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Abstract

Transactions are back in the spotlight! They are emerging in concurrent programming

languages under the name of transactional memory (TM). Their new role? Concurrency control

on new multi-core processors. From afar they look the same as good ol’ database transactions.

But are they really?

In this position paper, we reflect about the distinguishing features of these memory trans-

actions with respect to their database cousins.

Disclaimer: By its very nature, this position paper does not try to avoid subjectivity.
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1 Introduction

Over the last few decades, much of the gain in software performance can be attributed to increases

in CPU clock frequencies. However, the last few years have seen processor frequency leveling out

and the focus shifting to multi-core CPUs, i.e., chips that integrate multiple processors, as a way to

provide increasing computing power. To get a continued speedup on these processors, applications

need to be able to harness the parallelism of the underlying hardware. This is commonly achieved

using multi-threading.

Yet writing correct and scalable multi-threaded programs is far from trivial. While it is well

known that shared resources must be protected from concurrent accesses to avoid data corruption,

guarding individual resources is often not sufficient. Sets of semantically related actions may need

to execute in mutual exclusion to avoid semantic inconsistencies. Currently, most multi-threaded

applications use lock-based synchronization, which is not always adequate: coarse-grained locking

limits concurrency and scales poorly, while fine-grained locking is inherently complex and error-

prone, leading to problems such as deadlocks and priority inversions.

Concurrency control has been studied for decades in the field of database systems, where differ-

ent operations can access tables simultaneously without observing interference. Transactions are

a powerful mechanism to manage such concurrent accesses to a database. Transactions guarantee

the four so-called ACID properties: atomicity, i.e., transactions execute completely or not at all;

consistency, i.e., transactions are a correct transformation of the state; isolation, i.e., even though

transactions execute concurrently, it appears for each transaction T that other transactions execute

either before T or after T , but not both; and durability, i.e., modifications performed by completed

transactions survive failures. This behavior is implemented by controlling access to shared data

and undoing the actions of a transaction that did not complete successfully (roll-back).

The synchronization problems encountered by multi-threaded applications are somewhat rem-

iniscent of those encountered in a database. Shared objects must be accessed in isolation by mul-

tiple threads, while consistency and atomicity must be maintained for sets of semantically-related

actions.

The concept of transactions has recently been proposed as a mechanism to manage concurrent

accesses to shared (in-memory) data in multi-threaded applications. Transactional memory [32]

provides programmers with constructs to delimit transactional operations and implicitly takes care

of the correctness of concurrent accesses to shared data. Such memory transactions have consti-

tuted an active field of research over the last few years, e.g., [15, 18, 19, 31, 24, 5, 11, 10, 28, 30].

Transactions provide the programmer with a high-level construct—simple to use, familiar, effi-

cient, and safe—to delimit the statements of its application that need to execute in isolation.

Clearly, memory transactions share many commonalities with database transactions, from ter-

minology and syntactical similarities to the properties they provide. In this position paper, we

argue that memory transactions differ from database transactions in several important areas. They

offer new research opportunities and carry promising perspectives for the development of future

applications on multi-core computers. We discuss these specificities along three dimensions:

• The language dimension relates to the way transactions are supported by programming lan-

guages and libraries for software developers;
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• The semantics dimension focuses on the consistency and progress guarantees provided by

transactions;

• The implementation dimension discusses various design and realization aspects that differ-

entiate both approaches.

The organization of the paper follows these three dimensions.

2 Programming Languages

The first topic we turn to is the manner in which transactions are exposed to programmers.

How to demarcate transactions?

One needs to define when a transaction starts, when it commits or aborts, and whether to re-

execute it upon abort. With database transactions, SQL and its extensions form the dominant

way of issuing queries and updates to a database. Transactions are explicitly constructed from

individual SQL statements or by a series of such statements. Typically, individual statements are

executed as separate transactions, and series of statements are grouped into transactions by explicit

operations to start a transaction and to attempt to commit it.

Memory transactions are typically used as an implementation of atomic blocks (although sev-

eral alternatives have been proposed during the last decades [23, 35, 25]) demarcated by the pro-

grammer. Such blocks of code identify critical regions that should appear to execute atomically

and in isolation from other threads.

Several approaches have been considered to make the code inside the block transactional:

language-level constructs coupled with a custom compiler or virtual machine (e.g., [15]), source

code or bytecode instrumentation (e.g., [7]), code weaving using AOP1 (e.g., [29]), or high-level

APIs and runtime support. In certain extreme cases, memory transactions are hidden from the

programmer and automatically generated. This can be provided for instance at the level of individ-

ual methods, by executing the body of the method in the context of a new transaction. This idea

originates in Argus [22] where nested invocations correspond to nested transactions. Obviously,

not all methods need to be transactional: one can use various mechanisms for specifying which

methods are transactional, such as annotations as supported by Java and several other programming

languages, and one can fork independent transactions through asynchronous invocations [9].2

Determining the right balance between expressiveness and efficiency is generally tricky and

many research challenges, possibly involving compilation techniques, remain open.

1Aspectizing transactions is appealing but raises many non-trivial issues [21].
2Declarative transaction demarcation around methods can be compared to container-managed transaction demar-

cation in EJB [6].

3



Do transactional objects need to be segregated?

When accessing a database through SQL from an ordinary programming language, such as C# or

Java, there is typically a strict segregation between data under the control of the DB and that under

the control of the programming language; the types involved are different (tables versus objects)

as are the operations for accessing them (select/update versus read/write).

Historically, this data segregation can be seen as a consequence of the separation between an

application and the database that it accesses—the data is held remotely in the database, and not

locally in the application. Typically, the programmer must optimize the application logic to reduce

the number of interactions between the database and the application, and keep them as short and

infrequent as possible.

This segregation is often not present in programming languages with atomic blocks or in STM

libraries. For instance, extensions to C# [17], Java [2] and new “transactional” languages [4] do not

make any distinction between ordinary objects and transactionally-accessed objects, nor between

ordinary memory accesses and transactional memory accesses.

It is also unrealistic to take an existing application and transparently map its in-memory data

structures to a database without prohibitive overhead.3 In contrast, this is exactly what memory

transactions are meant for: The goal is typically to take general-purpose sequential code and make

it multi-thread-safe by having sections of it execute atomically and in isolation. Memory transac-

tions constitute in this sense a lightweight approach to guaranteeing consistency without sacrificing

scalability in concurrent applications.

Not segregating transactional state raises an important question that does not hold with database

transactions: what happens if the same data is accessed in both modes? For instance, consider the

following pair of operations that could be performed by two threads:

// Initially x == 0

// Thread 1 // Thread 2

atomic {

x = 42; temp = x;

}

What are the possible results for temp after executing this code? Indeed, is this a correctly syn-

chronized program at all? The analogous question with database transactions would perhaps be

“what guarantees are provided if a table is accessed directly through the file system at the same

time as from a database transaction?” This question is typically not relevant for databases: man-

agement operations on database files (such as backup) are usually performed with the database

offline, or under the exclusive control of the DBMS.

More subtle problems occur when the same data changes of access mode over time: for ex-

ample if it is initialized directly by one thread, subsequently accessed transactionally by several

threads, and finally cleaned-up by the original thread. For instance, consider the following code

where x shared is used to indicate whether or not x is to be accessed transactionally:

3There exist transparent approaches to persistence (e.g., hibernate [20]) and transaction management (e.g., entity

beans in EJB [6]), but they are only effective when the data is properly encapsulated in specific types of objects and

interaction follow well-defined patterns.
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// Initially x == 0, x_shared == true

// Thread 1 // Thread 2

atomic { atomic {

if (x_shared) { x_shared = false;

x = 42; }

} x ++;

}

One may reason informally that either x==43 or x==1 depending on the serialization order

of the two transactions. However, many implementations of atomic blocks will produce other

answers—for example x==42 [1].

There are several points of view here. One is that this kind of sharing between transacted and

non-transacted accesses should be prevented through the type system [16]. A second is that a

language should support “strong atomicity” [3] in which each non-transacted access behaves like

a serializable transaction [33]. An intermediate point is that a class of “correctly synchronized”

idioms should be supported [1].

None of these approaches is satisfactory and new ideas need to be proposed and determined in

the context of languages-level transactions.

Is there a life after the death of a transaction?

Transaction completion introduces some subtle problems. The general pattern employed for ensur-

ing isolation with TM systems is to transparently abort and re-execute the memory transaction if it

cannot commit because of a conflict. If the code executed in the context of a transaction throws an

exception, e.g., because an overdraft occurs when transferring money between two accounts, what

should be the proper behavior?

• Should we abort the transaction and re-execute it? The same exception will probably be

thrown again.

• Should we abort the transaction and propagate the exception? The state of the application

may be inconsistent because an exception is thrown but its cause has been rolled back.

• Should we commit the partial changes and propagate the transaction? This corresponds to

the behavior expected by the programmer for his code executing in isolation but it conflicts

with the atomicity property expected from a transaction.

The third choice might seem sensible from an application programmer perspective, as it does not

modify the semantics of exception handling mechanisms. However, one could also leverage trans-

actions to implement failure atomicity by automatically undoing the changes performed before an

exception is thrown [8]. Indeed, transactions were initially introduced in the database domain to

simplify error handling.

In the domain of programming languages one rarely wants to have simple all or nothing se-

mantics. Instead, for certain operations some graceful degradation is the preferred behavior. For

example, a “disk full” error could be tolerated by writing log messages to the console instead,
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without requiring to abort the whole computation. An option to supporting such behavior is to

allow the programmer to specify alternative actions that are executed if an action fails. The use of

transactions for error handling is a promising approach that needs further investigation.

3 Semantics

How isolated should a transaction be?

A transaction, be it a memory or a database one, should be isolated from other transactions. This

intuition is the key to the selling argument that transactions reduce the difficult problem of preserv-

ing the consistency of a concurrent program into the simpler one of preserving the consistency of

a set of sequential programs. But what does thus intuition mean exactly?

For database transactions, the intuition was captured through the theory of serializability [27]—

one of the most commonly required properties of database transactions—generalized to arbitrary

objects (or strict serializability when the real-time order of transactions is accounted for). In short,

this says that a history H of possibly concurrent transactions should look like a sequential history

H
′ of the transactions that have been committed in the original history. Clearly, this does not

say what happens to live or aborted transactions in the original history H . In particular, nothing

prevents a transaction from observing an inconsistent state (as long that the transaction is aborted):

one that cannot be produced by a sequence of committed transactions. A transaction that observes

an inconsistent state can cause various problems, even if it is later aborted. Whilst this is not really

a problem in a database context where transactions run in a fully controlled environment, things

are different when transactions run within an application and cannot be surrounded by control

structures. A transaction that works on an inconsistent state might lead the program to throw

unexpected exceptions, enter infinite loops, or access invalid memory addresses.

The problem of preventing a live transaction from observing an inconsistent state might look

similar to that of preventing cascading aborts. This issue was addressed in the database world

through the recoverability [14] theory. This theory puts restrictions on the state observed by every

transaction, including live ones. Intuitively, recoverability says that no transaction should read an

update from another live transaction. It may seem at first that recoverability, when combined with

serializability, matches the requirements of memory transactions. This is not the case however: a

transaction might read two updates produced by two committed transactions, one overwriting the

other. While respecting recoverability, such a scenario would be inconsistent [12]. A new precise

formulation is needed, and writing it down carefully is not trivial.

Is the world really all made of transactions?

Memory transactions might be composed with legacy concurrent code initially written without

transactional support. In this case, and ideally, one would expect that every non-transactional op-

eration be automatically transformed into a transaction that cannot abort. This is a clear departure

from traditional databases where all concurrent code is supposed to be encapsulated within trans-
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actions, each possibly committing or aborting. Precisely capturing the idea that every operation be

encapsulated inside an immortal transaction is however not trivial.

A more pragmatic approach consists in requiring consistency only for transactional code [34]

and exempting non-transactional code from any such requirement. While weird, this approach

might lead to significant performance gains with respect to automatically transforming non-transactional

operations into transactions. In a sense, this is like assuming that the program executes as if cer-

tain threads (transactions) were executed under a single global lock but some of the threads do

not need to acquire the lock. Threads that access objects outside transactions have no guarantee of

consistency. Minimizing the impact of this freedom on the semantics of transactions is not obvious.

A drastic approach consists in partitioning the objects, at any point in time, into those that are

shared, accessed through transactions, and those that are private to a thread. (Notice that an object

might be private at some point in time and shared at some other point in time.) This privatization

problem does simply not hold for database transactions.

To boost the performance of transactions, the design decisions that need to be made are not the

same when dealing with databases or memory.

How durable is a transaction?

It is sometimes argued that memory transactions do not need to be durable; i.e., memory transac-

tions are simply ACI. Such a statement has to be taken with care. It is indeed expected that the

effects of committed memory transactions be durable and accessible to other transactions. The dif-

ference is that the effects of a memory transaction do not need to survive the crash of the process

hosting the transaction whereas those of a database transaction need to. In a sense, it is a different

level of durability.

This difference has an impact. The cost of storing information on disk is several orders of

magnitude higher than storing it in shared memory. Optimization criteria for accesses to disk

and memory are not the same. One typically wants to serialize the accesses to the disk in order to

improve performance and use specific index structures like B-trees. The mapping of the data tables

to the discs also affects performance. These differences are the same as those between traditional

disk-based databases and main memory databases [26]. As we will discuss below however, there

are other significant differences between memory transactions and transactions in main memory

databases.

Should transactions be sequential or parallel?

Main memory databases differ significantly from memory transactions with respect to how con-

currency is viewed. It is often argued that transactions in main memory databases should perform

best if executed sequentially [26] because this saves the overhead related to concurrency control as

well as CPU cache flushes. In short, the goal is clearly to optimize for single processors with high

performance computers. Cache flushes in this case are equivalent to thousands of instructions and

this indeed calls for sequential executions.
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In contrast, memory transactions are optimized for multi-core architectures. The objective is

to keep the processors busy and schedule as many transactions as possible: throughput is the goal.

This difference is reflected to a large extend with the benchmarks that are considered. In Bench7,

a classical benchmark for databases, the ultimate goal is to speed up every individual transaction.

There is no actual support to measure concurrency and throughput: it is a pure sequential program.

Adapting such a benchmark to memory transactions require involved concurrency constructs [13].

When looking at throughput, what really matters is how many transactions do commit. This is

intimately related to the progress property that a TM system should feature. In databases, it might

be acceptable to abort certain transactions. This would simply lead, in many cases, to skipping

certain updates that will be overwritten anyway. When transactions are sophisticated programs,

some minimal progress property should be ensured. What can we require in this case? It is easy

to see that no implementation can ensure that every transaction commits. But can we ensure

that every transaction eventually commits? Even this is very hard to achieve without hampering

performance [12]. Some work has been done around contention management and how to boost

the liveness of memory transactions [11], but this research is still at its infancy and much work

remains to be done.

What is the state of a transaction?

As transactions may abort and roll back, a TM implementation must provide support for check-

pointing shared data accessed by transactions. Unlike DB tables, which have a well-defined format,

a TM must deal with any type of shared data allowed by the programming language.

Depending on the type of TM implementation (word-based or object-based) and the program-

ming language, state management can become quite intricate. With some languages, one must

distinguish between primitive types and objects, as well as deal with complex graphs while check-

pointing whole objects. Updates may be performed directly to shared data, keeping an “undo log”

to handle aborts, or updates may be performed on private data and written to shared memory upon

commit. Such design decisions obviously affect the performance of the TM implementation, but

also the complexity of state management in various programming languages. Note that the prob-

lem of state management is not restricted to TM systems: similar problems are encountered when

dealing with object replication, persistence, or migration.

Arguably, the most challenging issue with memory transactions is intercepting read and write

accesses to transactional data before redirecting them to the relevant instance (an old version, a

thread-local copy, or the actual data). In object-oriented languages, when dealing with properly

encapsulated objects, it suffices to intercept method calls. Yet, it is not always obvious to distin-

guish a read from a write method: this distinction is important for reducing contention because

read accesses create less conflicts than write accesses.

When dealing with other types of data accesses, we need to handle every set and get operation

on transactional variables, which is far from trivial. This can be achieved with acceptable effort

using code analysis and compiler support.
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4 Concluding Remarks

Although similar in spirit, memory transactions have some specificities that induce different chal-

lenges than those extensively addressed in the database world. There is space for new research and

it is not all about re-inventing the wheel.

References

[1] Martin Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transactional

memory and automatic mutual exclusion. In POPL 2008, January 2008.

[2] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and

Tatiana Shpeisman. Compiler and runtime support for efficient software transactional mem-

ory. In Proceedings of PLDI, Jun 2006.

[3] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing transactional

semantics: The subtleties of atomicity. In Proc. 2005 Workshop on Duplicating, Deconstruct-

ing and Debunking, 2005.

[4] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao Minh,

Christos Kozyrakis, and Kunle Olukotun. Atomos transactional programming language. In

Proceedings of PLDI, Jun 2006.

[5] C. Cole and M.P. Herlihy. Snapshots and software transactional memory. Science of Com-

puter Programming, 2005.

[6] Enterprise JavaBeans. http://java.sun.com/products/ejb/.

[7] P. Felber, C. Fetzer, U. Müller, T. Riegel, M. Süsskraut, and H. Sturzrehm. Transactifying

applications using an open compiler framework. In TRANSACT’07, August 2007.
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