID array or only the value

array.

5.3 Concurrency control

It is sufficient to use rather short-term latches on the cracker

array, the AVL tree, and some global data structure that keeps

track of which cracker indexes do exist.

5.3.1 Column latches

For example, consider simple queries that only perform a

single selection over a single column; such a query consists

of a single select operator that in a bulk mode consumes

the entire column and produces the result. When the select

operator starts, it first latches the global data structure to

check whether a cracker index has already been initialized

for the given column. If not, it initializes the respective raw

cracker index for that column and latches both the AVL tree

and the cracker array. If the cracker index already exists, it

latches the AVL tree and the cracker array. Once the latches

are acquired, the global data structure can be released, and

the select, including any cracker array refinement, is per-

formed with exclusive access to the cracker array. As soon

as the select operation, including the necessary array refine-

ment and AVL tree updates, finishes, the index latches can

be released.

In case of operator-at-a-time bulk processing as in Mon-

etDB, the select must finish before any other operation in

the query plan (that uses the selection result) can start. While

using simple coarse-grain per-column latching, this approach

benefits from the fact that (1) the latches need to be held

only while the select operation is active, and (2) as more

queries are processed, both the selection itself and the index

refinement benefit from the continuously improving index,

shortening the length of the critical section.

5.3.2 Read–write latches

A more complex scenario is when the same column used for

selection (cracking) by one query is also used for aggregation

by another query. Reorganizing an array that is being con-

currently processed by an aggregation operation that reads

every tuple within a qualifying range (e.g., sum or average)

may lead to incorrect aggregation results. However, multi-

ple aggregation operations may proceed in parallel over the

same column. For this reason, we distinguish between read

and write latches. Every cracking select operator requires a

write latch over the relevant column; all other, non-cracking,

operators require read latches so as to protect the data being

read by concurrent cracking operators.

5.3.3 Example of column latches

The upper two-thirds of Fig. 17 illustrates how column

latches work for three example queries that arrive concur-

rently and request access to the same column. For each tech-

nique being illustrated, the figure depicts when each query

acquires a read (blue dashed line) or write (red solid line)

latch. For example, reading the first example (“column latch,”

top row) from left to right, the three queries arrive concur-

rently, each requesting to compute a sum over a target range.

Thus each query will first crack and then aggregate over the

qualifying range. Initially, all queries request a write latch

but only one may proceed, (Q1 in our example). When Q1

finishes with its crack select operator, Q2 wakes up and starts

cracking the column for its own value range. Q3 is still asleep

waiting for a write latch to also perform cracking while Q1

blocks as well, as it needs a read lock for the aggregation but

cannot proceed as Q2 is now cracking the column. When Q2

finishes with its crack select, both Q1 and Q2 acquire read

latches and can now perform their aggregation operators in

parallel. After this step, Q1 and Q2 are finished and Q3 may

take a write latch and subsequently a read latch to perform

its cracking and aggregation, respectively.
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Fig. 17 Concurrent queries with adaptive indexing

5.3.4 Piece-wise latches

As illustrated by the lower two-thirds in Fig. 17, a natural

enhancement is given by the fact that the index refinement

of adaptive indexing in general and database cracking in par-

ticular only accesses a fraction of the index that has not yet

been optimized for the requested key range. Hence, only the

requested key range needs to be latched both in the cracker

array and in the AVL tree. In fact, only the two pieces (seg-

ments) that contain the boundary values of the requested

key range are physically reorganized. All pieces in between

are fully covered by the requested key range, and thus not

touched by the cracking select operator.

Figure 18 shows an example where a new query in an

already cracked array has to touch only two pieces; only the

pieces where its low and high selection bound falls in. This

results in a new array, which is now cracked on the low and

high bounds as well.

Hence, only the re-organization of the two boundary

pieces needs to be protected by exclusive read–write latches,

increasing the potential of concurrency even more. With

Fig. 18 Only need to touch two pieces during cracking

piece-specific latches, two or more concurrent queries may

proceed to crack the same column concurrently as long as

they are cracking different pieces of the same column. Sim-

ilarly, two or more queries may proceed to crack and per-

form aggregation on the same column concurrently, so long

as they operate on different pieces; each distinct column
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piece can be accessed by one query at a time for cracking,

while it can be accessed by multiple queries concurrently for

aggregation.

5.3.5 Optimizations

An additional optimization is that the two cracks needed for

each range select may be performed concurrently if they are

independent. For example, in Fig. 18, the cracking action for

bounds 15 and 105 can happen in parallel as they operate on

different pieces. This way, even if there is a conflict for one

of them, the query actually proceeds with the second bound.

A crucial detail is that when two or more queries wait for

a write latch over the same cracking piece, then upon waking

up, the next query needs to re-determine its own bounds as the

underlying piece has changed because of the previous query.

The illustration in Fig. 19 shows the various cases that may

occur. Three queries need the same piece but only one can

proceed. Once Q1 has finished, the structure of the underlying

piece has changed, and Q2 and Q3 must reevaluate which area

of the array they need to crack and where they need to latch.

Every query achieves that by walking through the pieces of

the array (the leaf nodes of the AVL tree) starting from the

original piece they tried to latch. For each piece, they check

whether their bound is in this range and if yes, they try to

latch this piece; otherwise, they go on to the next. In Fig. 19,

Q2 still falls inside the original piece while Q3 is on the next

one. In addition, given the creation of new pieces, now Q2

and Q3 may run in parallel as they no longer conflict.

Another optimization has to do with scheduling waiting

queries in order to increase the concurrency potential. For

example, assume a piece with bounds on [0–100] and 5

waiting queries that want to crack on bounds Q1:20, Q2:30,

Q3:50, Q4:70, Q5:90. The worst-case scenario is if they wake

up in the order of their requested bounds; e.g., Q1 wakes

up first, then Q2, then Q3, etc. This scenario has the low-

est potential for concurrency because the remaining queries

Fig. 19 Increasing concurrency with piece latching

Algorithm 2 CrackWithPieceLatches(c,v)

Crack column c on value v using piece latches and such that

all tuples with values lower than v are in a contiguous area

on c.
1: readLatch(Tree);

2: piece= Tree.findPieceContaining(v);

3: unlock(Tree);

4: //Once we get the piece latch, check whether we got the correct piece;

might have cracked the same piece in the meantime.

5: while true do

6: writeLatch(piece);

7: if piece.contains(v) then

8: break;

9: while piece.doesNotContain(v) do

10: unlock(piece);

11: readLatch(Tree);

12: piece = Tree.getNext(piece);

13: unlock(Tree);

14: //If the piece has not been cracked on v before, then crack it and

update the index Tree.

15: if piece.hasNotBeenCrackedBeforeOn(v) then

16: position = CrackColumn(c,piece,v);

17: unlock(piece);

18: writeLatch(Tree);

19: addIndex(Tree,v, position);

20: unlock(Tree);

21: else

22: unlock(piece);

must always wait. However, if Q3 runs first, the domain is

split in half and the remaining queries may run in parallel.

Our implementation uses a queue for each waiting query list

in a given piece and will insert in the queue the queries with

an insertion sort on their bounds. Then once the currently

running query finishes, the next one will be the one which is

in the middle of the queue.

5.3.6 Algorithms

Algorithms 2 and 3 show the process of exploiting piece

latches in more detail for a crack select operator and for

an aggregation operator, respectively. For the select operator

in Algorithm 2, the main effort is in securing that we get

the latch on the proper piece, and then once we crack the

piece, we need to also update the tree which maintains all

the metadata. For the tree, we use a separate latch such as to

allow various operators to search the tree in parallel. Notice

also how we need to repeatedly check that we got the correct

piece. In more detail, we initially search the tree for the piece

which contains the pivot on which we want to crack (i.e., the

bound of a select operator). This happens in lines 1–3 in Algo-

rithm 2. However, we still need to verify that this is indeed

the right piece. If another concurrent query/operator cracked

this piece in the meantime (while we searched the tree and

tried to lock the piece), then we might have to move to one of

123



Transactional support for adaptive indexing 321

Algorithm 3 SumWithPieceLatches(c,vlow,vhigh)

Perform a sum aggregation on a crack column c in the range

[vlow, vhigh] using piece latches.

1: readLatch(Tree);

2: pieceLow = Tree.findPieceContaining(vlow);

3: unlock(Tree);

4: //Once we get the piece latch, check whether we got the correct piece;

might have cracked the same piece in the meantime.

5: while true do

6: readLatch(piece);

7: if piece.contains(vlow) then

8: break;

9: while piece.doesNotContain(vlow) do

10: unlock(piece);

11: readLatch(Tree);

12: piece = Tree.getNext(piece);

13: unlock(Tree);

14: //Go through all pieces and update the aggregation result for each

piece until we reach the piece that contains vhigh.

15: sumResult = 0;

16: while piece.doesNotContain(vhigh) do

17: sumResult = sum(c,piece,sumResult);

18: next = Tree.getNext(piece);

19: unlock(piece);

20: piece = next;

21: readLatch(piece);

22: sumResult = sum(c,piece,sumResult);

23: unlock(piece);

24: return sumResult;

the adjacent pieces, i.e., because the current piece has been

cracked in possibly multiple new pieces and it may happen

that the value we are looking for now resides to one of the

new pieces. This happens in lines 5–13 in Algorithm 2 where

we repeatedly may move to adjacent (next) pieces until we

manage to lock the piece which contains the desired bound.

The getNext() method returns the piece, which is immedi-

ately adjacent to the current one in the column and which

contains values higher than the current piece. Then, we sim-

ply crack this piece (line 16), update the tree (line 19), and

unlock everything. If a past query has already cracked on the

same pivot, then we do nothing of the above (line 22).

Similarly, for the aggregation operator, we need to acquire

read latches for all relevant pieces in the needed value range.

Once we get the first piece correctly, we can simply go piece

by piece until we find the last one; even if a piece is cracked

in between, it is safe to get the next piece in the range as

we are going to go through all existing pieces in the range

anyway.

In both operators, we maintain a read or write latch for at

most on piece at a time, allowing other concurrent operators

to work in parallel on the rest of the pieces of this column,

even if they need to work on overlapping value ranges from

the scope of the full query.

5.3.7 Example of piece-wise latching

The middle third of Fig. 17 illustrates piece-wise latching

using exactly the same queries as the top part of this figure,

which illustrates column latching. As before, Q1 initializes

and latches the entire, as-yet-uncracked, column. However,

once Q1 has completed the cracking for its low bound, Q2

may proceed to start cracking for its own low bound, while

Q1 is cracking for its high bound concurrently. This is pos-

sible as after the first crack on the low bound of Q1, two

independent pieces have been created. Subsequently, while

Q1 is computing its aggregation with a read latch on its qual-

ifying piece, the rest of the queries keep cracking the other

pieces of the column.

The bottom third of Fig. 17 depicts one more exam-

ple of piece latching, where the requested ranges may vary

across the incoming queries. With piece latching, cracking

and aggregation queries may work concurrently so long as

each cracking query has exclusive access to the piece being

cracked. Two queries may crack different pieces concur-

rently, and two queries may perform aggregations in parallel

in the same piece.

5.3.8 Continuously reduced conflicts

As the piece-wise discussion indicates, e.g., Fig. 18, the

pieces on the cracker array become smaller as the workload

progresses. This is the very reason why adaptive indexing

enjoys improved performance as we process more and more

queries upon a given column. As the pieces of the index

become smaller, we achieve both better filtering and also finer

granularity of latching. Together, these factors make the task

of refining the index increasingly less expensive. Regarding

concurrency conflicts, this means that the period of time for

which a query needs to hold the write latches decreases over

time, which in turn allows more queries to run in parallel. In

this way, the concurrency potential improves in an adaptive

way; the more important a column is for the workload, the

more chances appear to exploit concurrency as the workload

evolves.

5.3.9 Other adaptive indexing methods

The techniques presented here apply as is to the rest of the

column-store designs for adaptive indexing which we intro-

duced in [29]. This is because the ideas in [29] maintain the

same underlying philosophy and follow the same column-

store model. In addition, in future work, we discuss inter-

esting opportunities on how the status of the system dur-

ing concurrency control may trigger new algorithm designs

to improve performance even more, mainly by allowing for

dynamic strategies which are driven by concurrency con-

flicts.
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5.4 Recovery

The crucial observation is that adaptive indexing (for read-

only queries) performs only structural modifications of aux-

iliary data structures, but leaves the primary data content

unchanged. This way, we only need to focus on the auxiliary

cracker data structures in respect with transaction control.

The basic refinement step of database cracking is the act of

swapping two values in an unordered key range of a dense in-

memory cracker array. This step must be an atomic operation.

It either happens completely or not. Otherwise, we might

leave the index with an incorrect set of values. For this reason,

we need to revisit the design choice of how the cracker array is

physically represented, i.e., as an array of rowID-value pairs

or as a pair of a rowIDs array and a values array. Figure 16

shows an example of how value swapping is done in both

representations. In the first case, it is much easier to guarantee

atomic data swapping at the software level given that we

operate on a single data structure. In the second case, with

a pair of arrays, we need to rely on hardware support, i.e.,

transactional memory to achieve atomic swapping [23]. In

both cases, this ensures that such basic data swapping do not

compromise the (structural) consistency of a cracker index.

Consequently, if a query is aborted while executing the

select operator, hence, the array reorganization is active, but

before the AVL tree is updated to reflect the completed refine-

ment for the requested key range, no recovery actions—

neither undo nor redo—are required. Some key values might

have changed their position, but only within a yet unordered

key range. Hence, there is no need to either undo these change

or finish the not yet registered sub-partitioning of a key range.

Likewise, in case a query needs to be aborted after the

selection operator and index refinement has finished, and the

AVL tree has been updated, no recovery is required either. In

this case, the only impact of the aborted query is a (slightly)

more optimized index structure. This is not harmful, but

rather an advantage for future queries.

5.5 Logging

For similar reasons as discussed above, the log volume can be

kept at a minimum. In particular, there is no need to log each

single swap operation during the index refinement. Instead,

if desired, it is sufficient to log the requested key ranges. In

case a cracker index is lost in a system crash, the requested

key ranges provide all the necessary information to rebuild

the cracker index. However, since the index contains only

auxiliary data to improve query performance, there is no need

to exhaustively log all requested key ranges or to ensure any

particular order in the log. For adaptive indexing, logging

and crash recovery of the adaptive index are opportunistic.

Given the rather low overhead and efficient adaptation of

adaptive indexing, we can even afford to not log at all, but

rather abandon adaptive indexes after a crash and re-start

their adaptive construction as side effect of normal query

processing after the system restart.

In some cases it is necessary to maintain a complete log

of all cracking actions in a particular column. For example,

when we expect to crack many columns of a multi-column

table then it is crucial to maintain the columns physically

aligned. That is, during query processing, all relevant tuples

of more than one columns used in the same query plan should

be in the same positions across all columns used. This prob-

lem is described in [28]. One solution would be that we

always crack and reorganize all columns of a given table.

This is not useful though as it would mean that every query

would have to touch all columns even if only a few of those are

needed at a time. By maintaining a complete log we are able

to adaptively apply the cracking actions and physically align

all needed columns just before they are going to be used by

a new query and thus minimizing the costs of alignment and

amortizing the overhead across many queries. Without a log,

we would either have to replay all past cracking actions of all

past queries before each tuple reconstruction action in every

future query or we would have to resort to expensive join

actions to reconstruct tuples. Both of these options impose

a significant overhead while simple log as described in [28]

allows for just-in-time self-organizing tuple reconstruction.

6 Experimental analysis

In this section, we report on a first implementation of concur-

rency control and recovery in adaptive indexing. The space

of research is very broad, as we described in the previous sec-

tions. Here, we concentrate on the case of testing a column-

store implementation of adaptive indexing using a full exist-

ing implementation of database cracking in the MonetDB

open-source column-store.

Set-up. The setup in the following experiments is as fol-

lows. We use a table of 100 million tuples populated with

unique randomly distributed integers. The crucial part of

adaptive indexing concerning concurrency is the index refine-

ment as side effect of the selection over a base table. Conse-

quently, to focus on this, we use simple range queries of the

form.

Q1: select count(*) from R where v1 < A1 <v2

Q2: select sum(A) from R where v1 < A1 <v2

The important difference between the two query types is

that the second one has to do more work, i.e., both aggregation

and selection/cracking.

In order to gauge the impact of concurrency on perfor-

mance, we increase the number of clients submitting queries

concurrently. We use lightweight queries in order to make
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the overhead of concurrency more prominent. The effect of

more complex queries on adaptive indexing, e.g., TPC-H,

can be seen in [28].

We use a 3.4 GHz Intel Core i7-2600 quad-core CPU

equipped with 32 KB L1 cache and 256 KB L2 cache per

core, 8 MB shared L3 cache and 16 GB RAM. The operating

system is Fedora 14.

6.1 Basic performance

This first experiment establishes context by illustrating the

basic trade-offs of adaptive indexing as distinct from any

concurrency related overhead. It demonstrates its benefits

and the scenarios where it can be useful. In this experiment,

all queries are ran sequentially and there are no concurrency

control mechanism which are active and thus there is no con-

currency control overhead for any of the tested approaches.

The scenario is a completely dynamic environment. We

assume no workload knowledge and idle time to prepare the

system. The only given is that the data are assumed loaded in

its basic form. Immediately after the data are loaded, queries

begin to arrive in a steady stream with no “think-time.”

The experiment compares three approaches using queries

of type Q1. In the default case, the system accesses the data

using plain scans, with no indexing mechanism present. At

the other extreme, we consider the case of a very active

approach that resembles a traditional indexing mechanism:

When the first query arrives, we build the complete index

before we evaluate the query, which can then exploit this

index. The benefit is then available to all future relevant

queries. In our implementation over a column-store, it is suf-

ficient to completely sort the relevant column(s) and then use

binary search to access them.

We use adaptive indexing via a complete implementation

of database cracking over MonetDB. Query processing oper-

ators reorganize relevant columns and tree structures on the

fly to reflect the knowledge gained by each query. All changes

happen automatically as part of query processing and not as

an afterthought.

Figure 20a compares the basic performance of these three

approaches in terms of per-query response time for running

10 queries serially one after the other through a single data-

base client. The queries use random range predicates with a

stable 10 % selectivity. The default scan-based approach has a

rather stable behavior. The first query is slightly slower, fetch-

ing the data from disk. The full indexing approach, labeled

“sort” in the figure, shows a significant overhead when build-

ing the index with the first query and then enjoys great per-

formance from the second query onwards.

The problem with the scan approach is that it does not

exploit past knowledge, resulting in relatively slow perfor-

mance throughout the span of a workload. The problem with

the full indexing approach is that it significantly penalizes

(a) (b)

Fig. 20 Basic performance for sequential execution

the very first query. If this query were an outlier, or if the

workload span turned out to consist of only a few queries,

then this extra overhead may never pay-off. Figure 20b visu-

alizes this by depicting the running average response time

for the same experiment. Ten queries are far from enough to

amortize the high investment of building the full index with

(or before) the first query.

Adaptive indexing solves the above problems in dynamic

environments. Figure 20a shows how it maintains a light-

weight first touch to the workload, but at the same time, it

continuously learns and improves performance in a seamless

way, without over-penalizing queries. Performance improves

continually and almost immediately in response to the

workload. The more queries arrive, the more performance

improves. Figure 20b confirms that the low initial investment

pays back quickly; after only 8 queries, the initial investment

has paid off and the average per-query response time of adap-

tive indexing becomes less than that of a basic scan approach.

The performance seen in this experiment is representa-

tive of the adaptive indexing behavior. Depending on the

type of queries posed, the data, and query distribution, adap-

tive indexing may converge to optimal performance faster

or slower in terms of number of queries required. The inter-

ested reader can refer to previous papers for in-depth analy-

ses regarding multiple parameters, e.g., skew, updates and

multi-column indexes. [26–28,12,14,16,29]. In the rest of

the following analysis, we focus solely on concurrency con-

trol issues.

6.2 Concurrency control

Let us now focus on how concurrency control impacts per-

formance. For ease of presentation, in this section, we first

present a broad analysis. For adaptive indexing, concurrency

control is achieved by using the piece latches approach. Then,

the next section dives deeper into analyzing the behavior for

various parameters and it also presents piece latches in more
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detail as well as it benchmarks piece latches against column

latches..

The setup of this experiment is as follows. We run a

sequence of 1,024 random range queries of 0.01 % selectivity

and of type Q2. We perform several runs of the same 1,024

queries, and each time we increase the number of concur-

rent streams. Each run is completely independent and does

not affect previous or future runs; it starts with a clean envi-

ronment. In more detail, the setup is as follows. We test the

serial case where one client runs all 1,024 queries, one after

the other. In addition, we test the case where we use 2 clients

that start at the same time and each one fires 512 queries.

Similarly, we repeat the experiment by starting 4 clients at

the same time and each one fires 256 queries, and so on. We

go up to the limit of 32 clients, which is the threshold that our

experimentation platform, MonetDB, puts in order to throt-

tle the incoming clients and control the amount of concurrent

query threads. For every run, we use exactly the same queries

and in the same order. Selectivity is purposely kept high to

more clearly isolate the costs of the select operator, i.e., do

not let aggregation operators hide any overheads. The next

section studies this parameter in more depth.

Figure 21a,b depict the results for plain scan, full indexing

(sort) and for database cracking, using piece latches. In both

figures, the x-axis lists the increasing number of concurrent

clients. In Fig. 21a, the y-axis represents the total elapsed

time needed to run all 1,024 queries. In Fig. 21b, the y-axis

shows the “inverted” results for the same experiment, i.e.,

depicting throughput in terms of queries per second rather

than total execution time for all 1,024 queries.

For all approaches, we see a rather similar trend, i.e., per-

formance shows a linear decrease in total execution time

and consequently a linear increase in throughput when going

from one over two to four clients, i.e., up to the number

of CPU cores in our system. Then, performance peaks at 8

clients, before leveling out and remaining quite stable up to

the case of 32 clients running 32 queries each. We do not

Fig. 21 Effect of concurrency control on total time

perform any special methods here for assigning threads to

cores. Each incoming query is assigned a single thread and

we let the operating system perform all scheduling actions.

The relative behavior between the three different approa-

ches remains the same, regardless the number of concur-

rent queries. Scan suffers from having to scan the complete

column with each query. Full indexing improves over plain

scans, but suffers from having to build the complete index

via sorting the column. On the other hand, adaptive indexing

maintains its competitive advantage and adaptive behavior

even with concurrent queries.

We point out that due to their purely read-only data access,

neither scans nor binary search actions used in full index-

ing require any concurrency control during the actual query

processing. Adaptive indexing on the other hand has to incur

concurrency control costs as it turns read queries into write

queries. Nevertheless, its performance remains unaffected.

All in all, the results in Fig. 21 confirm that although

adaptive indexing introduces write access for conceptually

read-only queries, concurrency is not only possible but also

beneficial. Instead of having issues with multiple queries

touching the same data, adaptive indexing manages to par-

allelize queries and benefit from that. The amount of index

refinement—and hence the length of the critical part of the

query—becomes less and less with every query, quickly van-

ishing behind the non-critical parts that can be executed in

parallel. The next section discusses these issues in more

detail.

To get more insight into the overhead of concurrency con-

trol and by using the same setup as before, we run the same

1,024 queries using a single client. This way all queries run

sequentially, and no concurrency control is required to ensure

correct execution. We repeat the experiment twice. For the

first run, the concurrency control mechanisms are enabled

(piece latches), but for the second run, we disable all con-

currency control activities. Thus, the difference in execution

time between the two runs is the administrative overhead

required for the concurrency control mechanisms of adap-

tive indexing. What we find is that the concurency control

mechanisms add less than 1 % in terms of the total cost to

run all 1,024 queries, verifying that adaptive indexing needs

only very lightweight concurrency control.

6.3 Detailed analysis

Having seen a generic analysis in the previous section, we

now go into more detail to explain the behavior seen under

various parameters. Figure 22 depicts the results for our next

experiment. We use the same setup as before, i.e., 1,024 ran-

dom queries and a varying number of clients ranging from

1 (sequential execution) to 32 clients. Here, we also present

the behavior of piece vs. column latches as well as we study

both queries of type Q1 and of type Q2. In addition, we run

123



Transactional support for adaptive indexing 325

Fig. 22 Column and Piece

Latches with count and sum

aggregation queries

(a) (b) (c) (d)

the experiment for various selectivity factors for each case;

queries remain random but selectivity varies. The graphs in

Fig. 22 depict the total time needed to run all queries in each

case, i.e., the time reported is the time perceived by the last

client to receive all answers for all its queries.

Since all queries in this experiment touch the same col-

umn, this represents (in terms of the whole workload) the

most extreme scenario when it comes to concurrency con-

trol as all focus is on a single column, allowing us to stress

test adaptive indexing in terms of the maximum concurrency

control overheads expected.

Figure 22a,b demonstrates the performance for queries of

type Q1 with column and piece latches, respectively. Exclud-

ing the low selectivity case (90 %), performance is rather sim-

ilar for all selectivity runs. This is true both for column and

for piece latches. With selectivity 90 % all queries use low

and high bounds in their range selection predicates that are

focused on only 10 % of the column. As a result, adaptive

indexing improves even faster by refining these areas of the

column faster compared to other selectivity cases.

When comparing column and piece latches in Figs. 22a,b,

we see that piece latches bring significantly more improve-

ments to the adaptive indexing performance. With column

latches, performance is rather stable which means that adap-

tive indexing is not affected by concurrent queries, but at the

same time, it does not manage to exploit opportunities for

parallelism. This effect is even more noticeable in Fig. 22c,d

where we study queries of type Q2. For such queries, an

aggregation on the selection column needs to be performed.

For this reason, an aggregation operator needs to hold a read

latch while going through all qualifying tuples, computing

the aggregation. During this time, no cracking can happen

and thus no other select operator may run. Only read latches

are allowed, e.g., for other aggregation operators of other

queries. In the case of column latches, this results in a sig-

nificant penalty; the whole column needs to be latched.

The lower the selectivity, the higher this penalty as the

time needed to perform the aggregation increases (due to

more tuples qualifying the selections) and dominates the total

Fig. 23 Breakdown costs

query cost. On the other hand, with piece latches, we allow

many queries to run in parallel multiple kinds of previously

conflicting operations over the same column as long as they

operate on different pieces. Now two queries may crack in

parallel two or more different pieces or may crack in one piece

and run aggregation on others. This increased parallelism

allows piece latching to materialize an even more significant

benefit which in the case of Q2 type queries becomes more

evident due to the need to maintain read latches for a longer

period of time. In this way, this phenomenon becomes more

apparent as the selectivity decreases in Fig. 22d.

Figure 23 gives more insight into the above results by

breaking down the time of individual queries. It depicts the

wait time and the crack time for each individual query as the

workload sequence evolves. This is for the case of queries of

type Q2 using piece latches with 50 % selectivity and with 8

clients. The wait time is defined as the time each query spends

in waiting to acquire a latch. For each query, the number

plotted reflects all waiting time, i.e., both for write latches

during the crack select operator and for the waiting time for

read latches during the aggregation operator. In addition, the

time reflects the time needed to acquire all latches for all
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Fig. 24 Wait time evolution

through a query sequence
(b)(a)

relevant pieces in each operator. The crack time is defined as

the time spent purely on refining the index during the select

operator (under write latches).

Figure 23 shows that the crack costs follow the behavior,

which was observed in past adaptive indexing papers as well,

i.e., the more we touch a specific column, the more the index

is refined. As pieces become smaller due to more fine-grained

indexing, subsequent index refinement operations become

faster. This is what brings the adaptive behavior, and Fig. 23

shows that adaptive indexing maintains this behavior even

during concurrent queries.

The second observation from Fig. 23 is that the waiting

time, i.e., the concurrency control conflicts, shows a simi-

lar behavior; it decreases as the workload sequence evolves.

Naturally, the very first query does not have to wait at all,

depicting a zero cost waiting time in Fig. 23. The next 7

queries though have to wait until the first one finishes crack-

ing the column. This is 7 queries because we use 8 concurrent

clients in this experiment and they all have to wait because

when the experiment starts there is no cracking index, mean-

ing that the first query has to latch the complete column.

Once the first query adds some partitioning, then the con-

currency opportunities increase and soon after a few queries

have cracked the column, the waiting times decrease.

The main bottleneck in the crack select where the write

latches are required is the index refinement time. As this

time decreases in Fig. 23, the concurrency conflicts decrease

as well. A closer observation on the waiting time in Fig. 23

shows that the wait time almost matches the crack time behav-

ior. For some queries (including the first one), the wait time

is minimal as they happen to arrive at a time that the needed

piece is free of latches. For the rest of the queries, the wait

time follows a continuously decreasing trend similar to crack

time; the crack time of one query is in practice the wait time

for another query, waiting for a given column piece.

Thus, by using short latching periods and quickly releas-

ing latches as soon as possible, adaptive indexing manages

to exploit concurrent queries as opposed to suffering from

them. In addition, it is interesting to notice that since adap-

tive indexing gains continuously more and more knowledge

about the data, these latching periods become ever shorter

which improves performance even more.

Finally, Fig. 24 depicts the per-query wait time (i.e., the

time needed to acquire all required latches) as a function of

the total active clients for queries of type Q2 with 50 % selec-

tivity. With more clients being active, the wait time increases.

The reason is that with more active clients, more queries

arrive concurrently and thus more queries need to block

and wait when requesting for a latch. However, as we have

seen in previous graphs, at the same time, concurrent queries

increase parallelism and thus throughput. For the same rea-

son, we observe that the wait time is higher for the first query

(of each client) in the case of piece latches compared to col-

umn latches; each query with piece latches has to get 2 latches

compared to only 1 in the case of column latches. However,

after the first few queries, the wait time per query reduces

to a rather low cost for piece latches (the cumulative curve

flattens), while for the case of column latches, the cumula-

tive cost keeps increasing; with column latches, every query

locks the whole column and blocks all waiting queries. With

piece latches, however, each query needs to lock only the

relevant piece it needs to crack and at most one piece at a

time; as we create more pieces due to cracking, more queries

may run in parallel reducing significantly the wait times. For

example, with 2 clients, the curve already flattens after 1–2

queries; each query in general creates 1 or 2 new pieces (on

the selection bounds); thus, after a couple of queries, there

are enough pieces for 2 clients to be able to run concurrently.

When we have 4 clients, it takes a few more queries to have

enough pieces such that every client may run independently,
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while with 30 clients, we need about 30 queries (the column

is cracked in about 60 pieces at this point). In this way, this

leads to a total benefit of one order of magnitude in wait time

for piece latches in the duration of all 1,024 queries. The

higher the number of clients, the bigger the benefit for piece

latches; while piece latches can exploit concurrent queries

to increase parallelism, column latches can only block each

concurrent query until the required column is free.

6.4 Recovery

Here, we analyze the impact of the very basic recovery tech-

niques discussed in Sect. 5.4 on the performance of adaptive

indexing, i.e., database cracking in this case. There is no con-

currency control overhead involved in this test as queries run

sequentially. We use the same simple range query as before

and run a sequence of 1,000 queries requesting randomly

chosen key ranges. To enforce recovery situations, we ran-

domly abort 50 % of the queries. As discussed in Sect. 5.4

we do not perform any recovery action. Consequently, the

effect of aborting a query comes in two flavors. In case the

query is aborted during the selection and index refinement,

but before the AVL tree is updated, the query simply has

no (known) contribution to optimizing the index. In case

the query is aborted after selection, index refinements and

AVL tree updates have finished, “even” the aborted query

has contributed its share to optimizing the index. In addition

to aborting queries like this, we also simulate a system crash

after 500 queries, by abandoning the complete cracker index

and restaring it from scratch.

Figure 25 depicts the results in terms of per-query per-

formance. The results indicate that the fact that (some of)

the aborted query leave no (known) contribution to the index

refinement has only marginal impact on the over all perfor-

mance. The convergence of the index and hence the improve-

ment of per-query performance is only slightly slower than

without query aborts. When the index is abandoned entirely

Fig. 25 Recovery: performance per-query (seq. execution)

due to the simulated system crash after 500 queries, query

performance re-starts at the original level, but improves

with more queries just as quickly as before. Obviously,

an improved version could flush the entire index to disk

whenever there is time to spare or regularly, say, every 100

queries. Then the restart after a crash could load the last index

snapshot and proceed from there instead of restarting from

scratch. The presented results indicate, however, that even

without any explicit recovery actions, query aborts and sys-

tem crashed result at most in a rather acceptable temporary

performance degradation.

7 Summary and conclusions

Recent papers have introduced adaptive indexing in the forms

of database cracking and adaptive merging. The main idea

shared by both techniques is on-demand index construction

and optimization as side effects of query execution. At first

glance, this seems to turn read-only queries into update trans-

actions, triggering the question whether the anticipated con-

currency control and recovery overhead will prohibit the use

of adaptive indexing in multi-user scenarios. In this paper,

we address this question and show that with judicious appli-

cation and extension of prior work, concurrency control con-

flicts and overheads as well as log volume and recovery time

can be reduced to practical or even negligible levels.

The key observation is that adaptive indexing applies only

structural modifications to the physical representation of the

index but leaves the logical contents of the index unmod-

ified. This relaxes the constraints and requirements during

adaptive indexing compared to those considered for tradi-

tional index updates. Furthermore, we observe that even those

structural changes are optional and propose a new method for

partial forward recovery with adaptive early termination dur-

ing recovery. Using adaptive merging and database cracking

as examples, we introduce concrete implementations of our

new techniques. The experimental evaluation of our imple-

mentation of concurrency control and recovery for database

cracking demonstrates that the performance overhead of con-

currency control during structural updates is minimal, and

that adaptive early termination alleviates problems with both

concurrency control and recovery in adaptive indexes.
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