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Abstract

To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes

(T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in

22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent.

Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci,

each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the

structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most

likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with
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genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight

into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the

biology of specific disease susceptibility loci.

Introduction

Genome-wide association studies (GWAS) of type 2 diabetes

(T2D) have been extremely successful in identifying loci contrib-

uting genetic effects to disease susceptibility inmultiple ancestry

groups (1–5). These loci are typically characterized by common

variant association signals, defined by a lead single-nucleotide

polymorphism (SNP) with minor allele frequency (MAF) of at

least 5%, in the ancestry group inwhich itwas discovered. The as-

sociation signals oftenmap to large genomic intervals because of

extensive linkage disequilibrium (LD) between common variants

within populations from the same ancestry group, making local-

ization and identification of causal alleles at T2D susceptibility

loci extremely challenging. Consequently, there has been limited

progress in defining the molecular mechanisms through which

the effects of GWAS loci on disease are mediated.

There is increasing evidence, however, that T2D association

signals discovered in one ancestry group are transferrable across

diverse populations (6–9). For the majority of established T2D

susceptibility loci, common variant association signals are

shared across ancestries. Furthermore, there is limited evidence

across populations of heterogeneity in the allelic effects of lead

SNPs identified through transancestral meta-analysis (10). This

observation is consistent with a model in which the underlying

causal variants are shared across ancestry groups, and thus

arose prior to human population migration out of Africa. Under

this assertion, we expect to enhance the fine-mapping resolution

of causal alleles by combining GWAS across ancestry groups be-

cause of the increased sample size and as a result of differences

in the structure of LD between diverse populations (11–13).

To harness the power of transancestral fine-mapping for lo-

calizing potential causal variants for T2D susceptibility, we

have undertaken meta-analysis of GWAS in 22 086 cases and

42 539 controls from five ancestry groups: East Asian, European,

South Asian, African American and Mexican American (Supple-

mentary Material, Table S1). We focussed on four loci, mapping

to/near CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1, because they

harbour the strongest signals of association across diverse ances-

tries, with no evidence of heterogeneity in allelic effects between

populations (10). Previous ancestry-specific meta-analyses have

reported lead SNPs attaining genome-wide significance (P < 5 ×

10−8) at all four loci in European and East Asian descent popula-

tions (3,4), and at KCNQ1, also in African Americans (5). All four of

the loci have a primary physiological impact on T2D susceptibil-

ity via β-cell dysfunction (4), and thusmight be expected, a priori,

to share similar mechanisms through which the GWAS signals

are mediated.

Previous transancestral GWASmeta-analyses for T2D suscep-

tibility (10) have been limited by imputation up to the relatively

sparse reference panels from the International HapMap Consor-

tium (14), which provides limited coverage of variation with MAF

<5% across diverse populations. To improve fine-mapping reso-

lution, we have undertaken imputation of each study up to the

‘all ancestries’ reference panel from the 1000 Genomes Project

Consortium (15) (Phase 1 integrated release, March 2012) across

the four loci. With these data, we aimed to: (i) statistically delin-

eate distinct association signals arising frommultiple causal var-

iants in each locus through conditional analyses; (ii) re-evaluate

the evidence for heterogeneity in allelic effects between ancestry

groups for each distinct association signal; (iii) construct credible

sets of variants that are most likely to drive each distinct associ-

ation signal and thus most likely to incorporate causal alleles;

and (iv) interrogate credible set variants for predicted functional

annotation and regulatory sites in relevant tissues (primarily

pancreatic islet β-cells) to provide insight into the potential cau-

sal mechanisms through which the effects of each distinct asso-

ciation signal on T2D susceptibility are mediated.

Results

Study overview

We considered a total of 18 studies, genotyped with a range of

GWAS arrays, in 22 086 T2D cases and 42 539 controls (Supple-

mentary Material, Table S1): seven of East Asian ancestry (9867

cases and 12 870 controls), five of European ancestry (4555 cases

and 12 932 controls), four of South Asian ancestry (6196 cases and

13 775 controls), one of African American ancestry (631 cases and

2526 controls) and one of Mexican American ancestry (837 cases

and 436 controls). At each of the four loci, the GWAS scaffold in

each study was imputed up to the ‘all ancestries’ Phase 1 inte-

grated reference panel (March 2012 release) from the 1000 Gen-

omes Project Consortium (15) using IMPUTEv2 (16) or minimac

(17). We excluded variants with MAF <1% from each study, after

imputation, because our focus was on common and low-fre-

quency association signals that are shared across diverse popula-

tions, and thus amenable to transancestral fine-mapping to

improve localization of causal variants. We then retained ‘well-

imputed’ variants, defined as attaining widely used thresholds

(18) of IMPUTEv2 info ≥0.4 or minimac r2 ≥ 0.3, for downstream

association analyses.

We began, in each study, by testing for association of T2Dwith

each variant (MAF ≥1% and passing imputation quality control)

across the four loci (Materials and Methods, Supplementary

Material, Table S2). Variants passing quality control in <80% of

the total sample size (i.e. in <51 700 individuals) were excluded

from the transancestral meta-analysis. Our primary analysis

combined association summary statistics across studies using

MANTRA (19). This Bayesian method has been designed for

transancestral meta-analysis and fine-mapping by allowing for

heterogeneity in allelic odds ratios (ORs) between studies. Such

heterogeneity can arise as a result of differential patterns of LD

with a shared causal variant between diverse populations from

distinct ancestry groups. However MANTRA can also allow for

heterogeneity in allelic ORs arising from genuine effect size dif-

ferences between ancestry groups, including the possibility of

interaction with environmental risk factors that differ in expos-

ure between diverse populations, or variable phenotype defin-

ition or ascertainment strategies across studies.

MANTRA incorporates a prior model of relatedness between

studies to account for heterogeneity in allelic ORs, and has

been demonstrated, by simulation, to improve detection and

localization of causal variants compared with either a fixed- or

random-effects transancestral meta-analysis (19,20). Here, the

relatedness between studies has been developed by applying

hierarchical clustering to the observed pair-wise differences in

2072

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/


Human Molecular Genetics, 2016, Vol. 25, No. 10 | 

mean allele frequency across variants at the four loci, and high-

lighted three distinct ancestral clades (Supplementary Material,

Fig. S1): (i) a single African American study (AfAm); (ii) a cluster

of studies of East Asian ancestry (EAsia) and (iii) a cluster of stud-

ies of European, Mexican American and South Asian ancestry

(Eur-MexAm-SAsia). The evidence in favour of association from

MANTRA is measured by means of a Bayes’ factor (BF). For com-

pleteness, we also combined association summary statistics

across studies through traditional fixed-effects meta-analysis,

which makes the limiting assumption of no heterogeneity in

allelic ORs between studies (Materials and Methods).

Identification of distinct association signals

There is increasing evidence ofmultiple ‘distinct’ association sig-

nals at established T2D susceptibility loci, each arising as a result

of different causal variants acting independently or, in cis, on

the same haplotype (4). The first stage in comprehensive fine-

mapping of GWAS loci is thus to disentangle, statistically, these

distinct association signals, and to localize the causal variants

for each, in turn, on the basis of conditional analyses. In this

framework, each distinct association signal can be represented

by an ‘index variant’, here required to attain genome-wide sig-

nificant evidence of association (MANTRA log10BF ≥6 and fixed-

effects P < 5 × 10−8) in conditional transancestral meta-analysis

(Materials and Methods). Across the four loci, we identified a

total of seven distinct signals of association, three mapping to

KCNQ1, two to CDKN2A-B and one each at IGF2BP2 and CDKAL1

(Table 1).

The association of variants mapping to the KCNQ1 locus with

T2D susceptibilitywas initially established in GWAS of East Asian

ancestry, andwas localized to a <50 kb intronic region of the gene

(21,22). Association of variants in this interval have been widely

replicated, at genome-wide significance, across GWAS frommul-

tiple populations (3,4,5,10). However, the lead SNPs from East

Asian and European ancestry meta-analyses are in only weak

LD with each other (rs2237896 and rs163184, respectively; CEU

r2 = 0.027, CHB + JPT r2 = 0.395). Meta-analyses of European ances-

try GWAS (4,23) have also identified an additional association sig-

nal at this locus, ∼150 kb upstream of the recombination interval

described above, and mapping to the KCNQ1-OT1 transcript that

controls regional imprinting (24). Through exact conditioning,

our transancestral meta-analysis has formally demonstrated

that the association at this locus can be delineated by three

distinct signals (Supplementary Material, Fig. S2), two localized

to the <50 kb KCNQ1 intronic recombination interval (rs2237897,

MANTRA log10BF = 9.79, P = 7.7 × 10−12; rs233448, MANTRA

log10BF = 9.65, P = 9.5 × 10−12) and one mapping to KCNQ1-OT1

(rs231353, MANTRA log10BF = 9.29, P = 1.7 × 10−11). After account-

ing for these three index variants in conditional analyses, no re-

sidual association signal attains genome-wide significance

(maximum MANTRA log10BF = 3.38, P = 2.1 × 10−5, rs223448).

At the CDKN2A-B locus, association of T2D susceptibility with

variants localized to a 12 kb intergenic recombination interval

was first reported in GWAS of European descent (25), and then

widely replicated across ancestry groups (3,4,5,10). Haplotype

analyses have revealed that the association signal can best be

explained by two partially correlated SNPs (rs10811661 and

rs10757282, CEU r2 = 0.360) in the recombination interval, acting

together, in cis, to impact disease risk (25–27). European ancestry

GWAS have also previously hinted at a distinct association signal

at this locus, mapping to the non-coding CDKN2B-AS1 (ANRIL)

transcript (4). Through exact conditioning, our transancestral

meta-analysis has demonstrated that the association at this

locus can be delineated by two distinct signals (Supplementary

Material, Fig. S3), both of which map to the 12 kb intergenic re-

combination interval described above (rs10965246, MANTRA

log10BF = 37.45, P = 8.4 × 10−40; rs10757282, MANTRA log10BF =

10.31, P = 2.0 × 10−12). Furthermore, our results highlight that

these two index variants are sufficient to fully explain the

association across the locus, including that previously localized

to CDKN2B-AS1 (maximum MANTRA log10BF = 1.88, P = 0.21,

rs10811649).

Evaluation of heterogeneity in association signals
between ancestry groups

We next sought to evaluate the evidence for heterogeneity in al-

lelic effects between studies for the index variants for the seven

distinct association signals across the four loci on the basis of the

transancestral meta-analysis (Materials and Methods). We ob-

served no substantial differences in allelic OR, within or between

ancestry groups, for any association signal (assessed byMANTRA

log10BF of heterogeneity or Cochran’s Q statistic from the fixed-

effects meta-analysis). Any apparent differences in the magni-

tude of an association signal between ancestral clades, as mea-

sured by means of the log10BF or P-value, can be explained by

differences in the allele frequency of the index variant between

the diverse populations contributing to the meta-analysis (Sup-

plementary Material, Table S3). For example, the index variant

rs2237897, mapping to the KCNQ1 locus, demonstrates a stronger

signal of association after conditional analysis in the EAsia clade

(MANTRA log10BF = 5.55, fixed-effects P = 2.0 × 10−7) than the Eur-

MexAm-SAsia clade (MANTRA log10BF = 4.04, fixed-effects P = 4.4

× 10−6), despite much smaller total sample size. However, the

minor allele is at much lower frequency in European, Mexican

Table 1. Summary statistics from the conditional transancestral meta-analysis (22 086 cases and 42 539 controls) for distinct T2D association
signals at each locus

Locus Index SNP Chr Position

(b37)

Alleles Mean (range) r2

or info

MANTRA Fixed-effects meta-analysis

Risk Other Log10BF Log10BF

heterogeneity

OR (95% CI) P-value Cochran’s Q

P-value

IGF2BP2 rs11705729 3 185 507 299 T C 0.96 (0.74–1.00) 19.35 −0.05 1.14 (1.11–1.17) 1.3 × 10−21 0.49

CDKAL1 rs9368222 6 20 686 996 A C 0.97 (0.74–1.00) 28.84 0.99 1.17 (1.14–1.21) 4.1 × 10−30 0.0058

CDKN2A-B rs10965246 9 22 132 698 T C 0.94 (0.79–1.00) 37.45 −0.03 1.31 (1.26–1.36) 8.4 × 10−40 0.0029

rs10757282 9 22 133 984 C T 0.92 (0.32–1.00) 10.31 0.01 1.12 (1.09–1.16) 2.0 × 10−12 0.17

KCNQ1 rs231353 11 2 709 019 G A 0.93 (0.68–0.99) 9.29 −0.13 1.11 (1.07–1.14) 1.7 × 10−11 0.79

rs233448 11 2 840 424 C T 0.94 (0.84–1.00) 9.65 0.14 1.12 (1.09–1.16) 9.5 × 10−12 0.18

rs2237897 11 2 858 546 C T 0.75 (0.35–0.97) 9.79 0.17 1.19 (1.14–1.26) 7.7 × 10−12 0.35

Chr, chromosome; OR, odds ratio; CI, confidence interval.

2073

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw048/-/DC1
http://hmg.oxfordjournals.org/


| Human Molecular Genetics, 2016, Vol. 25, No. 10

American and South Asian ancestry populations (MAF = 0.05)

than in those of East Asian descent (MAF = 0.35), resulting in re-

duced power to detect association for the same allelic effect size.

Localization of variants driving T2D association signals

Wenext constructed ‘credible sets’ of SNPs (27) that aremost like-

ly to drive each of the seven distinct signals at the four loci on the

basis of their posterior probability of driving the association (πC)

from the MANTRA transancestral meta-analysis (Materials and

Methods, Table 2, Supplementary Material, Table S4). Assuming

that the variant driving the association signal has been imputed

from the 1000G reference panel, the probability that it will be con-

tained in the 99% credible set is 0.99. Smaller credible sets, in

terms of the number of SNPs they contain, or the genomic inter-

val that they cover, thus correspond to fine-mapping at higher

resolution. To assess the improvements in the resolution of

fine-mapping offered by transancestral meta-analysis, we com-

pared the properties of the 99% credible set for each of the

seven distinct association signals obtained from: (i) studies in

the EAsia clade only; (ii) studies in the Eur-MexAm-SAsia clade

only and (iii) studies from all populations, combining the two

clades with the single African American study. Note that

we have not reported summary statistics for the 99% credible

sets for theAfricanAmerican studyalone because the small sam-

ple size makes comparison of fine-mapping intervals with the

EAsia and Eur-MexAm-SAsia clades meaningless.

For each of the seven distinct association signals, fine-map-

ping resolution was improved after transancestral meta-analysis

when compared with either ancestral clade, in terms of the

number of SNPs reported in the credible set and/or the genomic

interval that they cover (Table 2). These improvements in reso-

lution could occur as a result of increased sample size, or because

of differences in the structure of LD between diverse populations,

but distinguishing between these possibilities is not straightfor-

ward. One approach is to quantify the extent of LD variation at a

locus between pairs of populations by means of the varLD statis-

tic (28). Using CEU, YRI and CHB + JPT reference haplotypes from

the International HapMap Consortium (14) as representative of

populations of European, African and East Asian ancestry,

respectively, the CDKAL1 locus has the greatest extent of LD vari-

ation among those investigated here, and thus would be ex-

pected to be most amenable to transancestral fine-mapping

(28). At this locus, the 99% credible set for the association signal

after transancestral meta-analysis included just five SNPs map-

ping to 12.3 kb, compared with 15 SNPs mapping to 34.4 kb

in the EAsia clade, and eight SNPs mapping to 40.4 kb in the

Eur-MexAm-SAsia clade (Fig. 1). The transancestral credible set

corresponds to the overlap of SNPs from the two ancestral clades,

and represents those that are in strong LD with the index variant

(rs9368222) in East Asian and European descent populations. In

contrast, the extent of variation in LD between CEU, YRI and CHB

+ JPT reference haplotypes from Phase II HapMap is lower at the

IGF2BP2 locus (28), where the improvement in the resolution of

fine-mapping after transancestral meta-analysis is less apparent

(Table 2). Variants in the 99% credible set for this association sig-

nal after transancestral meta-analysis are in strong LD with the

lead SNP in both East Asian and European descent populations

(CEU and CHB + JPT r2 > 0.7), so there is less gain for fine-mapping

over the EAsia and Eur-MexAm-SAsia clades.

After transancestral meta-analysis, themost precise localiza-

tion was observed for two of the association signals at the KCNQ1

locus, indexed by rs2237897 (3 SNPsmapping to 197 bp of the nar-

row intronic recombination interval) and rs231353 (3 SNPs map-

ping to 17.5 kb of KCNQ1-OT1). The 99% credible sets for both

association signals at the CDKN2A-B locus include a total of 12

non-overlapping SNPs mapping to the same <5 kb interval. We

interrogated the 99% credible sets for all seven distinct associ-

ation signals at the four loci for functional annotation. Despite

the high-resolution of fine-mapping for all but the IGF2BP2

association signal, the credible sets do not include any coding

variants. These data are thus consistent with previous genome-

wide reports that association signals for complex human traits

at GWAS loci are most likely to bemediated through gene regula-

tion (29,30).

Regulatory mechanisms through which credible set
variants influence T2D susceptibility

Recent reports have demonstrated a relationship between T2D-

associated variants, genome-wide, and transcriptional enhancer

activity, particularly in human pancreatic islets, liver cells, adi-

pose tissue and muscle (29–32). However, the precise biological

processes bywhich these variants impact on disease susceptibil-

ity at most GWAS loci remain obscure. Given the primary physio-

logical impact on T2D susceptibility of the four loci considered

here via β-cell dysfunction (4), we explored potential mechan-

isms through which the effects of the seven distinct association

signals are mediated by overlapping 99% credible set variants

with regions of predicted regulatory function in humanpancreat-

ic islets (32) (Materials and Methods). We observed that credible

set variants for four association signals (three at KCNQ1 and

one at CDKAL1) map to predicted tissue-specific enhancers in

human pancreatic islets, suggesting that they may play a role

in gene regulation (Fig. 2, Supplementary Material, Figs. S4–S6).

These variants included: rs231362 and rs231361 (at the KCNQ1

association signal indexed by rs231353, total πC = 0.359);

rs234866 (at the KCNQ1 association signal indexed by rs233448,

Table 2. Properties of the 99% credible sets of SNPs underlying each distinct association signal on the basis of meta-analyses of: (i) GWAS in the
EAsia clade only; (ii) GWAS in the Eur-MexAm-SAsia clade only and (iii) GWAS from all ancestry groups

Locus Index SNP EAsia meta-analysis Eur-MexAm-SAsia

meta-analysis

Transancestral meta-analysis

SNPs Distance (bp) SNPs Distance (bp) SNPs Distance (bp) Interval (b37)

IGF2BP2 rs11705729 51 52 598 40 39 163 36 31 027 185 503 456–185 534 482

CDKAL1 rs9368222 15 32 429 8 40 463 5 12 330 20 675 792–20 688 121

CDKN2A-B rs10965246 7 1556 7 2178 5 1371 22 132 698–22 134 068

rs10757282 26 50 986 7 5861 7 4435 22 133 251–22 137 685

KCNQ1 rs231353 289 462 551 6 38 477 3 17 549 2 691 471–2 709 019

rs233448 24 26 115 11 21 685 11 20 273 2 837 625–2 857 897

rs2237897 9 18 886 53 474 488 3 197 2 858 440–2 858 636
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πC = 0.048); rs2237897, rs2237896 and rs74046911 (the entire cred-

ible set at the KCNQ1 association signal indexed by rs2237897,

total πC = 0.990); and rs9348441 (at the lone CDKAL1 association

signal indexed by rs9368222, πC = 0.120).

To test a potential regulatory role of these variants, we

first scanned the enhancer region for potential transcription fac-

tor binding sequences (Materials and Methods). We determined

that rs231362, at the KCNQ1 association signal indexed by

rs231353, disrupts a bHLH-likemotif.Within the large super-fam-

ily of bHLH transcription factors, the best aligned scorewas found

for the recognition site of BHLHE40. However, we cannot exclude

the possibility of in vivo binding of other proteins from the same

family at this site. Electrophoretic mobility shift assay (EMSA),

performed using nuclear extracts obtained from the insulinoma

Figure 1. Fine-mapping of the association signal at the CDKAL1 locus on the basis of transancestralmeta-analysis of GWAS from all ancestry groups (top) and GWAS in the

EAsia and Eur-MexAm-SAsia ancestral clades only (bottom). Each point represents a SNP passing quality control in the transancestral meta-analysis, plotted with their

log10BF as a function of genomic position (NCBI Build 37). In each plot, the index SNP is represented by the purple symbol. The colour coding of all other SNPs indicates LD

with the index SNP (estimated from 1000Genomes Project reference haplotypes by EUR r2 for the transancestralmeta-analysis and Eur-Mex-SAsia clade, and byASN r2 for

the EAsia clade): red r2≥ 0.8; gold 0.6≤ r2 < 0.8; green 0.4≤ r2 < 0.6; cyan 0.2 ≤ r2 < 0.4; blue r2 < 0.2; grey r2 unknown. The shape of the plotting symbol corresponds to the

annotation of the SNP: upward triangle for framestop or splice; downward triangle for non-synonymous; square for synonymous or UTR; and circle for intronic or non-

coding. Recombination rates are estimated from Phase II HapMap and gene annotations are taken from the UCSC genome browser. The genomic interval covered by the

99% credible set of variants for the association signal from the transancestral and ancestry-specific meta-analyses are highlighted by the red bar.
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mouse β cell line MIN6 (Materials and Methods), confirmed that

rs231362 alters the binding of a protein complex in vitro (Fig. 2).

We next created allele-specific luciferase reporter constructs of

the predicted regulatory region overlapped by this association

signal, and measured enhancer activity in MIN6 cells (Materials

and Methods). This experiment confirmed the enhancer po-

tential of the genomic site, and revealed higher activity of the

haplotype of T2D-risk alleles, in cis, at rs231362 and rs231361

(Fig. 2). At the remaining association signals, allele-specific episo-

mal reporter assays tested in mouse MIN6 cells failed to demon-

strate enhancer activity at overlapping sites (Supplementary

Material, Figs. S4–S6). Taken together, these observations high-

light rs231362 as a potential functional variant, and point to the

alteration of pancreatic islet genome regulation as a possible

mechanism through which the association signal indexed by

rs231353 at the KCNQ1 locus is mediated.

Discussion

We have undertaken comprehensive transancestral fine-map-

ping of four established T2D susceptibility loci to localize poten-

tial causal variants for association signals in 22 086 cases and

42 539 controls fromdiverse populations. Our study has extended

previous transancestral T2D GWAS meta-analyses (10) through

1000G imputation and conditional analyses to improve fine-map-

ping resolution of distinct association signals in these loci. We

have confirmed previous reports of multiple distinct association

signals mapping to/near KCNQ1 and CDKN2A-B, which may re-

flect multiple causal variants acting in isolation or through

their joint effects, in cis, on the same haplotype. However, for

the first time, we have demonstrated that these distinct associ-

ation signals are shared across ancestry groups, with no evidence

of heterogeneity in allelic effects on T2D risk between popula-

tions for index SNPs, despite substantial variability in allele

frequencies.

The utility of transancestral fine-mapping relies on the

assumption that causal variants are shared across diverse popu-

lations. The lack of heterogeneity in allelic effects on T2D suscep-

tibility between populations for distinct association signals at the

four loci considered in this study is consistent with this assump-

tion. Previous evidence of the transferability of T2D association

signals across diverse populations (6–10) suggests that many es-

tablished common variant loci for the disease will also be amen-

able to transancestral fine-mapping. Future discovery efforts,

Figure 2.Allele-specific enhancer function at the KCNQ1 locus. (A) At theKCNQ1 association signal indexed by rs231353 (mapping to KCNQ1-OT1), 99% credible set variants

rs231362 and rs231361 overlap a human pancreatic islet predicted enhancer characterized by an enrichment of the active histone modification H3K27ac.

(B) Electrophoretic mobility shift assay, performed with MIN6 β-cells nuclear extracts, indicates allele-specific protein complex binding to the rs231362 variant. Allele

G of the variant rs231362 allows the binding of a protein complex which does not disappear after pre-incubation with an excess of rs231362-A unlabelled

oligonucleotide probe (competitor). (C) Luciferase assay shows reduced enhancer activity for haplotypes bearing the allele A compared with allele G of rs231362 in

MIN6 β-cells. The data are presented as mean ± standard deviation. Three independent experiments were performed in triplicate, and P-values were calculated by a

two-sided Student’s t-test. (D) Allele frequencies for credible set variants rs231362 and rs231361.
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with imputation up to larger, higher-density reference panels

with improved coverage across the MAF spectrum, would be ex-

pected to identify lower frequency association signals that are

more likely to be ancestry- or population-specific, and thus un-

likely to benefit from fine-mapping across diverse populations.

The resolution of fine-mapping (assessed by credible set

size) will depend, crucially, on the extent of differences in the

structure of LD between populations contributing to the transan-

cestralmeta-analysis (12).Weobserved themost precise localiza-

tion of causal variants for the T2D association signal mapping

near CDKAL1, which has the greatest difference in LD structure

between populations of European, East Asian and African ances-

try among those loci considered in our study (28). However, even

at the IGF2BP2 locus, where differences in LD between popula-

tions are less well defined, increased sample size in the transan-

cestral meta-analysis offered improved resolution over ancestry-

specificfine-mapping bymagnifying even small deviations in the

correlation of SNPs with the causal variant. We would expect,

therefore, that transancestral fine-mapping would enable im-

proved localization of T2D association signals across common

variant GWAS loci, with further enhancements obtained through

inclusion of additional African (American) descent populations,

where the extent of LD is minimized.

Our fine-mapping experiment provided no evidence that as-

sociation signals at the four susceptibility loci are driven by cod-

ing variants. Our data are thus consistent with previous genome-

wide reports that association signals for T2D susceptibility are

most likely to act via gene regulation (29,30). Here, using KCNQ1

as an exemplar, we have demonstrated how genetic fine-map-

ping and genomic annotation can be used to highlight potential

causal regulatory elements in disease-relevant tissues, thereby

providing insight into the mechanisms through which asso-

ciation signals are mediated, and routes to understand the

underlying biology of specific loci through directed functional ex-

perimentation. At this locus, our results highlight rs231362 as

having a gain-of-function effect on a pancreatic islet enhancer

element residing in intron 11 of the KCNQ1 gene and overlapping

the KCNQ1-OT1 non-coding transcript, a region previously de-

monstrated to harbour tissue-specific active enhancers in

mouse (33). While more experiments are needed to characterize

the protein complex binding this regulatory element, we deter-

mined that rs231362 alters a bHLH-like motif. Several bHLH tran-

scription factors are expressed in human pancreatic islets,

including key islet regulators such as NEUROD1 (34). The best

alignment score was found for the recognition site of the bHLH

transcription factor BHLHE40, a protein expressed in human pan-

creatic islets and shown to play a role during the specification of

pancreatic endocrine progenitor cells (35). However, the biologic-

al role of BHLHE40 in adult pancreatic islets remains unclear.

KCNQ1 encodes for the voltage-gated K+ channel Kv7.1 in

pancreatic β-cells. Over-expression of KCNQ1 in cultured MIN6

cells has been shown to decrease glucose induced insulin secre-

tion (36), and is thus in keeping with a gain-of-function regula-

tory mechanism in T2D susceptibility. Moreover, inhibition of

Kv7.1 in β-cells has been previously demonstrated to increase

exocytosis and secretion of insulin (37), and patients with loss-

of-function mutations in KCNQ1 exhibit increased insulin secre-

tion (38). Although further functional experimentation, beyond

the scope of this study, will be required to definitively establish

the gene target of the regulatory element overlapping variants

driving the KCNQ1-OT1 association signal, these data point to

KCNQ1 as a possible candidate.

At the remaining association signals, episomal reporter

assays performed in mouse MIN6 cells failed to demonstrate

enhancer activity at sites overlapping credible set variants.

While episomal assays cannot recapitulate the natural genomic

and chromatin context, approaches such as genome-editing

(39) could unmask a possible effect of these variants in their

cis-regulatory milieu and enable isolation of their impact on β-

cell gene expression and function.

In conclusion, we have demonstrated that transancestral

meta-analysis of GWAS from diverse populations can be used

to localize variants most likely to drive distinct association sig-

nals at T2D susceptibility loci. By integrating genetic fine-map-

ping with genomic information from diabetes-relevant tissues,

we have demonstrated the utility of this approach for elucidating

the mechanisms through which the effects of T2D association

signals at GWAS loci on disease susceptibility are mediated.

Our study and analytical protocols provide a prototype for future

transancestral fine-mapping of T2D susceptibility loci, genome-

wide. These efforts will be further enhanced by the release of

larger, ancestry-specific imputation reference panels that in-

corporate reference haplotypes from a wider spectrum of global

populations, and improved functional and regulatory genomic

annotation, thus promising an exciting opportunity to explicate

the, as yet, poorly understood pathophysiology of the disease.

Materials and Methods

Ethics statement

All human research was approved by the relevant institutional

review boards, and conducted according to the Declaration of

Helsinki. All participants provided written informed consent.

Study-level analysis

Sample and SNP quality control was undertaken in each study

(Supplementary Material, Table S1). In each of the four loci, the

clean GWAS scaffold was then imputed up to the 1000 Genomes

Project (Phase 1 integrated, all ancestries,March 2012 release) ref-

erence panel (15). Well-imputed variants, defined by IMPUTEv2

(16) info >0.4 or minimac (17) r2 > 0.3, were tested for association

with T2D in a logistic regression framework under an additive

model after adjustment for study-specific covariates (Supple-

mentary Material, Table S2), including principal components to

adjust for population structure. Under the assumption that the

underlying causal variants for association signals at these loci

are common and shared across ancestry groups, SNPs with

MAF <1% were excluded from downstream analyses.

Transancestral meta-analysis

Association summary statistics for each SNP were combined

across studies using two complementary approaches: (i) a

fixed-effects meta-analysis implemented in GWAMA (40) and

(ii) a Bayesian hybrid of fixed- and random-effectsmeta-analysis,

as implemented inMANTRA (19). Meta-analyses were performed

first across studies within each of the EAsia and Eur-MexAm-

SAsia ancestral clades (Supplementary Material, Fig. S1). Subse-

quently, meta-analyses were performed across all populations,

bringing together the AfAm study with those from the EAsia

and Eur-MexAm-SAsia ancestral clades. SNPs passing quality

control in <80%of the total sample size (N≥ 51 700)were excluded

from the transancestral meta-analysis.

The fixed-effects meta-analysis was performed by combining

allelic effect sizes across studies under an inverse-variance

weighting scheme (40). Genome-wide significance was defined
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by the standard threshold of P < 5 × 10−8. Heterogeneity in allelic

effects was assessed by means of Cochran’s Q statistic (41).

MANTRAwas developed specifically for the purposes of trans-

ancestral fine-mapping, and allows for heterogeneity in allelic ef-

fects between ancestry groups arising as a result of differences in

the structure of LDwith the causal variant between diverse popu-

lations. MANTRA assigns studies to clusters according to a Bayes-

ian partition model of relatedness between them, defined by

pair-wise genome-wide mean allele frequency differences (Sup-

plementary Material, Fig. S1). Genome-wide significance was de-

fined by a threshold of log10BF≥ 6, which has been demonstrated,

by simulation, to be approximately equivalent to P < 5 × 10−8

under a fixed-effectsmodel (19,20). MANTRA also provides an as-

sessment of the evidence of heterogeneity in allelic effects by

means of a BF, calculated by comparing amodel where all studies

are assigned to the same cluster, with one where the number of

clusters is unconstrained.

Identification of distinct association signals

We identified ‘index SNPs’ to represent distinct signals of associ-

ation attaining genome-wide significance (MANTRA log10BF ≥ 6

and P < 5 × 10−8) at each locus through a series of conditional ana-

lyses, described below. Conditional analyses were performed

in each study, testing for T2D association with well-imputed var-

iants in a logistic regression framework under an additive model

after adjustment for study-specific covariates (Supplementary

Material, Table S2), and inclusion of genotypes at other index var-

iants at the locus as additional covariates. Association summary

statistics for each SNP were then combined across studies by

means of a fixed-effects meta-analysis and MANTRA.

At the IGF2BP2 locus, we included genotypes at the lead SNP

(rs11705729) from the transancestral meta-analysis as an add-

itional covariate in the logistic regressionmodel, and no variants

attained at the locus genome-wide significance after condition-

ing. The strongest residual association signal in conditional ana-

lysis was achieved by rs1540390 (log10BF = 0.98, P = 0.012). We

concluded that there is one common variant association signal

mapping to the IGF2BP2 locus, indexed by rs11705729. Subse-

quent fine-mapping analyses were undertaken on the basis of

the unconditional transancestral meta-analysis at this locus.

At the CDKAL1 locus, we included genotypes at the lead SNP

(rs9368222) from the transancestral meta-analysis as an add-

itional covariate in the logistic regressionmodel, and no variants

at the locus attained genome-wide significance after condition-

ing. The strongest residual association signal was achieved by

rs2328574 (log10BF = 1.76, P = 0.027). We concluded that there is

one common variant association signal mapping to the CDKAL1

locus, indexed by rs936822. Subsequent fine-mapping analyses

were undertaken on the basis of the unconditional transancestral

meta-analysis at this locus.

At theCDKN2A-B locus,we first included genotypes at the lead

SNP (rs10965248) from the transancestral meta-analysis as an

additional covariate in the logistic regression model, and mul-

tiple variants at the locus attained genome-wide significance

(Supplementary Material, Fig. S3). The strongest residual associ-

ation signal was attained by rs10757282 (log10BF = 10.31, P = 2.0 ×

10−12). We next included genotypes at both rs10965248 and

rs10757282 as additional covariates in the logistic regression

model, and no variants at the locus attained genome-wide sig-

nificance after this second round of conditioning. The strongest

residual association signal was attained by rs10811649 (log10BF =

1.88, P = 0.21). We concluded that there are two distinct signals of

association mapping to the CDKN2A-B locus. Subsequent fine-

mapping analyses for distinct common variant association sig-

nals at this locus were thus based on: (i) conditional analysis

after adjustment for genotypes at rs10757282 as an additional

covariate (index variant rs10965246) and (ii) conditional analysis

after adjustment for genotypes at rs10965248 as an additional

covariate (index variant rs10757282).

At the KCNQ1 locus, visual inspection of the signal plot for

the transancestral meta-analysis revealed three SNPs that were

not in LD with each other in any ancestry group (r2 < 0.04), but

all attaining genome-wide significance: rs2237896, rs231353 and

rs234864 (Supplementary Material, Fig. S2). We thus included

genotypes at all three of these SNPs as additional covariates in

the logistic regression model, and no variants at the locus at-

tained genome-wide significance after conditioning. The stron-

gest residual association signal was achieved by rs233448

(log10BF = 3.38, P = 2.1 × 10−5). We concluded that there are three

distinct common variant association signals mapping to the

KCNQ1 locus. Subsequent fine-mapping analyses for distinct as-

sociation signals at this locus were thus based on: (i) conditional

analysis after adjustment for genotypes at rs2237896 and

rs231353 as additional covariates (index variant rs233448);

(ii) conditional analysis after adjustment for genotypes at

rs2237896 and rs234864 (index variant rs231353) and (iii) condi-

tional analysis after adjustment for genotypes at rs231353 and

rs234864 (index variant rs2237897).

Credible set construction

We calculated the posterior probability that the jth variant, πCj, is

driving a distinct association signal by

πCj ¼
Λj
P

k Λk
;

where the summation is over all variants in the locus. In this ex-

pression, Λj is the MANTRA BF in favour of association from the

transancestral meta-analysis. In loci with multiple distinct sig-

nals of association (KCNQ1 and CDKN2A-B), results are presented

from conditional meta-analysis as described above. In loci with a

single association signal (IGF2BP2 and CDKAL1), results are pre-

sented from unconditional meta-analysis. A 99% credible set

(27) was then constructed by: (i) ranking all variants according

to their BF, Λj and (ii) including ranked variants until their cumu-

lative posterior probability exceeds 0.99.

For each association signal, credible sets were constructed on

the basis of the MANTRA BF in favour of association on the basis

of the following meta-analyses: (i) studies within the EAsia an-

cestral clade only; (ii) studies within the Eur-MexAm-SAsia an-

cestral clade only and (iii) all studies across ancestry groups.

Genomic annotation and functional study of credible
set variants

We overlapped annotations obtained from human pancreatic is-

lets (32) with variants in 99% credible sets using bedtools v2.17.0

(42). Scanning for motifs and motif annotation was performed

using HOMERv4.4 (43) with default settings. The selected

human islet predicted regulatory regions of length 1.5–1.9 kb

were PCR-amplified from human genomic DNA with Phusion

High-Fidelity DNA Polymerase (New England Biolabs), cloned

into pENTR/D-TOPO (Invitrogen, catalogue number K2400-20)

and shuttled into Gateway-adapted PGL4.23 (44) with Gateway

LR Clonase Enzyme Mix (Invitrogen, catalogue number 11791-

100). The plasmids were modified by site-directed mutagenesis

(QuickChange; Stratagene, Santa Clara, CA, USA) to produce the
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common and rare genotype of the associated variants and to re-

produce risk and protective haplotypes. Correctmutagenesiswas

confirmed by Sanger sequencing.

Mouse β-cells (MIN6) were co-transfected in triplicate wells

with pGL4.23-regulatory region and pRL using Lipofectamine

2000 (Invitrogen), and luciferase activity was measured after

48 h. Results were expressed as luciferase:renilla ratios in vectors

carrying putative regulatory regions, relative to the ratio in empty

PGL4.23 vector. Statistical significance was assessed using a two-

sided Student’s t-test across all experiments.

EMSAwas performedwithmouseMIN6 β-cell nuclear extracts

as previously described (45). The sequences of oligonucleotides

used in this assay to test both genotypes of the credible set vari-

ant rs231362 were:

rs231362: A 5′-GATCTTTGACCCTGCACATGACGGGCGAG-3́;

and

rs231362: G 5′-GATCTTTGACCCTGCACGTGACGGGCGAG-3́.

Supplementary Material

Supplementary Material is available at HMG online.
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