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Abstract

In the present paper, we derive transcendence measures for the numbers log a, ep, aP,
(log aj)/(log 02) from a previous lower bound of ours on linear forms in the logarithms of
algebraic numbers.

Subject classification (Amer. Math Soc. (MOS) 1970): 10 F 05, 10 F 35

1. Introduction

A great deal of work has already been done on finding transcendence measures
for the numbers listed above; see, for example, the contributions of Mahler
[Ma 1, 2, 3, 5], Gelfond [G] and Feldman [F 1, 2, 3, 4]. A systematic study of this
subject is given in Cijsouw's thesis [Ci 1], and the sharpest results to date are due
mainly to Cijsouw [Ci 1, 2, 3, 4]. However, until now, special arguments were
needed for each given class of numbers. The novelty of the present paper is to
give a single uniform proof of all these results, by using a lower bound for linear
forms in the logarithms of algebraic numbers [W].

Our main results are summarized by the following diagrams. The notation is as
follows. Let <p(X, Y) be a real-valued function which is defined for X^ 1 and
y ^ log 16 (this is for convenience only). If w is a transcendental number, we say
that <p is a transcendence measure for w if log|/'(w)|> —f(N,\ogH) for all non-
trivial polynomials P in Z[X] with degree at most N and height (in the usual sense)
at most H. In addition, we say that a real number T > 2 is a transcendence type
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446 Michel Waldschmidt [2]

for a> if there exists a constant C(O),T)>0 such that C(CD,T) (log H+N)T is a
transcendence measure for a>. Finally, for real x, we write Log .̂ x = Log (max (1, x)).

In Fig. 1 we give the consequences of the lower bound of [W] for the
transcendence measures of the numbers IT, log a, e& and (log a^/flog <x^), when
a, B, av O2 are non-zero algebraic numbers with loga^O and (log a^/flog og)
irrational. Moreover, we give a result concerning a.P (with a and B algebraic,
a ̂ 0 , log a 7̂ 0 and B irrational) which is obtained by combining our lower bound
with a result of Choodnovsky [Ch].

Number Transcendence measure Type

2+e
log a CiiV^Logff+WLogJVHl + LogAO-1 3
ef> C2 N*(Log H+ Log N) (Log Log H+ Log Nf

x (Log Log H+ Log+ Log N)-* 3
(log cO/Qog aa) Cs #

3(Log iT+ N Log JV) (1 + Log N)~2 4
ap q, AT3(Log /T+ Log iV) (Log Log H+ Log JV) (1 + Log AT)"2 4

FIG. 1. Transcendence measures for classical numbers.

We are interested with transcendence measure which are explicit in N and H
(some older papers are better when H is large with respect to N). The estimate
concerning -n is due to Fel'dman and Cijsouw; the result concerning log a is due
to Cijsouw. All the other results improve earner known transcendence measures
with respect to the degree N.

The number e" is worthy of special consideration (Fig. 2). The transcendence
measure which is provided by our linear form improves earlier results in the case
of large height. In [Ch], Choodnovsky announces a result which is much more
precise when the degree is very large. In the middle case, a claim of the "Stellin*gen"
of Cijsouw's thesis [Ci 1] leads to a still better result. From Cijsouw's result it
follows that e" has a transcendence type at most 3.

Log H> AT(Log Nf 262 JV2(Log H) (Log Log H) (1 + Log N)
NihogNf^LogH^NOMgN)-1 CsN(LogH+Ny (Log LogH)'1 (Cijsouw)
JV(Log N)'1 > Log H CeN(Log H+ Log iV)2 (Log N) (Choodnovsky)

FIG. 2. Transcendence measures for e".

Finally in Figure 3 (see p. 447) we give four general results which are conse-
quences of our estimate [W], and which in fact contain several of the above-
mentioned results (see Theorems 5.1 and 5.3 below).
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[3] Transcendence measures for logarithms 447

The idea of deriving transcendence measures from a lower bound for linear forms
in logarithms was used already in [M-W], and even earlier by Baker to give an
irrationality measure for the number en (cf. [B] Chap. 3).

In a subsequent paper we will consider simultaneous approximations and improve
several results of [C-W] and [M-W].

Number Transcendence measure Type =S

eft <xf»... ag» C, iVm+2(Log H+ Log N) m+3
x (Log Log H+ Log N)m+*
x (Log Log # ) - » - * (1 + Log iV)-™"1

e* of'... < - e#' Cs iV
m+2(Log H+ Log N) m + 3 + e

x (Log Log H+ Log N) (1 + Log iV)

FIG. 3. Four general results.

This paper has been written at the University of New South Wales (Australia).
The author wishes to thank his colleagues from Kensington, and especially Alf
van der Poorten, for their hospitality.

2. Notations and preliminary lemmas

Let P = a0X
N+...+aNeC[X] be any non-zero polynomial with complex

coeflBcients, with ao^O. Denote by N(P) = iVits degree, by

its "usual height", by

3=0

its "length", and by

M(P) = exp P
Jo

its "measure". If ax, ...,aN are the roots of P (according to multiplicity), then by
Jensen's formula we have [Ma 4]:

n i
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448 Michel Waldschmidt [4]

This measure has been introduced by Mahler who used the trivial formula

for PvP2eC[X]

to deduce non-trivial relations between H(PX.P^ and H(P^).H{P^. Here we need
only the inequality

(2.1) LogM(i>)<

(see [Ma 4]), which can be deduced from

where

(see [M-W] Lemma 1).
The most important properties of Mahler's measure M concern algebraic

numbers. Let a be an algebraic number, and PeZ[X] be its minimal polynomial.
We define the degree, usual height, length and measure of a by

), L{OL)=L(P),

From (2.1) we get

(2.2)

The multiplicative property of the measure of polynomials is no longer true for
the measure of algebraic numbers (because the minimal polynomial of the product
of algebraic numbers is usually different from the product of the minimal poly-
nomials). However, if we define the "absolute logarithmic height" of a by

/*(<*) = ^ Log M(a),

then A(a1a2)</z(a1) + A(a2) and h(a.m) = mh(ac) for all algebraic numbers ocv 0^,01
and any non-zero rational integer m. These properties follow from the very useful
connection between h and the height on projective spaces of Neron and Lang
(cf. [W]). It follows that the absolute logarithmic height is far easier to handle
for transcendence proofs than other "size" functions.

We have followed the tradition in Section 1 by denning transcendence measure in
terms of the usual height. But it will be much more convenient to define "approxi-
mation measures" in a slightly unusual way (compare with [Ci 1]) which will be
essential in certain cases.
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[5] Transcendence measures for logarithms 449

Let M,N be positive real numbers; for convenience we assume Af>e6 (to avoid
some trivialities connected with the factors Log Log M), and since 15<e*<16we
assume in fact A/> 16. Since the set B(N,M) of all algebraic numbers of degree
at most N and measure at most M is finite, in view of the trivial inequalities

if a) is a transcendental number we have

min jw —

Our aim is to give lower bounds for such positive numbers.

DEFINITION. Let w e C be a transcendental number. A real-valued function
i/i(N,LogM), which is defined for N,Mpositive real numbers, with iV> 1, M> 16,
is an approximation measure for a> if

for all algebraic numbers £ of degree < N and measure ^ M.
In the present paper we first obtain approximation measures, and then deduce

transcendence measures. To carry out this deduction we use the following lemma.

LEMMA 2.3. Let a>eC be a transcendental number, and >p(N,LogM) an approxi-
mation measure for w. Assume

2, Log M^ > ̂ (JV1; Log Mj)

for all positive integer k and all real numbers Nx, Mlt N2, M2 satisfying

NX>1, A / ^ 1 6 , N2>kNla LogM2>kLogM1.

Then the function

tf>(N, Log H+ Log N) + 2iV(Log H+N)

is a transcendence measure for a>.

This kind of result is well known (see, for example, [Ci 1] Lemmas 2.15 and
4.3), but what is important here is that we have ip(N,LogH+LogN) instead of
ip(N,LogH+N). This improvement will be important, for example, for the
transcendence measure of e# when Log H<N.

15
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450 Michel Waldschmidt [6]

PROOF OF LEMMA 2.3. Let PeZ[X] be a non-trivial polynomial, and let £ be the
root of P which is at minimal distance from ID. From a well-known result of
Guting (see [M-W] Lemma 9) we deduce

Log M ( 0 < i Log M(P) < i (Log H(P) + Log iV,).

where N2 = N(P) and k is the multiplicity of the root £ of P.
Let Q denote the minimal polynomial of £ over Z and let Nx be its degree.

Since Qk divides P, we have

and

From the inequality (for H =

Log H+ iV2 Log 4 + Log ( 2 ^ ^ 2 (Log H + JV2)

we conclude

Log | P(a>) | > - kifj(Nv Log ML) - 2N2(Log H+ NJ

with Mx = max(M(g), 16). Using our assumption

hKN!, Log MO < 0(iV2) Log i /+ Log NJ

we obtain the desired result.

Finally, we give a very simple lemma which will be needed in the study of
exponentials and powers.

LEMMA 2.4. Let v and w be two complex numbers satisfying

|w-e'|<l|e"|.

then there exists a determination of the logarithm of w such that

\w-ev\>%\ev\ |logw-z;|.

PROOF OF LEMMA 2.4. Since the principal value of the logarithm (say Log)
satisfies

sup|Log(l+z)|<|,

by the maximum modulus principle applied to the function (l/z)Log(l+z) we
have, for |z |<£,
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[7] Transcendence measures for logarithms 451

Therefore
| Log (we~v) | < § | we~v-1|.

We define
log w = Log (we~v) + v.

This completes the proof of Lemma 2.4.

3. The difference between an algebraic number and the logarithm
of an algebraic number

In this part we derive several consequence of the following lower bound for

THEOREM A. Let a,/? be two non-zero algebraic numbers, and let log a be any
determination of the logarithm of a.. Let D be a positive integer, and V, E be positive
real numbers, satisfying

>; l/D}
and

; 4DV/\loga\}.

Finally set V+ = max{F, 1}. Then

| ]8 - log a | > exp {- 235 D3 V(h(fi) + Log (EDV+)) (Log (£/>)) (Log E)-%

This estimate is a special case of Theorem C, Section 5, and is proved in [W].
We show how it can be used to study the algebraic approximations of the numbers
77, log a and e&.

1. Algebraic approximations to the number n

According to a remarkable result of Mahler [Ma 3, 5] and an improved version
of Mignotte [Mi], for every rational number p/q with q ̂  2 we have

n-P~
q

Here we consider algebraic approximations of n. Let £ be a real algebraic
number of degree N, with ./V>2. Define ax = — 1, logo^ = in, jS = /£, D = 2N,
V = TTJD and E = 4. From Theorem A we deduce

exp { - 235 irD\h(p) + Log D + Log 4) (Log D + Log 4). (Log 4)~2}.
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Let M satisfy M^maxfe™^ 16}. Since h(g) = h(fi), the inequalities

Log M+NLog N+ 3iVXog 2 ̂  f^(Log M+NLog N)

Log N+ 3JVLog 2 < H(l + Log N)
and

lead to the following result.

THEOREM 3.1. An approximation measure for -n is

3.238. N(Log M+NLog N) (1 + Log N).

From Lemma 2.3 and the inequality

Log H+NLog N + Log N^ f (Log H+NLog N)

(valid for # > 16 and iV>2) we deduce

COROLLARY 3.2. A transcendence measure for n is

240 JV(Log H+ NLog N) (1 + Log N).

The existence of an absolute constant Cu > 0 such that

C u JV(Log H+iVXog N) (1 + Log N)

is a transcendence measure for TT was first announced (and proved) by Cijouw in
[Ci 5]. Actually it can be deduced from two earlier results of Fel'dman, [F 2],
namely

(3.3) |P(7r)|>exp{-C12AT(Logi7+JVLogA0(LogLog#+LogA0}

and, provided that Log#>iV2(LogiV)4,

(3.4) | P(w) | > exp { - C13 JV(Log H) (1 + Log N)}.

For if LogH^N3, then (3.4) gives what we want, while if LogH^N3, then (3.3)
gives

| P(TT) I > exp { - 3C12 JV(Log H+ N Log N) (1 + Log N)}

which is also what we want.
Earlier transcendence measures for n were due to Popken (1929), Siegel (1930)

and Mahler [Ma 1, 3]. (See [F-S], [Ci 1, 5] and [F 4]).
In some special cases, as already remarked by Fel'dman in 1959 (cf. F 4]),

Theorem 3.1 can be improved.
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[9] Transcendence measures for logarithms 453

Let m ^ 1 be an integer and £ a real algebraic number; let Dm denote the degree
over Q of the field Q(£,ei7r/m,i). From Theorem A applied to (/£//M)-(MT//M), with
a = ein/m, log a = injm, V = (7T + Logm)/Dm, E = em, and since

we conclude

mm

(We choose V rather large to enable E to be large.)

THEOREM 3.5. Let £ be an algebraic number and m a positive integer. Define

Then

In the particular case where £ e Q(ein/m), we obtain

while Fel'dman obtains

where C14 is an effectively computable absolute constant. In spite of the inequality
N(£)h(£)^LogL(£), Fel'dman's result is sometimes better in some cases where m
is large. On the other hand, our Theorem 3.5 does not assume /} e Q(ein/m).

2. Approximation of the logarithms of algebraic numbers

Let a be a non-zero algebraic number and let log a be a non-zero determination
of the logarithm of a. Transcendence measures for log a have been proved
successively by Mahler [Ma 1, 2], Fel'dman [F 1, 3] and Cijsouw [Ci 1, 2, 4]. The
best known result is due to Cijsouw [Ci 4], and we give a new proof of it.

We define

V = max {/*(<*); | log «|; 1}, d= [g(«) : Q].
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Let £ be an algebraic number of degree N and measure at most M, with A/> 16.
From Theorem A with D = Nd, E = eD, we deduce

| log a - £ | > exp ( - 235 d 3 K W i Log M+2 Log N+2 Log d+1+ Log Vj

x(l+2LogN+2Logd)(l+Logd+LogN)-2\.

Let us define
C16(a) = 238 d3 V(l + Log d+ Log V).

We get:

THEOREM 3.6. An approximation measure for log a is

CUJ(«) N 2(Log M+AT Log AT) (1 + Log JV)-1.

COROLLARY 3.7. A transcendence measure for log a is

2C15(oL)N%LogH+NLogN) (1 + LogN)~\

3. Approximation of the exponentials of algebraic numbers

The problem of finding a transcendence measure for the number e is very old
(at least for the standard of the theory) since it was initiated as soon as 1899 by
Borel. Later, Popken [P], Siegel (1930), Mahler (1932), [Ma 1] and Fel'dman
(1963) improved the bound, and the sharpest result until now was due to Cijsouw
[Ci 1, 2] and was valid also for the numbers e'9 with /3 algebraic, /MO. Our result
will be slightly better.

Let fl be a non-zero algebraic number and d be its degree. Let £ be an algebraic
number of degree N and measure at most M, with M ̂  16, satisfying | e$ — £ | < \ \ et> |.
From Lemma 2.4 we can find a determination log £ of the logarithm of £ such that

We now use Theorem A with

F = i(LogM)(l+| |8 |) , D = dN, £ = LogM.

Thus

x(/j(jS) + Logrf+LogAr+2LogLogM+Log(l+|j8|)

x (Log d+ Log Log M+Log N) (Log Log M)~2}.
Let us define

C16(p) = 23?d3(l+\P\)(l+Logd)(h(p)+Logd+Log(l+\p\) + l).
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[11] Transcendence measures for logarithms 455

THEOREM 3.8. An approximation measure for e& is

C16(P) N\Log M) (Log Log M+ Log N)2 Log Log M)~2.

If we bound Log//+LogJV~ by Log H+N, we deduce from Theorem 3.8 and
Lemma 2.3 that

is a transcendence measure for e&. This is Cijsouw's result [Ci 1, 2]. But, for
H4, e^, we actually get a better result.

COROLLARY 3.9. A transcendence measure for e& is

8C16(/S) W2(Log H+Log N) (Log Log H + Log Nf (Log Log H + Log+ Log N)~2.

It is interesting to notice that the old result of Mahler [Ma 1]:

|P(eO|>exp{-C1 77VLog^} for H>H0(N)

is still better for large H.

4. The linear form jSlogaj— loga2

We study now several consequences of the following estimate.

THEOREM B. Let al5 o^, /J be non-zero algebraic numbers, and log o ,̂ log ag be
determinations of the logarithms of a1} a2 respectively. We assume

a ^ l o g Ota.

Let D be a positive integer, and Vv V2, E be positive real numbers, satisfying

Vj>max{%,), |log^|/A VD} (/= h2),
and

1 < E < min {e°v\ e°r\ 4DVJ \ log ax |, 4DVJ | log ĉ  |}.

Further define

Ft = max{^-,1} 0-=l,2), F* = max{F^,F+}, and F* = min

Then

https://doi.org/10.1017/S1446788700021431 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021431


456 Michel Waldschmidt [12]

This result, which is proved in [W] (see Theorem C, Section V below), will be
our main tool in the investigation of diophantine approximations of the numbers
(l°gai)/(Logo2) and a''. We begin with the number e".

1. Approximation to e"
We first consider rational approximations to e". The best known result is due to

Baker [B]: there exists an absolute constant C18 such that

q

for all rational numbers p\q with q>3 (it is not yet known whether the extra
Log Log q is superfluous). We deduce from Theorem B an upper bound for C18

as follows.
Assume first q>(e1t+\)2 and | e"—(p/q)|«S I, so that

7r-Log- and

We choose

Thus

= iV, oc2=p/q, D = 2, VX = = Logp, E = 4.

e" - - > exp I - 2W 2* ̂  (Log^p) (Log 8 + Log Logp) (Log 4TJ-) (Log 4)~

> exp { - 259(Log/>) (Log Log/?)}

> exp { - 2«°(Log 9) (Log Log?)}.

From the continued fraction expansion

e ' = [23,7,9,3,1,1,591,...]

we see that these results hold also for 3<#<583. Therefore

We now consider algebraic approximations. Let £ be a real algebraic number
with | £—en\ < 1. The (usual) logarithm of $ satisfies, by Lemma 2.4,

We use Theorem B with

= (l/N)LogM,
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We obtain

| e" - £ | > exp | - 2M 24 ̂  iV2(Log M) (Log Log M+Log N+ Log 8)

(LogiV+Log8)(Log4)-3|

THEOREM 4.1. An approximation measure for e" is

259 AT2(Log M) (Log Log M+ Log iV) (1 + Log AQ.

COROLLARY 4.2. A transcendence measure for e" is

260 A"* (Log tf+ Log N) (Log Log # + Log N)(l + Log AT).

Several other estimates for e" are known: Koksma and Popken [K-P], Gel'fond
[G], Cijsouw [Ci 1] and Choodnovsky [Ch]. Two of them are not consequences
of Corollary 4.2, namely

C19 N(Log H+AO2 (Log Log H+ Log N)'1

(Cijsouw, "Stellingen" of [Ci 1]), and

Qo MLog H+ Log AO2 (Log Log H+ Log N)

(Choodnovsky [Ch]), where C19, C^ are effectively computable absolute constants.
The three above-mentioned transcendence measures for e" hold uniformly (N^ 1,

H> 16), but our Corollary 4.2 is better when Log.ff> A^LogN)3 (in which case we
can bound (Log H+ LogN) (Log Log H+ Log N) by 3(Log#)(LogLogi7)),
Cijsouw's result is better when A^LogAO^LogH^iVXLogAO-1 (and then
Log Log H+ Log N ̂  Log Log H does not weaken the result), while Choodnovsky's
result is better when A^LogAO'^Log// (which implies LogLogi/^LogA^).
Consequently we obtain the results which we announced in Fig. 2.

We can use Theorem B in the same way as we did for the proof of Theorem 3.5:
let m^ 1 be an integer; we choose

ai = £> P ~ ilm> 'H = einlm, log 02 = irrfm,

E = em.

THEOREM 4.3. Let £ be an algebraic number and m a positive integer. Denote by
Dm the degree of the field Q(i, g,eiir/m). Then

\e»-$\>exp{-2«>Dl(Dmh(i)+m)(Logh(0+LogDm+Logm+l)

x (Log Dm+Logm + l)(Logw +1)"2}.
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2. Approximation of the quotient of the logarithms of algebraic numbers

Let al5 c^ be two non-zero algebraic numbers, and loga^logog be non-zero
determinations of their logarithms. We assume that (log aj)/(log ctg) is irrational.
Transcendence measures for this number are due to Gel'fond (1935, 1939, 1949)
(see [F-S] and [G]) and to Cijsouw [Ci 1]. Our Theorem B leads to a sharpening
of these measures. Let us define

) : Q], Vj = l+^O+llog^l, 0"= 1,2),
and

C21(ot1; a2) = 255 di V1 F2(l + Log FO (1 + Log F,).

We choose D = dN,E = eD.

THEOREM 4.4. An approximation measure for (log a^/flog ag) is

C2M, *JN3(LogM+NLogN)(l +LogN)~2.

COROLLARY 4.5. A transcendence measure for (log a^/flog 02) is

3. Approximation of algebraic powers of algebraic numbers

Let a and j8 be non-zero algebraic numbers, with /5 irrational, and let log a be a
non-zero determination of the logarithm of a. Define as usual a^ = exp(jSloga).
Further let

d=[Q(ot,p):Q], K=

Let I be an algebraic number of degree N and measure at most M, with M > 16,
such that

l«>-f|<iM.
By Lemma 2.4 we can choose a determination log £ of the logarithm of | such
that

|«*-f |HM.| jBlog«-logf | .
We now choose

D = Nd, VX=V, F2 = i(LogM)(l+|i81oga|),

and
E — min{eiV, Log M}.

Finally define

C22(jS,loga) = 6.2«rf4 V(l +|/31oga|)

(1 + h(fi) + Log F + Log d+1 p log <x I) (1 + Log V+ Log d).
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Then Theorem B gives

x (Log N+ Log E) (Log £)~3}.

In the case Log M^eNv/e get

| afi - f | > exp { - C22(j8, log a) JV 3(Log M) (Log Log M) (1 + Log N)~2}.

While in the case Log M^eN we obtain

| a ' ? - | |>exp{-C2 203, loga) iV3(LogM)(l+Log7V)2(LogLogM)-3}.

We conclude

THEOREM 4.6. An approximation measure for afi is

Cjfi, log a) JV3(Log M) (Log Log M+Log /V)4 (Log Log M)~3 (1 + Log iV)~2.

From Lemma 2.3 we deduce that

24 C22(j8, log a) JV3(Log # + L o g N) (Log Log 77 + Log JV)*

x (Log Log H+Log+ Log N)~* (1 + Log JV)-2

is a transcendence measure for aP. This result can be improved in the following
way. If Log H>N, this transcendence measure is less than

29 Cjfi, log a) JV3(Log i/) (Log Log # ) (1 + Log Af)~2.

On the other hand, we know by [Ch] Theorem 1.5 that there exists a constant
, log a) such that

Cdp, log a) N3(LogH+ LogN) (Log Log # + LogN)2 (1 + Log N)~3

is a transcendence measure for a.?. When Log 77 ̂  N, this measure is less than

4Q3G8, log a) iV3(Log H+Log AT) (1 + Log TV)"1.

These two estimates enable us to conclude

THEOREM 4.7. There exists a positive real number C2i(fi, log a) «/c/i that

Cntf, log a) Ar3(Log H+ Log JV) (Log Log H+Log JV) (1 + Log TV)"2

is a transcendence measure for a.P.

This measure improves earlier results of Gel'fond (see [G], [F-S], [(Ci 1]).
In the special case where /? is quadratic, Sidlovskii proved in 1951 a result which is
sharper for large N (see [F-S]).
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5. Two general transcendence measures

In this last part we give two results, one concerning the quotient of linear forms
in logarithms and the other concerning e#> oc*1... a#». Our main tool is the following
estimate which is proved in [W]. (For earlier estimates we refer to the paper of
Baker in the same volume.)

THEOREM C. Let a1,...,otn be non-zero algebraic numbers, and &,&, ...,fin be
algebraic numbers. For 1 ^ y < « , let loga3- be any determination of the logarithm of
otj. Let D be a positive integer, andVx, ...,Vn W, E be positive real numbers, satisfying

F3. > max &(«,), | log a, \ /D, l/D} (1 < j < n),

max

and
1<E^ min {enVl; min 4DK,-/1 log a,-1.

Finally define Vf = max{F^, \}forj = « andj = n—l, with VJ = 1 in the case n = 1.
If the number

does not vanish, then

\A\>exp{-C(n)D^V1...Vn(W+Log(EDVi))(LogEDV+_1))(LogE)-^},

where
C(l)<235, C(2)<253 and C(n)<28n+81«2n.

1. Quotient of linear forms in logarithms

Let <xx, ...,as, oc[, ...,oc't be non-zero algebraic numbers, j80, ...,j8g, JSQ, ...,j3(' be
algebraic numbers. For K y < s (resp. 1 ^ k ^ t) let log atj (resp. log aj,) be a determi-
nation of the logarithm of a} (resp. of <x'k). We assume that

does not vanish, and that the number

is transcendental. (Thanks to Baker [B] Chapter 3 we know when this assumption
is fullfilled.) We give here an estimate for the approximation of u> which improves
substantially previous results of Cijsouw [Ci 1, 3].
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THEOREM 5.1. There exists an easily computable constant C^, depending only on
log «!,..., log ocs, log a[,..., log <x't, po,..., ft, P'o,..., ft', with the following property.

1. Let rx+\ be the dimension of the Q-vector space generated by log %,..., log ag,
log ai , . . . , log a£ i-n. Then

Qs A^+1(Log M+NLog N) (1 + Log N)

is an approximation measure for a>, and consequently

2Q5 iV'+1(Log H+NLog N) (1 + Log N)

is a transcendence measure for to.
2. Let r2 be the dimension of the Q-vector space generated by logal5 ... ,logas,

log a[,..., log a.'t. Then

Qs A^r2+1(Log M+NLog N) (1 + Log A0~ra

is an approximation measure for a>, and consequently

2C25 JVr*+1(Log H+ NLog N)(l+ Log N)~^

is a transcendence measure for at.

Plainly we have rx = r2 or rx = r 2—1. If rx = ra the second result is sh'ghtly
sharper, while if r1 = ri— 1 (which means that i-n is a linear combination of
logc^, ...,logat' with rational coefficients) the first estimate is quite sharp.

From Theorem 5.1 it follows that the transcendence type of w is at most rx+2+s
for all e > 0 and at most r 2 +2 .

It is readily seen that Theorem 5.1 contains the above-mentioned transcendence
measures for n (with rx = 0; cf. (3.2)), for log a (with r2 = 1; cf. (3.7)) and for
(loga^/flogaa) (with r2 = 2; cf. (4.5)). Here is another consequence corresponding
to rx = 1.

COROLLARY 5.2. Let log a be a logarithm of an algebraic number, and let /?„, j8lf

JSQ, f}'v y, y' be algebraic numbers such that the number

does not vanish, and that the number

j60+j81logot+yf7r
ft+ftloga+y'w

is transcendental. Then this number has a transcendence measure

Ci.tf «(Log jy+J\TLogJV)(l +Logi\0,

where C26 depends only on log a, ft,, ft, fi'o, ft, y, y.

Therefore this number has a transcendence type at most 3 + e for all e>0 .
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PROOF OF THEOREM 5.1. Let logav ...,logari+1 be a basis of the g-vector space
generated by logc^, ...,logas, logc^, ...,logat', in, with Ioga1 = in. Thus there
exist rational numbers biJt, b'M (1 ^ . / O , 1 ^k^t, l^l^^+l) such that

n+i

J=I

and
n+i

log a'k = S '
1=1

Let £ be an algebraic number of degree N and measure at most M, with M> 16.
Then

where

A = & + £ jB, log a,- - #£ - £ S ft'log a^
3 = 1 *:=1

n+ i / s ' , , \
0 ° i=i\3=i 3 w fc=i fc fc7

Theorem C provides us a lower bound for | A|, with

n = r 1 +l , ^=C27(l/iV)LogM, Kx = I/A D = C28N, E = -

and C27, C28, V2,...,Vn are easily computable constants (for instance

Now let loga^, ...,logc^ be a basis of the <2 vector space generated by
gc^, ...,loga,'. Using the previous arguments, we need a lower bound for

where yt is a linear combination of 1 and £ with fixed coeflBcients in 2(j80) •••,P't).
We now choose « = r2, £ = eN, while Vlf..., Fm are constants. The desired result
plainly follows from Theorem C. (The non-vanishing of A is a consequence of the
transcendence of o>.)

2. Product of algebraic powers of algebraic numbers

Let av...,cxm be non-zero algebraic numbers, jS0, ...,/Jm be algebraic numbers,
and, for 1 ^j<m, let log a3- be any determination of the logarithm of a,-. We assume
that the number

6 ( m \

/30+S&log«J,
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which we write for shortness

9 = e/?oaf1...a&»,

is transcendental (once more we refer to [B] to see which are the only trivial
circumstances where such a number could be algebraic).

THEOREM 5.3. There exists an easily computable constant C29, depending only on
logc^, ...,logam, j80, . . . , /3m, such that the following holds.

1. Denote by # i+ l the dimension of the Q-vector space generated by
loga1; ...,logam, in. Then C29N

ri+2(LogM)(LogLogM+LogN)(l+LogN) is an
approximation measure for 6. Therefore

2C29 N*+2(Log H + Log N) (Log Log H+ Log N) (1 + Log N)

is a transcendence measure for 6.
2. Denote by r% the dimension of the Q-vector space generated by log a^,..., log am.

Then

C29 N
r*+i(Log M) (Log Log M+Log N)r*+3 (Log Log M)~r*-2 (1 + Log N)-^1

is an approximation measure for 6, and therefore

2C29 JV
r*+2(Log H+Log N) (Log Log H+ Log Nf^

(Log Log H)-**'2 (1 + Log N)-*-1

is a transcendence measure for 6.

Again the first estimate is much more interesting if rx = r2— 1 and the second if
rx = r2.

The transcendence type of 8 is at most rj + 3 + e for all e>0, and at most r2 + 3.
Theorem 5.3 generalizes our approximation measure for a.? (with r2 = 1; cf. (4.6))

and our transcendence measure for e" (with rx = 0; cf. (4.2)). Indeed, the case
rx = 0 shows that the transcendence measure (4.2) of the number e" holds also for
the numbers e/?+'"r with )3 and y algebraic.

Earlier transcendence measures for 6 were due to Cijsouw [Ci 1, 3]. In the case
of bounded degree, a partial result of Smelev (1969) concerning the case m — 1
has been improved and extended to the general case by Baker [B] Chapter 3.
All these results follow from Theorem 5.3.

PROOF OF THEOREM 5.3. Let £be an algebraic number with | £ - 0 | < | 0|/3. Using
Lemma 2.4, we reduce the problem to a lower bound of

A.+Yi l o 8 <*i + • • • + Yn-i l o g a n - i -
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with n = rx+2 and loga^ = in in the first case, n = r2+l in the second case;
7i> •••>Yn a r e fixed algebraic numbers.

We use Theorem C with Vn = Cw(\/N)(LogM), and

V-z, • • •, Vn_lt W fixed, Vx = l/N, and E = 4

in the first case,

Vx, F2,..., Fn_x, W fixed, and E = min {eN, Log M}

in the second case.
This completes the proof of Theorem 5.3.

A final remark

It is rather surprising that so few results are not consequences of our lower
bound [W]. However, it seems worthwhile to go on in this field by looking at
special cases, like v (cf. [F 4]), or e" (cf. [Ch] in the case of large degree) and to
use the specific properties of these numbers to improve the known results. In fact,
the sharpest known results are far from best possible (namely C31 NLogH for the
transcendence measures) and there is still a lot of work to do.

From the continued fraction expansions of n and e" up to 80 places, which were
kindly provided to me by David Hunt, it follows that the only exceptions to

IT

q
in the range 2 < q < 1041 are for q — 7 and q = 113, and similarly the only exceptions
to

e"-- >q~*

in the range 2<<7< 1044 are for q = 7 and q = 462.
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