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Abstract. We argue that traditional synchronization objects, such as
locks, conditions, and atomic/volatile variables, should be defined in terms
of transactions, rather than the other way around. A traditional critical
section, in particular, is a region of code, bracketed by transactions, in
which certain data have been privatized. We base our memory model on
the notion of strict serializability (SS), and show that selective relax-
ation of the relationship between program order and transaction order
can allow the implementation of transaction-based locks to be as efficient
as conventional locks. We also show that condition synchronization can
be accommodated without explicit mention of speculation, opacity, or
aborted transactions. Finally, we compare SS to the notion of strong iso-
lation (SI), arguing that SI is neither sufficient for transactional sequen-
tial consistency (TSC) nor necessary in programs that are transactional
data-race free (TDRF).

1 Introduction

Transactional Memory (TM) attempts to simplify synchronization by raising
the level of abstraction. Drawing inspiration from databases, it allows the pro-
grammer to specify that a block of code should execute atomically, without
specifying how that atomicity should be achieved. (The typical implementation
will be based on speculation and rollback.) In comparison to lock-based syn-
chronization, TM avoids the possibility of deadlock, and—at least to a large
extent—frees the programmer from an unhappy choice between the simplicity of
coarse-grain locking and the higher potential concurrency of fine-grain locking.

Unfortunately, for a mechanism whose principal purpose is to simplify the
programming model, TM has proven surprisingly resistant to formal definition.
Difficult questions—all of which we address in this paper—include the following.
!Does the programmer need to be aware of speculation and rollback? What
happens if a transaction attempts to perform an operation that cannot be rolled
back? !What happens when the same data are accessed both within and out-
side transactions? Does the answer depend on races between transactional and
nontransactional code? !Can transactions be added to a program already con-
taining locks—that is, can the two be used together? ! How does one express
! This work was supported in part by NSF grants CNS-0615139, CCF-0702505, and

CSR-0720796; and by financial support from Intel and Microsoft.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 20–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Transactions as the Foundation of a Memory Consistency Model 21

condition synchronization, given that activities of other threads are not supposed
to be visible to an already-started transaction?

Answers to these questions require a memory model—a set of rules that gov-
ern the values that may be returned by reads in a multithreaded program. It
is generally agreed that programmers in traditional shared-memory systems ex-
pect sequential consistency—the appearance of a global total order on memory
accesses, consistent with program order in every thread, and with each read re-
turning the value from the most recent write to the same location [17]. We posit
that transactional programmers will expect transactional sequential consistency
(TSC)—SC with the added restriction that accesses of a given transaction be
contiguous in the total execution order. However, just as typical multiprocessors
and parallel programming languages provide a memory model weaker than SC
(due to its implementation cost), typical transactional systems can be expected
to provide a model weaker than TSC. How should this model be defined?

Several possibilities have been suggested, including strong isolation (SI) (a.k.a.
strong atomicity) [4,28], single lock atomicity (SLA) [14, 1st edn., p. 20][23], and
approaches based on ordering-based memory models [10], linearizability [11,26],
and operational semantics [1,24]. Of these, SLA has received the most attention.
It specifies that transactions behave as if they acquired a single global mutual
exclusion lock.

Several factors, however, make SLA problematic. First, it requires an underly-
ing memory model to explain the behavior of the equivalent lock-based program.
Second, it leads to arguably inappropriate semantics for programs that have
transactional-nontransactional data races, that mix transactions with fine-grain
locks, or that contain infinite loops in transactions. Third—and perhaps most
compelling—it defines transactions in terms of the mechanism whose complexity
we were supposedly attempting to escape.

We have argued [30] that ordering-based memory models such as those of
Java [20] and C++ [5] provide a more attractive foundation than locks for TM.
Similar arguments have been made by others, including Grossman et al. [10],
Moore and Grossman [24], Luchangco [18], Abadi et al. [1], and Harris [12]. Our
model is based on the strict serializability (SS) of database transactions. We
review it in Section 2.

In Section 3 we show how locks and other traditional synchronization mecha-
nisms can be defined in terms of transactions, rather than the other way around.
By making atomicity the fundamental unifying concept, SS provides easily un-
derstood (and, we believe, intuitively appealing) semantics for programs that
use a mix of synchronization techniques. In Section 4 we note that selective
strict serializability (SSS), also from our previous work, can eliminate the need
for “unnecessary” fences in the implementation of lock and volatile operations,
allowing those operations to have the same code—and the same cost—as in tra-
ditional systems, while still maintaining a global total order on transactions. In
section 5 we show how to augment SS or SSS with condition synchronization
(specifically, the retry primitive of Harris et al. [15]) without explicit mention of
speculation or aborted transactions. Finally, in Section 6, we compare SS to the
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notion of strong isolation (SI), arguing that SI is both insufficient to guarantee
TSC for arbitrary programs, and unnecessary in programs that are TDRF. We
conclude in Section 7.

2 The Basic Transactional Model

As is customary [9], we define a program execution to be a set of thread histories,
each of which comprises a totally ordered sequence of reads, writes, and other
operations—notably external actions like input and output. The history of a
given thread is determined by the program text, the semantics (not specified
here) of the language in which that text is written, the input provided at run
time, and the values returned by reads (which may be set by other threads).
An execution is said to be sequentially consistent (SC) if there exists a total
order on reads and writes, across all threads, consistent with program order in
each thread, such that each read returns the value written by the most recent
preceding write to the same location.

An implementation maps source programs to sets of target executions con-
sisting of instructions on some real or virtual machine. The implementation is
correct only if, for every target execution, there exists an equivalent program
execution—one that performs the same external actions, in the same order.

Given the cost of sequential consistency on target systems, relaxed consistency
models differentiate between synchronization operations and ordinary memory
accesses (reads and writes). Operations within a thread are totally ordered by
program order <p. Synchronization operations across threads are partially or-
dered by synchronization order <s, which must be consistent with program
order. The irreflexive transitive closure of <p and <s, known as happens-before
order (<hb), provides a global partial order on operations across threads.

Two ordinary memory accesses, performed by different threads, are said to
conflict if they access the same location and at least one of them is a write. An
execution is said to have a data race if it contains a pair of conflicting accesses
that are not ordered by <hb. A program is said to be data-race free (DRF) with
respect to <s if none of its sequentially consistent executions has a data race.

Relaxed consistency models differ in their choice of <s and in their handling
of data races. In all models, a read is permitted to return the value written by
the most recent write to the same location along some happens-before path.
If the program is data-race free, any topological sort of <hb will constitute a
sequentially consistent execution.

For programs with data races, arguably the simplest strategy is to make the
behavior of the entire program undefined. Boehm et al. [5] argue that any at-
tempt to define stronger semantics for C++ would impose unacceptable im-
plementation costs. For managed languages, an at-least-superficially attractive
approach is to allow a read to return either (1) the value written by the most re-
cent write to the same location along some happens-before path or (2) the value
written by a racing write to that location (one not ordered with the read under
<hb). As it turns out, this strategy is insufficiently strong to preclude circular



Transactions as the Foundation of a Memory Consistency Model 23

reasoning. To avoid “out of thin air” reads, and ensure the integrity of the virtual
machine, the Java memory model imposes an additional causality requirement,
under which reads must be incrementally explained by already-justified writes
in shorter executions [20].

2.1 Transactional Sequential Consistency

Our transactional memory model builds on the suggestion, first advanced by
Grossman et al. [10] and subsequently adopted by others [1,24,30], that <s be
defined in terms of transactions. We extend thread histories to include begin txn
and end txn operations, which we require to appear in properly nested pairs.
We use the term “transaction” to refer to the contiguous sequence of operations
in a thread history beginning with an outermost begin txn and ending with the
matching end txn.

Given experience with conventional parallel programs, we expect that (1) races
in transactional programs will generally constitute bugs, and (2) the authors of
transactional programs will want executions of their (data-race-free) programs
to appear sequentially consistent, with the added provision that transactions
occur atomically. This suggests the following definition:

A program execution is transactionally sequentially consistent (TSC) iff there
exists a global total order on operations, consistent with program order in each
thread, that explains the execution’s reads (in the sense that each read returns
the value written by the most recent write to the same location), and in which the
operations of any given transaction are contiguous. An implementation (system)
is TSC iff for every realizable target execution there exists an equivalent TSC
program execution.

Similar ideas have appeared in several previous studies. TSC is equivalent to
the strong semantics of Abadi et al. [1], the StrongBasic semantics of Moore and
Grossman [24], and the transactional memory with store atomicity described by
Maessen and Arvind [19]. TSC is also equivalent to what Larus and Rajwar
called strong isolation [14, 1st edn., p. 27], but stronger than the usual meaning
of that term, which does not require a global order among nontransactional
accesses [4,6].

2.2 Strict Serializability

In the database world, the standard ordering criterion is serializability, which
requires that the result of executing a set of transactions be equivalent to some
execution in which the transactions take place one at a time, and any transactions
executed by the same thread take place in program order. Strict serializability
(SS) imposes the additional requirement that if transaction A completes before
B starts (in the underlying implementation), then A must occur before B in
the equivalent serial execution. The intent of this definition is that if external
(non-database) operations allow one to tell that A precedes B, then A must
serialize before B. We adopt strict serializability as the synchronization order for
transactional memory, equating non-database operations with nontransactional
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memory accesses, and insisting that such accesses occur between the transactions
of their respective threads, in program order. In our formulation:

Program order, <p, is a union of per-thread total orders, and is specified
explicitly as part of the execution. In a legal execution, the operations performed
by a given thread are precisely those specified by the sequential semantics of the
language in which the source program is written, given the values returned by
the execution’s input operations and reads. Because (outermost) transactions
are contiguous in program order, <p also orders transactions of a given thread
with respect to one another and to the thread’s nontransactional operations.

Transaction order, <t, is a total order on transactions, across all threads.
It is consistent with <p, but is not explicitly specified. For convenience, if a ∈ A,
b ∈ B, and A <t B, we will sometimes say a <t b.

Strict serial order, <ss, is a partial order on memory accesses induced by
<p and <t. Specifically, it is a superset of <t that also orders nontransactional
accesses with respect to preceding and following transactions of the same thread.
Formally, for all accesses a and c in a program execution, we say a <ss c iff at
least one of the following holds: (1) a <t c; (2) ∃ a transaction A such that
(a ∈ A ∧ A <p c); (3) ∃ a transaction C such that (a <p C ∧ c ∈ C); (4) ∃ an
access b such that a <ss b <ss c.

We say a memory access b intervenes between a and c iff a <p b ∨ a <ss b
and b <p c ∨ b <ss c. Read r is then permitted to return the value written by
write w if r and w access the same location l, w <p r ∨ w <ss r, and there is no
intervening write of l between w and r. Depending on the choice of programming
language, r may also be permitted to return the value written by w if r and w
are incomparable under both <p and <ss. Specifically, in a Java-like language, a
read should be permitted to see an incomparable but causally justifiable write.

An execution with program order <p is said to be strictly serializable (SS) if
there exists a transaction order <t that together with <p induces a strict serial
order <ss that (together with <p) permits all the values returned by reads in the
execution. A TM implementation is said to be SS iff for every realizable target
execution there exists an equivalent SS program execution.

In a departure from nontransactional models, we do not include all of program
order in the global <ss order. By adopting a more minimal connection between
program order and transaction order, we gain the opportunity (in Section 4) to
relax this connection as an alternative to relaxing the transaction order itself.

2.3 Transactional Data-Race Freedom

As in traditional models, two ordinary memory accesses are said to conflict if
they are performed by different threads, they access the same location, and at
least one of them is a write. A legal execution is said to have a data race if
it contains, for every possible <t, a pair of conflicting accesses that are not
ordered by the resulting <ss. A program is said to be transactional data-race
free (TDRF) if none of its TSC executions has a data race. It is easy to show [7]
that any execution of a TDRF program on an SS implementation will be TSC.
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class lock
Boolean held := false
void acquire( )

while true
atomic

if not held
held := true
return

void release( )
atomic

held := false

class condition(lock L)
class tok

Boolean ready := false
queue〈tok〉 waiting := [ ]
void wait( )

t := new tok
waiting.enqueue(t)
while true

L.release( )
L.acquire( )
if t.ready return

void signal( )
t := waiting.dequeue( )
if t != null

t.ready := true
void signal all( )

while true
t := waiting.dequeue( )
if t = null return
t.ready := true

Fig. 1. Reference implementations for locks and condition variables. Lock L is assumed
to be held when calling condition methods

3 Modeling Locks and Other Traditional Synchronization

One often sees attempts to define transactions in terms of locks. Given a memory
consistency model based on transactions, however, we can easily define locks in
terms of transactions. This avoids any objections to defining transactions in
terms of the thing they’re intended to supplant. It’s also arguably simpler, since
we need a memory model anyway to define the semantics of locks.

Our approach stems from two observations. First, any practical implemen-
tation of locks requires some underlying atomic primitive(s) (e.g., test-and-set
or compare-and-swap). We can use transactions to model these, and then define
locks in terms of a reference implementation. Second, a stream of recent TM
papers has addressed the issue of publication [23] and privatization [14,21,34],
in which a program uses transactions to transition data back and forth between
logically shared and private states, and then uses nontransactional accesses for
data that are private. We observe that privatization amounts to locking.

3.1 Reference Implementations

Fig. 1 shows reference implementations for locks and condition variables. Similar
implementations can easily be written for volatile (atomic) variables, monitors,
semaphores, conditional critical regions, etc. Note that this is not necessarily how
synchronization mechanisms would be implemented by a high-quality language
system. Presumably the compiler would recognize calls to acquire, release, etc.,
and generate semantically equivalent but faster target code.

By defining traditional synchronization in terms of transactions, we obtain
easy answers to all the obvious questions about how the two interact. Suppose,
for example, that a transaction attempts to acquire a lock (perhaps new trans-
actional code calls a library containing locks). If there is an execution prefix in
which the lock is free at the start of the transaction, then acquire will perform
a single read and write, and (barring other difficulties) the transaction can oc-
cur. If there is no execution prefix in which the lock is free at the start of the
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Initially v = w = 0

Thread 1 Thread 2
1: atomic
2: v := 1

3: while (v #= 1) { }
4: w := 1

5: while (w #= 1) { }

Fig. 2. Reproduced from Figure 2 of Shpeisman et al. [27]. If transactions have the
semantics of lock-based critical sections, then this program, though racy, should ter-
minate successfully.

transaction, then (since transactions appear in executions in their entirety, or
not at all) there is no complete (terminating) execution for the program. If there
are some execution prefixes in which the lock is available and others in which it
is not, then the one(s) in which it is available can be extended (barring other
difficulties) to create a complete execution. (Note that executions enforce safety,
not liveness—more on this in Section 5.) The reverse case—where a lock-based
critical section contains a transaction—is even easier: since acquire and release
are themselves separate transactions, no actual nesting occurs.

Note that in the absence of nesting, only acquire and release—not the bodies
of critical sections themselves—are executed as transactions; critical sections
protected by different locks can therefore run concurrently. Interaction between
threads can occur within lock-based critical sections but not within transactions.

3.2 Advantages with Respect to Lock-Based Semantics

Several researchers, including Harris and Fraser [13] and Menon et al. [22,23], have
suggested that lock operations (and similarly volatile variable accesses) be treated
as tiny transactions. Their intent, however, was not to merge all synchronization
mechanisms into a single formal framework, but simply to induce an ordering be-
tween legacy mechanisms and any larger transactions that access the same locks
or volatiles. Harris and Fraser suggest that it should be possible (as future work) to
develop a unified formal model reminiscent of the Java memory model. The recent
draft TM proposal for C++ includes transactions in the language’s synchronizes-
with and happens-before orders, but as an otherwise separate mechanism; nesting
of lock-based critical sections within transactions is explicitly prohibited [3].

Menon et al., by contrast, define transactions explicitly in terms of locks. Un-
fortunately, as noted in a later paper from the same research group (Shpeisman
et al. [27]), this definition requires transactions to mimic certain unintuitive (and
definitely non-atomic) behaviors of lock-based critical sections in programs with
data races. One example appears in Fig. 2; others can be found in Luchangco’s
argument against lock-based semantics for TM [18]. By making transactions fun-
damental, we avoid any pressure to mimic the problems of locks. In Fig. 2, for
example, we can be sure there is no terminating execution. If, however, we were
to replace Thread 1’s transaction with a lock-based critical section (L.acquire( );
v = 1; while (w != 1) { }; L.release( );), the program could terminate successfully.
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3.3 Practical Concerns

Volos et al. [33] describe several “pathologies” in the potential interaction of
transactions and locks. Their discussion is primarily concerned with implementa-
tion-level issues on a system with hardware TM, but some of these issues apply to
STM systems as well. If traditional synchronization mechanisms are implemented
literally as transactions, then our semantics will directly obtain, and locks will
interact in a clear and well-defined manner with other transactions. If locks are
implemented in some special, optimized fashion, then the implementation will
need to ensure that all possible usage cases obey the memory model. Volos et
al. describe an implementation that can be adapted for use with STM systems
based on ownership records. In our NOrec system [8], minor modifications to
the acquire operation would allow conventional locks to interact correctly with
unmodified transactions.

4 Improving Performance with Selective Strictness

A program that accesses shared data only within transactions is clearly data-race
free, and will experience TSC on any TM system that guarantees that reads see
values consistent with some <t. A program P that sometimes accesses shared
data outside transactions, but that is nonetheless TDRF, will experience TSC on
any TM system S that similarly enforces some <ss. Transactions in P that begin
and end, respectively, a region of data-race-free nontransactional use are referred
to as privatization and publication operations, and S is said to be privatization
and publication safe with respect to SS.

Unfortunately, many existing TM implementations are not publication and
privatization safe, and modifying them to be so imposes nontrivial costs [21].
In their paper on lock-based semantics for TM, Menon et al. note that these
costs are particularly egregious under single lock atomicity (SLA), which forces
every transaction to be ordered with respect to every other [23]. Their weaker
models (DLA, ALA, ELA) aim to reduce the cost of ordering (and in particular
publication safety) by neglecting to enforce it in questionable cases (e.g., for
empty transactions, transactions with disjoint access sets, or transactions that
share only an anti-dependence).

We can define each of these weaker models in our ordering-based framework,
but the set of executions for a program becomes much more difficult to define,
and program behavior becomes much more difficult to reason about. As noted by
Harris [14, Chap. 3] and by Shpeisman et al. [27], orderings become dependent
on the precise set of variables accessed by a transaction—a set that may depend
not only on program input and control flow, but also on optimizations (e.g., dead
code elimination) performed by the compiler.

Rather than abandon the global total order on transactions, we have pro-
posed [30] an optional relaxation of the ordering between nontransactional ac-
cesses and transactions. Specifically, we allow a transaction to be labeled as
acquiring (privatizing), releasing (publishing), both, or neither.
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Selective strict serial order, <sss, is a partial order on memory accesses.
Like strict serial order, it is consistent with transaction order. Unlike strict serial
order, it orders nontransactional accesses only with respect to preceding acquir-
ing transactions and subsequent releasing transactions of the same thread (and,
transitively, transactions with which those are ordered). Formally, for all accesses
a, c, we say a <sss c iff at least one of the following holds: (1) a <t c; (2) ∃ an ac-
quiring transaction A such that (a ∈ A ∧ A <p c); (3) ∃ a releasing transaction
C such that (a <p C ∧ c ∈ C); (4) ∃ an access b such that a <sss b <sss c.

Note that for any given program <sss will be a subset of <ss—typically a
proper one—and so a program that is TDRF with respect to SS will not nec-
essarily be TDRF with respect to SSS. This is analogous to the situation in
traditional ordering-based memory models, where, for example, a program may
be DRF1 but not DRF0 [9].

A transactional programming language will probably want to specify that
transactions are both acquiring and releasing by default. A programmer who
knows that a transaction does not publish or privatize data can then add an
annotation that permits the implementation to avoid the cost of publication
and privatization safety. Among other things, on hardware with a relaxed mem-
ory consistency model, identifying a transaction as (only) privatizing will allow
the implementation to avoid an expensive write-read fence. The designers of the
C++ memory model went to considerable lengths—in particular, changing
the meaning of trylock operations—to avoid the need for such fences before
acquiring a lock [5]. Given SSS consistency in Fig. 1, we would define the trans-
action in lock.acquire to be (only) acquiring, and the transaction in lock.release
to be (only) releasing. Similarly, a get (read) operation on a volatile variable
would be acquiring, and a put (write) operation would be releasing.

5 Condition Synchronization and Forward Progress

For programs that require not only atomicity, but also condition synchronization,
traditional condition variables will not suffice: since transactions are atomic,
they cannot be expected to see a condition change due to action in another
thread. One could release atomicity, effectively splitting a transaction in half
(as in the punctuated transactions of Smaragdakis et al. [29]), but this would
break composability, and require the programmer to restore any global invariants
before waiting on a condition. One could also limit conditions to the beginning
of the transaction [13], but this does not compose.

Among various other alternatives, the most popular appears to be the retry
primitive of Harris et al. [15]. The construct “if (! desired condition) retry” in-
structs a speculation-based implementation of TM to roll the current thread
back to the beginning of its current transaction, and then deschedule it until
something in the transaction’s read set has been written by another thread.
While the name “retry” clearly has speculative connotations, it can also be in-
terpreted (as Harris et al. do in their operational semantics) as controlling the
conditions under which the surrounding transaction is able to perform its one
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and only execution. We therefore define retry, for our ordering-based semantics,
to be equivalent to while (true) { }.

At first glance, this definition might seem to allow undesirable executions. If
T1 says atomic {f := 1} and T2 says atomic {if (f != 1) retry}, we would not want
to admit an execution in which T2 “goes first” and waits forever. But there is no
such execution! Since transactions appear in executions in their entirety or not
at all, T2’s transaction can appear only if T1’s transaction has already appeared.
The programmer may think of retry in terms of prescience (execute this only
when it can run to completion) or in terms of, well, re-trying; the semantics
just determine whether a viable execution exists. It is possible, of course, that
for some programs there will exist execution prefixes1 such that some thread(s)
are unable to make progress in any possible extension; these are precisely the
programs that are subject to deadlock (and deadlock is undecidable).

Because our model is built on atomicity, rather than speculation, it does not
need to address aborted transactions. An implementation based on speculation
is simply required to ensure that such transactions have no visible effects. In
particular, there is no need for the opacity of Guerraoui and Kapa#lka [11]; it is
acceptable for the implementation of a transaction to see an inconsistent view of
memory, so long as the compiler and run-time system “sandbox” its behavior.

5.1 Progress

Clearly an implementation must realize only target executions equivalent to
some program execution. Equally clearly, it need not realize target executions
equivalent to every program execution. Which do we want to require it to realize?

It seems reasonable to insist, for starters, that threads do not stop dead for
no reason. Consider some realizable target execution prefix M and an equivalent
program execution prefix E. If, for thread T, the next operation in program
order following T ’s subhistory in E is nontransactional, we might insist that
the implementation be able to extend M to M+ in such a way that T makes
progress—that is, that M+ be equivalent to some extension E+ of E in which
T ’s subhistory is longer.

For transactions, which might contain retry or other loops, appropriate goals
are less clear. Without getting into issues of fairness, we cannot insist that a
thread T make progress in a given implementation just because there exists
a program execution in which it makes progress. Suppose, for example, that
flag f is initially 0, and that both T1 and T2 have reached a transaction read-
ing if (f < 0) retry; f := 1. Absent other code accessing f, one thread will block
indefinitely, and we may not wish to dictate which this should be.

Intuitively, we should like to preclude implementation-induced deadlock. As
a possible strategy, consider a realizable target execution prefix M with corre-
sponding program execution prefix E, in which each thread in some nonempty
set {Ti} has reached a transaction in its program order, but has not yet executed
that transaction. If for every extension E+ of E there exists an extension E++

1 We assume that even in such a prefix, transactions appear in toto or not at all.
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of E+ in which at least one of the Ti makes progress, then the implementation
is not permitted to leave all of the Ti blocked indefinitely. That is, there must
exist a realizable extension M+ of M equivalent to some extension E′ of E in
which the subhistory of one of the Ti is longer.

5.2 Inevitability

If transactions are to run concurrently, even when their mutual independence
cannot be statically proven, implementations must in general be based on specu-
lation. This then raises the problem of irreversible operations such as interactive
I/O. One option is simply to outlaw these within transactional contexts. This is
not an unreasonable approach: locks and privatization can be used to make such
operations safe.

If irreversible operations are permitted in transactions, we need a mechanism
to designate transactions as inevitable (irrevocable) [32,35]. This can be a static
declaration on the transaction as a whole, or perhaps an executable statement.
Either way, irreversibility is simply a hint to the implementation; it has no impact
on the memory model, since transactions are already atomic.

In our semantics, an inevitable transaction’s execution history is indistin-
guishable from an execution history in which a thread (1) executes a privatizing
transaction that privatizes the whole heap, (2) does all the work nontransaction-
ally, and then (3) executes a publishing transaction. This description formalizes
the oft-mentioned lack of composability between retry and inevitability.

5.3 orElse and abort

In the paper introducing retry [15], Harris et al. also proposed an orElse con-
struct that can be used to pursue an alternative code path when a transaction
encounters a retry. In effect, orElse allows a computation to notice—and explicitly
respond to—the failure of a speculative computation.

Both basic transactions and the retry primitive can be described in terms of
atomicity: “this code executes all at once, at a time when it can do so correctly.”
The orElse primitive, by contrast, “leaks” information—a failure indication—out
of a transaction that “doesn’t really happen,” allowing the program to do some-
thing else instead. We have considered including failed transactions explicitly in
program executions or, alternatively, imposing liveness-style constraints across
sets of executions (“execution E is invalid because transaction T appears in some
other, related execution”), but both of these alternatives strike us as distinctly
unappealing. In the balance, our preference is to leave orElse out of TM. Its effect
can always be achieved (albeit without composability or automatic roll-back) by
constructs analogous to those of Section 3.

In a similar vein, consider the oft-proposed abort primitive, which abandons
the current transaction (with no effect) and moves on to the next operation in
program order. Shpeisman et al. observe that this primitive can lead to logical
inconsistencies if its transaction does not contribute to the definition of data-race
freedom [27]. In effect, abort, like orElse, can be used to leak information from
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an aborted transaction. Shpeisman et al. conclude that aborted transactions
must appear explicitly in program executions. We argue instead that aborts
be omitted from the definition of TM. Put another way, orElse and abort are
speculation primitives, not atomicity primitives. If they are to be included in
the language, it should be by means of orthogonal syntax and semantics.

6 Strong Isolation

Blundell et al. [4] observed that hardware transactional memory (HTM) designs
typically exhibit one of two possible behaviors when confronted with a race be-
tween transactional and non-transactional accesses. With strong isolation (SI)
(a.k.a. strong atomicity), transactions are isolated both from other transactions
and from concurrent nontransactional accesses; with weak isolation (WI), trans-
actions are isolated only from other transactions.

Various papers have opined that STMs instrumented for SI result in more
intuitive semantics than WI alternatives [25,28], but this argument has generally
been made at the level of TM implementations, not user-level programming
models. From the programmer’s perspective, we believe that TSC is the reference
point for intuitive semantics—and SS and SSS systems provide TSC behavior
for programs that are correspondingly TDRF. At the same time, for a language
that assigns meaning to racy programs, SS and SSS permit many of the results
cited by proponents of SI as unintuitive. This raises the possibility that SI may
improve the semantics of TM for racy programs.

It is straightforward to extend any ordering-based transactional memory
model to one that provides SI. We do this for SS in the technical report ver-
sion of this paper[7], and explore the resulting model (SI-SS) for example racy
programs. We note that SI-SS is not equivalent to TSC; that is, there are racy
programs that still yield non-TSC executions. One could imagine a memory
model in which the racy programs that do yield TSC executions with SI are
considered to be properly synchronized. Such a model would authorize program-
mers to write more than just TDRF code, but it would be a significantly more
complicated model to reason about: one would need to understand which races
are bugs and which aren’t.

An additional complication of any programmer-centric model based on strong
isolation is the need to explain exactly what is meant by a nontransactional
access. Consider Fig. 3. Here x is an unsigned long long and is being assigned
to nontransactionally. Is this a race under a memory model based on SI? The
problem is that Thread 2’s assignment to x may not be a single instruction. It is
possible (and Java in fact permits) that two 32 bit stores will be used to move
the 64 bit value. Furthermore, if the compiler is aware of this fact, it may arrange
to execute the stores in arbitrary order. The memory model now must specify
the granularity of protection for nontransactional accesses.

While SS and SSS do not require a strongly isolated TM implementation,
they do not exclude one either. It may seem odd to consider using a stronger
implementation than is strictly necessary, particularly given its cost, but there



32 L. Dalessandro, M.L. Scott, and M.F. Spear

Thread 1 Thread 2
1: atomic
2: r := x x := 3ull

Fig. 3. Is this a correct program under an SI-based memory model?

are reasons why this may make sense. First, SS with happens-before consistency
for programs with data races is not trivially compatible with undo-log-based
TM implementations [27]. These implementations require SI instrumentation to
avoid out-of-thin-air reads due to aborted transactions. Indeed, two of the ma-
jor undo-log STMs, McRT [2] and Bartok [16], are strongly isolated for just this
reason. Second, as observed by Grossman et al. [10], strong isolation enables se-
quential reasoning. Given a strongly isolated TM implementation, all traditional
single-thread optimizations are valid in a transactional context, even for a lan-
guage with safety guarantees like Java. Third, SI hardware can make it trivial
to implement volatile/atomic variables.

With these observations in mind, we would not discourage development of
strongly isolated HTM. For STM, we note that a redo-log based TM implemen-
tation with a hash-table write set permits many of the same compiler optimiza-
tions that SI does, and, as shown by Spear et al. [31], can provide performance
competitive with undo logs. Ultimately, we conclude that SI is insufficient to
guarantee TSC for racy programs, and unnecessary to guarantee it for TDRF
programs. It may be useful at the implementation level for certain STMs, and
certainly attractive if provided by the hardware “for free,” but it is probably not
worth adding to an STM system if it adds significant cost.

7 Conclusions

While it is commonplace to speak of transactions as a near-replacement for locks,
and to assume that they should have SLA semantics, we believe this perspective
both muddies the meaning of locks and seriously undersells transactions. Atom-
icity is a fundamental concept, and it is not achieved by locks, as evidenced
by examples like the one in Figure 2. By making atomic blocks the synchro-
nization primitive of an ordering-based memory consistency model, we obtain
clear semantics not only for transactions, but for locks and other traditional
synchronization mechanisms as well.

In future work, we hope to develop a formal treatment of speculation that
is orthogonal to—but compatible with—our semantics for TM. We also hope
to unify this treatment with our prior work on implementation-level sequential
semantics for TM [26].

It is presumably too late to adopt a transaction-based memory model for Java
or C++, given that these languages already have detailed models in which other
operations (monitor entry/exit, lock acquire/release, volatile/atomic read/write)
serve as synchronization primitives. For other languages, however, we strongly
suggest that transactions be seen as fundamental.
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