
Transactions in Java Card

Marcus Oestreicher
IBM Zurich Research Laboratory
8053 Rueschlikon, Switzerland

oes@zurich.ibm.com

Abstract

A smart card runtime environment must provide the
proper transaction support for the reliable update of data,
especially on multiapplication cards like the Java Card.
The transaction mechanism must meet the demands by the
applications and the system itself within the minimal re-
sources offered by current smart card hardware. This pa-
per presents the current transaction model implied by the
Java Card 2.1 specification, highlights its shortcomings and
presents a detailed discussion of possible implementation
schemes and their optimizations. It especially addresses the
problem of object instantiations within a transaction in the
Java Card 2.1 specification and presents an effective solu-
tion.

1 Introduction

Smart cards provide the secured access to stored data.
Data on the smart card is usually not accessible for an ex-
ternal application until it has authenticated itself to the card
sufficiently. If the communication only consists of read ac-
cesses, the card can deliver the requested data without com-
promising the security and integrity of the stored data. If
the external application creates or updates data on the card,
care must be taken that the integrity of the data is pre-
served throughout the communication. Either all updates
take place during the communication or the data on the card
is reverted to its initial state in case of an interrupted execu-
tion.

The terminal applications set up and control the com-
munication with the smart card and mostly also control the
consistency of their data on the card completely. Current
applications typically flag their data on the card to be incon-
sistent with the first write access during a series of updates.
After all updates, the terminal application finally records its
data on the card to be consistent again. If a terminal ap-
plication is confronted with a card in an inconsistent state,
its state may be reset by the terminal application itself, but

more often must be fulfilled under special authority within a
trusted environment. The dependency of the smart card con-
sistency on external applications can be accepted as long as
the smart card is only used for a few critical applications
where any irregularity must be recorded and checked at a
central site. Otherwise, a smart card should not only be able
to verify the access rights of an external application, but
should also provide a tighter control over the consistency
of the internally stored data. Especially, on multiapplica-
tion cards where each application on the card has access to
its own data, applications must also be able to control the
integrity of their data. Thus the underlying system must
provide a proper transaction mechanism which ensures the
correct transition between consistent states of applications
and offers its functionality to all applications residing on
the card. The task of the system is then twofold [1]. First,
the system is required to ensure that all updates of an ap-
plication are performed atomically; second, it must perform
crash recovery to provide stability: the system must recover
its state and the state of the applications to a consistent state
if a transactional computation fails.

A simple transaction model on the card may only support
userlevel transactions in the traditional sense [2]. Transac-
tions can be assumed to begin and end within the communi-
cation with a terminal application, are thus short lived and
need not be split in multiple subtransactions even if mul-
tiple applications cooperate together. However, the imple-
mentation of a transaction mechanism is hindered by the
extremely limited resources on a smart card. With RAM
capacities around 1 KByte and writable EEPROM capaci-
ties around 16 KByte the transaction implementation must
be carefully chosen. In case of the Java Card, the under-
lying standard Java environment must first be extended to
offer integrated transactional computations. The familiar
programming convenience of Java should be retained while
the necessary resource demands must be kept as minimal as
possible.

Section 2 gives an overview over the possible integra-
tions of transactions into the different types of smart card
systems, especially into interpreter based systems. Among



them is the Java Card whose execution and memory man-
agement model is introduced in Section 3. Section 4 dis-
cusses transactions on the Java Card in depth. Section 4.1
presents its transaction API and details its pros and cons.
Section 4.2 presents the minimum functionality which is
expressed in the Java Card 2.1 specification. However, the
Java Card specifications inhibits some problems described
in Section 4.3. Section 4.4 explains the transaction imple-
mentation options on the card, especially the possible log
strategies. Section 4.5 deals with the problem of object
instantiations within transactional boundaries and presents
a solution. Section 5 finally draws our conclusions and
presents future ideas.

2 Approaches in Smart Card Operating Sys-
tems

As soon as a smart card is inserted into a smart card
reader, an external application can start a communication
and send commands to the smart card. The card acts as a
server, fulfills the requested operation and returns a reply. A
set of basic commands is described in the ISO 7816-4 spec-
ification which defines an interoperability standard at the
level of the command exchange [3]. A smart card conform-
ing to this specification presents the stored data as a secured
file system to an external application. An external applica-
tion can select files in directories and read and update their
data after a successful authentication. The ISO specifica-
tion does not prescribe a transactional concept for the up-
date of stored files. While individual commands updating
data should be executed atomically, a sequence of updating
commands needs not to be atomic, especially as extremely
memory limited smart cards may not provide the necessary
resources for such additional guarantees. Thus the external
application is supposed to keep track of and manage consis-
tent states. An ISO file system based card could be extended
to provide the atomicity of all requested updates. However,
an external application might need a more fine granular con-
trol over which records belong to the transaction or not. In
this case, new commands for transaction control must be
introduced limiting the interoperability of the card.

Some smart cards offer a convenient transaction model
in form of a database application or even a database operat-
ing system [5]. External applications can access and update
the information stored in relational tables by providing suf-
ficient indexing information and authentication. In contrast
to filesystem based access, updates are transactional by def-
inition. The database model remains sufficient as long as
the necessary data can be easily modeled within a relational
table and the application does not rely on specific authenti-
cation and encryption schemes.

Multiapplication and post issuance smart cards allow the
deployment of many applications on a smart card and the

extension of the card functionality by installing new appli-
cations at a later time on the smart card. Each application
is independently selectable by an external application and
is responsible for servicing its requests. In multiapplication
cards where machine code serves as the executable content,
the applications are fully responsible for providing transac-
tional semantics as applications are allowed to directly ac-
cess the contents in memory. However, direct write accesses
to memory which must be logged during a transaction can
in general only be caught by explicit support in the language
and compiler.

Control over memory access is a basic benefit of an inter-
preter as the basic execution engine. Interpreters can easily
ensure that different applications only access the parts of
the memory which have been assigned to them so far. Other
than that, an interpreter can make sure that no memory cell
is overwritten during a transaction where its previous con-
tent has not been saved for potential restore at a later time.
Any computation within an application on the smart card
can be part of a transaction and transactional computations
can be integrated easily in the programming language.

Smart Card interpreters achieve memory protection in
two different ways. Systems like MULTOS realize a soft-
ware memory management unit where the instructions may
refer to memory by address but each access gets guarded
and checked towards granted areas [6]. Smart card envi-
ronments like the Java Card offer the possibility to rely on
the protection mechanisms of a type safe language which
prevents arbitrary accesses to memory. The referential in-
tegrity of the language is preserved. An application is only
allowed to access the elements or fields in an object or class.
One might use this information to record the changes dur-
ing a transaction at a higher level and record the operations
applied to the individual objects. This provides additional
information about transaction failures during future inves-
tigations, but increases heavily the information needed for
the transaction recording.

3 Java Card Introduction

3.1 Applet Execution

The Java Card environment shares the basic architecture
with the standard Java environment. However, due to the
limited resources on current smart cards the Java Card sacri-
fices a number of Java features. For instance, the Java Card
does not support all primitive types and does not allow the
dynamic download of classes [7]. Instead, a converter is
used to package all classes of a Java Card application into
one executable file and to reduce its size by prelinking it for
the execution on the card as far as possible. The converted
package can then be downloaded on the card where a Java



Card application, an applet, can be installed in a separate
step.

The runtime environment initiates the applet installation
by calling theinstall() method of its class instantiating an
applet object and registering it at the runtime environment.
From now on, an external application can initiate asession
with the installed applet by selecting it first at the runtime
environment. The select command will be forwarded by
the runtime to the applet’sselect()method, each following
command will be forwarded to itsprocess()method. The
applet processes each command and returns from its invo-
cation with a response for the terminal application. Thus
the invocation of the applet is event driven until the remote
application finishes the card session or selects a different
applet where the current applet is notified by the invocation
of its deselect()method.

3.2 Memory Management

The applet instance and associated persistent objects of
an application must survive a session. Therefore they are
placed in the non volatile storage on a card, usually EEP-
ROM. EEPROM provides similar read and write access as
RAM does, but with the important difference that the num-
ber of physical writes is limited and writes to EEPROM
cells are typically more than thirty times slower than writes
to RAM. Performance of writes can be increased on many
current chips by initiating block writes instead of multiple
single EEPROM writes where individual bytes are written
in parallel to EEPROM. Neither single byte nor block writes
are guaranteed to succeed in case of sudden power loss, the
write operation can suddenly fail after an arbitrary number
of bits have already been written. Thus the runtime envi-
ronment can only rely on the outcome of a single flag write
as the basic building block for transactions. Both RAM and
EEPROM size is extremely limited on current smart card
hardware, ranging typically up to 1 KByte for RAM and up
to 16 KByte EEPROM for current Java Cards.

In contrast to EEPROM, RAM looses its value in case
of a power loss. For repeated, performance- and security-
sensitive computations, RAM must be usable by Java Card
applications. For instance execution state, operand stack
and local variables must be placed in RAM by the virtual
machine. Other than that, the Java Card 2.1 specification
allows applets to allocate array instances explicitly in RAM.
Our model extends the Java Card specification by allowing
any type of object to be placed both in EEPROM as well
as in RAM. The system is described in detail in [9] and
especially allows the easy deployment of a RAM garbage
collector.

Data located in RAM, i.e. execution state and transient
objects, is not considered to be part of the persistent state
and its manipulations are not recorded during the transac-

tion due to a number of reasons, among which are per-
formance penalty and security implications. Thus, only
changes to the applet objects in EEPROM must be covered
by the transactional mechanism.

4 Transactions in Java Card

4.1 Language Integration

The described memory model shares its main properties
with the Java Card transaction model. The persistence or
transience property is orthogonal to the type of an object.
Any update of an object can be transactional independent
of its concrete type. Other than that, the transaction scheme
provides the following features:

1. Persistent updates are independent of transactional up-
dates. Changes to objects residing in EEPROM per-
sist even when occurring outside of transaction bound-
aries. While a single EEPROM field access has to be
atomic regarding to the Java Card specification, multi-
ple writes to EEPROM inside or outside a transaction
may differ in their behavior.

2. Transactional independence: Source code executed in-
side or outside a transaction can look exactly the same.

3. Execution within transactions do not compromise Java
security:
No changes have been applied to the language or to
the instruction set. Thus the converter remains inde-
pendent of the transaction mechanism. The recording
of state changes is invisible and unaccessible to the ex-
ecuting applet.

Figure 1 shows the current API in the Java Card specifi-
cation for initiating, committing and aborting transactions.
The control of transactions by static methods has a number
of disadvantages. The begin and end of a transaction is not
connected to each other, neither in the program text nor at
runtime. As a result, the execution state can not be reset to a
consistent state when a transaction is aborted by request of
an applet usingabortTransaction(). Instead, execution con-
tinues right after theabortTransaction()call. Transactional

Figure 1. Transaction API

JCSystem.beginTransaction();
JCSystem.commitTransaction();
JCSystem.abortTransaction();

systems like Transactional-C extend the language by con-
structs allowing the linguistic connection between begin,



commit and abort blocks [10]. In case of abort or com-
mit execution continues at well defined locations. PJama
achieves a similar effect by expecting the transaction to be
coded within one single instance method [11]. The runtime
environment will then execute the given method within a
transaction and return in any case, commit or abort, from its
invocation.

Such a mechanism adds the overhead of one tempo-
rary instance per transaction which might still be accept-
able even within the resource constrained Java Card envi-
ronment. However, the encapsulation within one method
interferes with the event triggered execution model of an
applet in the Java Card 2.1 specification. It is not possible
to extend the lifetime of a transaction across multiple com-
mands during a session as soon as the transaction is encap-
sulated within a method invocation. As a method invoca-
tion can only last as long as the invocation of theprocess()
method, the transaction boundaries can not be connected
with each other as soon as transaction lasts longer than one
single command. The current API therefore favors flexibil-
ity and resource friendliness although the missing linguistic
connection is partly responsible for some of the problems
described in Section 4.6.

4.2 Basic Java Card Transaction Model

As soon as a transaction is started, the system must keep
track of the changes to the persistent environment. The sys-
tem must at least record the state before the transaction and
the most current value for any given element during the
transaction. The updates must be logged at the granular-
ity of a single access. Large transactional systems group
objects in pages, manipulate them in RAM during the trans-
action and log changes lazily at the granularity of the page
into stable storage. However, the necessary RAM resources
are by no means available on current smart card hardware.

The transaction system must provide two guarantees. If
the system commits a transaction on request by an applet, it
must guarantee that the changes to the persistent set are ap-
plied in any case. Any necessary commit information must
be stored persistently at commit time to allow for the restart
of the commit process in case of sudden power loss. If the
commit process succeeds without a crash, execution contin-
ues after the return from the commit method.

Whenever a transactional computation aborts, the sys-
tem must be able to restore the state at the beginning of the
transaction. The reason for an abort firstly includes system
crashes, e.g. sudden power losses, or system initiated aborts
of applet computations. The system throws an exception in
case of any irregularity during the transaction processing,
for instance due to a transaction buffer overflow, and may
abort the applet computation for instance in case of an ex-
ception not being handled by the applet. The system then

recovers the previous applet state where the recovery infor-
mation had to be stored persistently to be able to restart the
recovery process in case of a sudden power loss. The sys-
tem is then free either to deselect the current applet or to let
it continue in its current session.

An applet can always explicitly request the transaction
abort by anabort() method invocation, for instance after it
caught an exception thrown by the system. The applet re-
mains selected to be able to react to the abort and to further
communicate with the external application.

4.3 Java Card 2.1 Limitations

The Java Card specification expects the recovery process
to take place immediately at the invocation of theabort()
method. The persistent state is brought back to its initial
state while the execution state and temporary instances are
not affected and applet execution continues after the return
from theabort() invocation. As the state has been recov-
ered, the applet can for instance immediately try to restart
the aborted transaction. As it will turn out, the point in time
defined for the recovery process has severe implications on
the flexibility of the transaction mechanism. In general, the
action and the point in time of the recovery can be varied
and still allow the future execution of the same applet dur-
ing the same session.

Although the Java Card 2.1 specification limits the max-
imum lifetime of a transaction to the duration of one
APDU communication, there are scenarios where compu-
tation must be transactional over multiple APDU’s. For in-
stance, a download of a new application should be encap-
sulated within a transaction. Other than required for sys-
tem relevant processes, applications in general benefit from
the extension of the maximum transaction duration. For ex-
ample, downloads of new keys of arbitrary length can span
multiple APDU’s, should be possible with the regular trans-
action mechanism, and should not require additional trans-
action logic by the application.

Allocations by the system or applications must also be
covered by the transaction mechanism. The Java Card spec-
ification indeed specifies the installation of applets as a
transactional process. All objects which are created during
a failing applet initialization must be freed. Other than that,
the current 2.1 Java Card specification does not require the
release of allocated memory within transaction boundaries
in case of an abort. In contrast to standard Java, the Java
Card specification assumes all object instantiations to take
place at installation time and not at any later time. How-
ever, some applications may not know or do not have any
real worst case requirement which they could allocate at in-
stallation time. A general database or data storage applica-
tion on a card might want to allocate dynamically as many
records as an external application may need [13]. In these



cases the system should limit the application resources, but
not the application itself. Especially with a garbage collec-
tion scheme on the card and increasing memory capacities,
memory releases and new instantiations are easily afford-
able for applications. The system must then guarantee that
no memory is lost when new objects are created during a
transaction aborted at a later time. Indeed, reclaiming this
memory is already required by the definition of a transac-
tion, but hard to enforce in the resource limited Java Card
environment.

Our Java Card implementation tries to avoid native code
as often as possible. System services like the secure down-
load of new applications and the update of keys, part of the
implementation of the Visa Open Platform specification, are
almost completely written in Java [12]. Thus the transac-
tion mechanism can be tailored completely towards the re-
quirements of Java applications and need not be designed
to support explicitly processes written in native code. As
we rely on the general transaction mechanism for perfor-
mance sensitive applications like the application download,
the transaction implementation must be runtime efficient.
Other than that, the transaction implementation must take
the scarce resources on the card into account and be space
efficient.

4.4 Old versus New Value Logging

Updates or writes to the persistent set occur within the
interpreter loop only on the access of persistent instance
fields, static fields and arrays. A second source are native
methods which must use special access operations to not
bypass the transaction mechanism. Especially the native
Util.arrayCopy()methods allow the transactional update of
a number of array elements at once [8].

Two schemes are well known for the logging of write
accesses during a transaction, e.g. either new value or old
value logging [2]. In case of old value logging, the update
of a location during the transaction occurs in place, e.g. di-
rectly at the referenced location. The general properties of
old value logging are:

� fast read accesses as the up-to-date values are always
stored at the referenced location.

� the original value for a given location must be saved in
a transaction buffer, typically once at the time of the
first write access to the location.

� committing a transaction is cheap as the new value are
already in place.

� aborting a transaction is expensive as the saved values
have to be written back to the original locations.

In case of new value logging, each value for a store oper-
ation to a given location is saved in the transaction buffer
during the transaction while the original value remains at
the affected location. The general properties are here:

� a slow read access as the up-to-date value for a location
must be searched in the buffer.

� write operations always have to update the buffer as
any new store operation has to be recorded there.

� committing a transaction is expensive as the new val-
ues have to be written to their target locations.

� aborting a transaction is cheap as the original values
are still in place.

Although the advantages and disadvantages still apply in
general in case of the Java Card, their degree depend on the
exploitation of the memory characteristics found on a smart
card. For instance, the performance aspect depends here
mostly on the number of necessary single or block EEP-
ROM writes whereas accesses to RAM are negligible to
a large extent. One might also include the typical access
pattern of Java Card applications into account where writes
to the same location during a transaction are usually rare.
So what are reasonable implementations and the achievable
performance for both schemes on a Java Card ?

Old Value Logging

Read performance always remains excellent in case of old
value logging. In case of a write, the referenced location has
to be checked for having already been saved. A reasonable
implementation for current smart cards scans the transac-
tion buffer linearly for the given location and if found, the
write succeeds directly to the target location. As multiple
updates of the same location are rare, the best case for the
write performance -one single EEPROM write - does not
occur too often. If the former value of the given location
has not been saved so far, a new entry consisting of loca-
tion and original value must be addedpersistently to the
transaction buffer to support a recovery process in case of
sudden power loss.

Two schemes are conceivable, a mark or counter based
transaction buffer scheme. The latter one adds first the new
entry to the buffer and then increments the entry counter of
the buffer. The counter must be incremented atomically, for
instance with the help of a shadow counter and a flag in-
dicating which counter is currently valid. Thus three EEP-
ROM writes are necessary. One block write for the new
entry, one write for the incremented shadow counter and
one write for flipping the counter flag. Performance can be
increased with the mark scheme where a flag after the last
entry in the buffer indicates its end. Entries are added to the



buffer by first appending the new entry with the new end
marker in a single block writte and then clearing the previ-
ous end marker in a second single EEPROM write access.
The number of EEPROM accesses is reduced to two while
the entry size is increased by an additional byte.

Table 1 summarizes the properties of a old value logging
scheme with a marked buffer implementation. Appending a
new entry needs two EEPROM writes. In case of commit,
the expected total number of EEPROM writes per location
is then expected to consist typically of three assuming mul-
tiple updates of the same location are rare; two for adding
an entry, one for updating the target location.

In case of commit, the transaction buffer must just be
marked invalid and the transaction is completed. In case of
abort, the saved values in the buffer are written back to their
former locations. After a sudden power loss the write pro-
cess may just be restarted from the beginning of the buffer
as locations and values in the buffer remain constant and
thus can be rewritten as often as possible (although the num-
ber is actually limited by the physically possible number of
EEPROM writes).

Table 1. Logging Scheme Comparison
Logging Strategy New Value Old Value

Commit Costs High Minimal
Abort Costs Minimal High

Minimum E2 Accesses
for Logging

1 2/Log Entry

Maximum E2 Accesses
for Logging

1/Store 2/Log Entry

Expected E2 Accesses
per Committed Store

1 + 1/Store 3/Store

ExpectedE2 Accesses
per Aborted Store

1 3/Store

Writes per Log Entry
on Abort

0 1

New Value Logging

Similar overall performance can be achieved in the new
value logging scheme dependent on the implementation and
the available resources. Read performance lags always be-
hind as the transaction buffer must be scanned - typically
linearly - for a formerly written value. The situation can
be better in case of the much more expensive write opera-
tions. A straightforward solution will scan the transaction
buffer for a formerly written entry for the given location
and replace its value with the new value in a single EEP-
ROM write operation. If the location is accessed the first
time - the most common case for typical Java Card applica-
tions - a new entry must be added to the buffernon atom-

ically, e.g. with one single EEPROM block write. Thus
the performance can be increased significantly if the trans-
action buffer is cached in RAM and written out lazily to
EEPROM on overflow. If the RAM resources are not too
limited and the transaction does not involve too many write
operations, all memory accesses can be logged within the
cache in RAM and are only written to EEPROM in one sin-
gle EEPROM block write at commit time. The buffer must
then be saved persistently as any started commit operation
has to be completed after a sudden power loss at the time of
the next card reset. The runtime environment will then scan
through the transaction buffer and apply the stored values to
the given locations. Aborts are again free in the sense that
the contents of the transaction buffer can just be discarded.

Table 1 summarizes the properties of a new value log-
ging scheme with RAM caching. Best commit performance
can be achieved if all log entries can be cached in RAM and
all entries are saved at commit time in EEPROM withone
single block write. The value ineachentry must then be
flushed to its target location with another EEPROM write.
In the worst case however, EEPROM has to be accessed on
each log operation for instance if log entries are reused and
an entry for a given location is already existent in EEPROM.

Other than pure performance, the necessary memory re-
sources are another key aspect for choosing the right log-
ging scheme which are for instance high in case of a cache
based new value logging scheme. However, there is still an-
other general advantage of the new value logging scheme
which arises from the fact that an abort or a sudden power
loss is more likely to occur during the application process-
ing than during the commit or abort process by the system.
Thus someone might choose the new value logging scheme
in general as it reduces the amount of work for the recovery
process in case of an application abort drastically.

4.5 Object Instantiations within Transactions

The Java Card specification does not enforce possi-
ble object instantiations outside of the installation method.
Other than that, it also explicitly states that object alloca-
tions within transactions may fail and any allocated space is
allowed to get lost forever in case of an abort [8]. Clearly,
this does not conform to proper transactional semantics
where the state of the applications and the system is ex-
pected to be exactly the same as before the transaction in
case of an abort and thus any allocated space in between
is released. This is especially very harmful as there is a
practical need for object instantiations outside of the applet
installation method and under a proper transaction control.

For instance, our Visa Open Platform implementation
relies completely on a real transaction mechanism for the
download of new applications [12]. During the transac-
tion, a new array is created and the executable content is



downloaded and stored in the newly allocated object. If
the transaction fails, the transaction mechanism ensures that
the newly allocated object will go away during the abort
process. Indeed, if any change to the persistent memory
is included in the transactional mechanism, including the
changes by the system to the heap management structures
etc., the persistent state is recovered completely in case of
an abort and any newly allocated object is automatically re-
leased.

However, there are a few remaining problems. The
newly allocated array for the code to be downloaded in
the given example can be huge and as any write to the ar-
ray incurs an additional entry in the transaction buffer, the
buffer is likely to overflow during the transaction. How-
ever, each access to a newly created object can be eas-
ily detected within the interpreter and directly forwarded
to the contents of the newly created array. In the object
aware Java bytecode, objects are always addressed by an
object reference and offset. When the object header and
its heap management information is logged at instantiation
time, the transaction mechanism can decide on each access
whether a given object already existed before or has been
allocated during the transaction. The referenced object is
just searched in the buffer and if it is not found, the ob-
ject already existed before and the store operation is reg-
ularly logged. If it is found, it has been newly allocated
and the value can commence directly within the newly al-
located region at the given offset. In case of commit, the
object header and its heap management information is writ-
ten permanently, the object thus becomes allocated persis-
tently. In case of an abort, it is automatically released. This
optimization can therefore reduce extremely the necessary
transaction buffer size during a transaction.

The most hindering problem is the fact that the transac-
tion mechanism logs only writes to persistent fields. Thus,
temporary references stored in RAM may still reference the
newly instantiated objects after an abort. As long as these
references exist, the virtual machine can not release the ref-
erenced objects. If the runtime releases the objects, it must
reset the relevant references to a defined state. The most
simple approach for avoiding this problem is to deselect an
applet immediately in case of an abort and to recover the
persistent set. However, if an applet gets automatically de-
selected, it depends completely on the external application
to reselect and reactivate it again.

There are two potential sources for references within
RAM to the areas of aborted object instantiations. First, an
application might have stored such references in transient
objects. These can be found and reset by a RAM garbage
collector [9]. It has just to be adapted to search for spe-
cific persistent objects and reset the referencing location in
RAM. Other than that, local variables in the current execu-
tion frame may contain such references in case of an abort

due to the missing linguistic connection between the trans-
action boundaries. Figure 2 shows a code example where
f is a local variable which is still accessible after the appli-
cation initiated an abort and still refers to the newly instan-
tiated object. If the semantics forabortTransaction()are

Figure 2. Problematic JCSystem.abort()

Foo f;
JCSystem.beginTransaction();
...
f = new Object();
...
JCSystem.abortTransaction();
f.doIt();

defined to recover the state and release the allocated objects
immediately, the references on the stack must be reset, too.
Which elements on the stack are references can be gathered
practically in two ways. Firstly, the interpreter may imple-
ment a type tagged stack where each stack slot is marked
with its type. This allows the reset of problematic refer-
ences immediately in case of abort, but reduces the inter-
preter performance in general and increases the size of the
runtime stack. Secondly, instructions can be checked lazily
at execution time not to operate on invalid references and
throw an exception in case. However, this still introduces
a performance penalty and especially makes it very hard to
reuse and reallocate the space for an aborted object instan-
tiation as the system must ensure that no other reference
to this area still exists. This seems to be the main reason
why the Java Card specification allows memory to get lost
in case of allocations within transactions.

The restrictions on the interpreter implementation can be
reduced when the point in time for the recovery process is
delayed until the applet returns from itsprocess()invoca-
tion by the system. The stack is then unwound and only the
temporary objects have to be scanned for problematic ref-
erences. The applet is then limited in so far that it can not
immediately try to restart the transaction, but must wait for
another command by the external communication. How-
ever, we expect an applet to return an error code in case of
a failure anyway and wait for new commands for further
processing. Instead of restricting the system with an expen-
sive and fixed interpreter architecture, we propose instead
a small limitation on the possible communication behavior
of Java Card applications. We therefore suggest thatabort-
Transaction()throws an exception by default to remember a
programmer that his applet is going to operate on still unre-
covered data and will be recovered on return from the cur-
rent applet invocation.



5 Conclusion And Future Work

This paper presents the effective integration of transac-
tion support in the Java Card. It reports the basic transac-
tion semantics required by the Java Card 2.1 specification
which only requires the minimum functionality needed for
simple transactional computations. For instance, the Java
Card specification and especially its transaction model suf-
fers from its static allocation model where any space allo-
cated within transactions may not be released in case of an
abort. In contrast, we have shown that object instantiations
can easily be integrated in the transaction mechanism even
in case of the tight memory resources on a smart card. The
various possible implementation choices are discussed in
detail, including various log schemes, their impact on per-
formance and memory usage and possible optimizations.

An extended transaction mechanism can be used by a
wide range of applications, for instance by system services
like the download of applications, or by applications to
download and update arbitrary data like keys. It is also used
by applets to reliable audit the progress of computations.
Java Cards do not provide enough memory resources and
symbolic information to allow a general audit of application
processes by the system. Thus, current applications need to
record any audit information by themselves. In the future,
we want to extend our transaction mechanism to provide a
standard audit mechanism which can be used by a broad
range of applications. However, as specifications like Visa
Cash or Geldkarte can not rely so far on a standard audit
service, they specify their own and different audit mecha-
nisms which then have to be implemented by the applica-
tions themselves [4].

The described application scenarios are already fully
supported with the transaction mechanism proposed in this
paper and the Java Card platform therefore provides a flex-
ible and reliable platform for smart card applications.

References

[1] Jim Gray, The Transaction Concept: Virtues and Limi-
tations, Very Large Data Bases, 7th International Con-
ference, September 9-11, 1981, Cannes, France, Pro-
ceedings

[2] Jim Gray, Andreas Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufmann 1993,
ISBN 1-55860-190-2

[3] ISO/IEC 7816-4, Identification Cards - Integrated
circuit(s) cards with contacts - Part 4: Interindus-
try commands for interchange, 1995, ISO/IEC 7816-
4:1995(E)

[4] Leo van Hove, A selected bibliography on electronic
purses, http://cfec.vub.ac.be/cfec/purses.htm

[5] E. Dufresnes, P. Paradinas, J.-J. Vandewalle. CQL, a
Data Base in Smart Card for healthcare Applications,
Height World Congress on Medical Informatics, Ed-
monton Canada, July 1995

[6] Scott Guthery, alt.technology.smartcards FAQ, 1998,
http://www.scdk.com/atsfaq.htm

[7] Sun Microsystems Inc., Java Card 2.1 Virtual Ma-
chine Specification, Final Revision 1.0, March 1998,
http://java.sun.com/products/javacard/JCVMSpec.pdf

[8] Sun Microsystems Inc., Java Card 2.1 API
Specification, Final Revision 1.0, March 1998,
http://java.sun.com/products/javacard/htmldoc/index.html

[9] Marcus Oestreicher, Krishna Ksheeradbhi, Object
Lifetimes in Java Card, USENIX Workshop on Smart
Card Technology, May 1999

[10] Paul Taylor, Transactions for Amadeus, Thesis,
Department of Computer Science, Trinity College
Dublin, August 1993

[11] Atkinson M.P., Jordan M.J., Daynes L., Spence S.,
Design Issues For Persistent Java: a type-safe, object-
oriented, orthogonally persistent system, Seventh In-
ternational Workshop on Persistent Object Systems,
February 1996

[12] Visa International, Open Platform Main Page,
http://www.visa.com/nt/suppliers/open/main.html

[13] RSA Laboratories, “PKCS #11: Cryptographic To-
ken Interface Standard”, December 1997, RSA
Data Security, Inc., http://www.rsa.com/rsalabs/pubs/
PKCS/html/pkcs-11.html


