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Transcendence of Generalized
Euler Constants

M. Ram Murty and Anastasia Zaytseva

Abstract. We consider a class of analogues of Euler’s constant γ and use Baker’s theory of
linear forms in logarithms to study its arithmetic properties. In particular, we show that with
at most one exception, all of these analogues are transcendental.

1. INTRODUCTION. There are two types of numbers: algebraic and transcenden-
tal. A complex number is called algebraic if it is a root of some algebraic equation with
integer coefficients. A complex number that is not algebraic, is called transcenden-
tal. The theory of transcendental numbers arose in connection with other fundamental
questions in mathematics. For example, we can show that the solution of the ancient
problem of squaring a circle follows from the fact that the number π is transcendental.
Despite the early origin of questions on the arithmetic nature of numbers, the existence
of transcendental numbers was not proven until 1844, when Liouville showed that an
algebraic number cannot be approximated “too well” by rationals. In other words, if
the number is too well approximated by rational numbers, it cannot be algebraic. The
first examples of transcendental numbers were constructed in this way. We suggest any
book on transcendental number theory for additional details (see [7]). Later, in 1874,
Cantor showed that the set of all algebraic numbers is countable, whereas the set of
all transcendental numbers is uncountable. By this argument, “almost all” numbers are
transcendental.

In 1850, Eisenstein (see p. 445 of [8]) showed that the set of algebraic numbers
forms a field. In particular, the sum and product of two algebraic numbers is again
algebraic.

Given some particular constant (for example, a constant obtained as result of some
limiting process), it is often very hard to determine whether it is algebraic or tran-
scendental. Let us consider three famous mathematical constants, π , e, and the Euler
constant γ , often referred to as the “holy trinity.” The transcendence of π and e was
shown by Ferdinand Lindemann in 1882 and Charles Hermite in 1873, respectively.
On the other hand, despite the efforts of many mathematicians, the arithmetic nature of
γ remains a complete mystery even now. We still do not know whether it is algebraic
or even irrational.

In this paper we will look at the Euler constant γ and a class of its analogues γ (�)
defined below, indexed by finite sets of distinct prime numbers such that γ (∅) = γ .
These constants γ (�) appeared in [3] in connection with the Riemann hypothesis.
Though we still can’t say whether γ is algebraic, we will show that in the infinite list
{γ (�)} all numbers are transcendental with at most one exception. In particular, this
implies that if γ is algebraic, then all numbers γ (�), � 6= ∅ are transcendental.

Euler’s constant gamma and generalizations. About 280 years ago, Euler intro-
duced an important mathematical constant γ , defined as the following limit:
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γ := lim
x→∞

(
x∑

n=1

1

n
− log x

)
= 0.577215 . . . .

Though less well-known than the numbers e and π , γ is ubiquitous in mathematics.
In analysis, the Euler constant appears in the theory of the 0-function, 0(z). A good
example of this is the famous Weierstrass product formula:

1

0(z + 1)
= eγ z

∞∏
n=1

(
1+

z

n

)
e−z/n.

In number theory, γ has connection with the theory of Riemann’s ζ -function. Indeed,
the constant term in the Laurent expansion of ζ(s) at s = 1 is γ :

ζ(s) =
1

s − 1
+ γ + O(s − 1).

As another example, consider the representation

γ =

∞∑
n=2

(−1)n
ζ(n)

n

where ζ(s) denotes the Riemann zeta function.
There are many series and integral representations of γ . For more examples we

suggest [4], which is a new book by Havil devoted to the Euler constant.
There are several generalizations of γ . In 1975, Lehmer [5] introduced the class of

analogues of the Euler constant described below. Let us fix any natural number q; then
for every integer a with 0 < a ≤ q , the limit

γ (a, q) := lim
x→∞

 x∑
n=1

n≡a(mod q)

1

n
−

log x

q


exists. These numbers, γ (a, q), are called Euler–Lehmer constants and have many in-
teresting properties. The constants γ (a, q) are closely connected with γ . In particular,
γ = 4γ (2, 4).

At present it is still unknown whether γ or the γ (a, q) are transcendental. Murty
and Saradha made progress in the study of the arithmetic nature of these numbers in
2010 [6]. Using Baker’s theory of linear forms of logarithms, they proved the following
theorem.

Theorem 1. In the infinite list of numbers {γ (a, q)} with 1 ≤ a < q, q ≥ 2, at most
one number is algebraic.

In particular, though we still do not know whether γ is algebraic or not, Theorem 1
implies that if γ is algebraic, then all numbers γ (a, q), (a, q) 6= (2, 4), are transcen-
dental.

Studying the Riemann hypothesis in 2007, Diamond and Ford [3] introduced an-
other generalization of Euler’s constant arising from integers sieved by finite sets of

January 2013] TRANSCENDENCE OF GENERALIZED EULER CONSTANTS 49

This content downloaded from 14.139.163.28 on Wed, 27 Nov 2013 11:47:04 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


primes. More concretely, for a fixed finite set of distinct primes �, denote

1�(n) =

{
1 if gcd (n,

∏
p∈� p) = 1,

0 otherwise,

and

δ� = lim
x→∞

∑x
n=1 1�(n)

x
.

Then the constant γ (�) is defined as the following limit:

γ (�) := lim
x→∞

(∑
n≤x

1�(n)

n
− δ� log x

)
.

Note that γ = γ (�) for � = ∅. In the case when � consists of the first r primes
{p1, . . . , pr }, we replace � by �r in the previous notation. We can show that

lim
r→∞

γ (�r ) = e−γ .

We record here two interesting theorems of Diamond and Ford [3], connecting the
Riemann hypothesis (RH for short) with the generalized Euler constants.

Theorem 2. Assume RH. Then γ (�r ) > e−γ for all r ≥ 0.

Theorem 3. Assume RH is false. Then γ (�r ) < e−γ for infinitely many r.

In other words, the Riemann hypothesis is equivalent to the statement γ (�r ) > e−γ

for all r > 0.
Though we also do not know whether the constants {γ (�)} are algebraic, the

method developed in [6] allows us to get a result for the infinite list of numbers
{γ (�)} with the same “all but maybe one” flavor. The goal of this paper is to prove
the following theorem.

Theorem 4. Let S be the set of numbers {γ (�)}, as � ranges over all finite sets of
distinct primes. Then all numbers of S are transcendental with at most one exception.

The proof of Theorem 4 involves Baker’s theory on linear form of logarithms and
some auxillary results on arithmetic functions, which we review in the next section.

2. PRELIMINARIES. We will use the following fundamental theorem [2].

Theorem 5 (A. Baker). Let α1, . . . , αn, β1, . . . , βn be algebraic numbers with αi 6=

0 for i = 1, . . . , n. Then

β1 logα1 + · · · + βn logαn

is either zero or transcendental.

In order to apply Theorem 5, we will get a representation of γ (�) in a convenient
form. To do this, we will use properties of the Möbius function, which we recall below.
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The Möbius function µ(n), defined as

µ(n) =

{
(−1)k if n is a product of k distinct primes,
0 if p2

| n for some prime p,

is a multiplicative function, satisfying the following useful relations:

∑
d|n

µ(d) =

{
1 if n = 1,
0 otherwise,

(1)

and ∑
d|n

µ(d)

d
=

∏
p|n

(
1−

1

p

)
. (2)

The following lemma is called the Möbius inversion formula.

Lemma 1 ([1], p. 32). Let f be any arithmetic multiplicative function. Define a func-
tion h(n) by

h(n) =
∑
d|n

f (d).

Then the following inversion formula holds:

f (n) =
∑
d|n

h(d)µ
(n

d

)
.

If we define von Mangoldt’s function 3(n), as

3(n) =

{
log p if for some prime p we have n = pα,
0 otherwise,

then log n =
∑

d|n 3(d), as is easily verified. Applying the Möbius inversion formula
and using (1) gives

3(n) = −
∑
d|n

µ(d) log(d).

Applying Lemma 1 to the last equation yields:

− µ(n) log n =
∑
d|n

3(d)µ
(n

d

)
. (3)

More details on arithmetic functions can be found in [1].
Now let us get a representation for γ (�) in closed form.
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Lemma 2. Let � be a finite set of primes. Then

γ (�) =
∏
p∈�

(
1−

1

p

){
γ +

∑
p∈�

log p

p − 1

}
. (4)

Remark 1. It is easy to see that formula (4) remains valid for� = ∅ if we understand∏
p∈∅ (1−

1
p ) = 1 and

∑
p∈∅

log p
p−1 = 0.

Proof. Denote P =
∏

p∈� p. By (1) and (2),

δ� = lim
x→∞

1

x

x∑
n=1

∑
d| gcd (n,P)

µ(d)

= lim
x→∞

1

x

∑
d|P

µ(d)
x/d∑

n1=1

1

= lim
x→∞

1

x

∑
d|P

µ(d)
[ x

d

]
= lim

x→∞

1

x

∑
d|P

µ(d)
( x

d
−

{ x

d

})
=

∑
d|P

µ(d)

d
=

∏
p|P

(
1−

1

p

)
.

In particular, the above formula implies that δ� is a rational number.
Similarly,

x∑
n=1

1�(n)

n
=

x∑
n=1

1

n

∑
d| gcd (n,P)

µ(d)

=

∑
d|P

µ(d)

d

x/d∑
m=1

1

m

=

∑
d|P

µ(d)

d
(log

x

d
+ γ + o(1))

= δ� log x −
∑
d|P

µ(d) log d

d
+ γ δ� + o(1).

Using (3),

−

∑
d|P

µ(d) log d

d
=

∑
ab|P

3(a)µ(b)

ab
=

∑
p∈�

log p

p

∑
pb|P

µ(b)

b
= δ�

∑
p∈�

log p

p − 1
.

Putting everything together, we get formula (4).
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3. PROOF OF THE MAIN THEOREM (THEOREM 4). We proceed by contra-
diction. Suppose, that for two different finite sets of primes �1 = {p1, . . . , pn} and
�2 = {q1, . . . , qm} both numbers, γ (�1) and γ (�2), are algebraic. Then the differ-
ence

δ�2γ (�1)− δ�1γ (�2) (5)

is also algebraic. By Lemma 2, this quantity is equal to

δ�2

∑
p∈�1

log p

p − 1
− δ�1

∑
p∈�2

log p

p − 1
, (6)

i.e., is a Q-linear form in logarithms of algebraic numbers. By Theorem 5, the last
expression is either zero or transcendental. So to finish the proof it suffices to show
that (6) does not vanish. Suppose, on the contrary, that

δ�2

∑
p∈�1

log p

p − 1
− δ�1

∑
p∈�2

log p

p − 1
= 0. (7)

Denote ci =
δ�2
pi−1 and d j =

δ�1
q j−1 for i = 1, . . . , n, j = 1, . . . ,m. It is easy to see

that these numbers are rational; we define D to be the product of their denominators.
Rewrite (7) in the form

n∑
i=1

ci log pi =

m∑
j=1

d j log q j .

Exponentiation of the left-hand side and right-hand side of the last equality yields:

pc1
1 × · · · × pcn

n = qd1
1 × · · · × qdm

m . (8)

After taking both parts to the Dth power we get

(pc1
1 × · · · × pcn

n )
D
= (qd1

1 × · · · × qdm
m )D. (9)

The right-hand side and the left-hand side in expression (9) are prime factoriza-
tions of natural numbers. Since, by assumption, the sets �1 = {p1, . . . , pn} and
�2 = {q1, . . . , qm} are distinct, the last equality contradicts unique factorization. We
have shown that (5) does not vanish, so by Theorem 5 it is transcendental. At most one
number from the infinite list {γ (�)} is algebraic. This completes the proof of Theorem
4.

4. REMARKS. We should mention that it is widely believed that the constant γ is
transcendental. Theorem 4 guarantees that at most one number from the infinite list
{γ (�)} is algebraic. We expect all of the γ (�)′s to be transcendental.
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Yet Another Proof That
(
1 +

1
n

)n+(1/2)
Is Decreasing

Let un =
(
1+ 1

n

)n+ 1
2 . Then for n ≥ 2,

un−1

un
= exp

{(
n −

1

2

)
log

(
1+

1

n − 1

)
−

(
n +

1

2

)
log

(
1+

1

n

)}
= exp

{
−

(
n −

1

2

)
log

(
1−

1

n

)
−

(
n +

1

2

)
log

(
1+

1

n

)}
= exp

{
−n

(
log

(
1+

1

n

)
+ log

(
1−

1

n

))
−

1

2

(
log

(
1+

1

n

)
− log

(
1−

1

n

))}
= exp

{
2n

(
1

2n2
+

1

4n4
+

1

6n6
+ · · ·

)
−

(
1

n
+

1

3n3
+

1

5n5
+ · · ·

)}
= exp

{
1

2× 3n3
+

2

3× 5n5
+

3

4× 7n7
+

4

5× 9n9
+ · · ·

}
> 1,

so un is decreasing.
Earlier proofs were given by the author in this MONTHLY, Vol. 118, p. 811 (first line of

math), and Vol. 117, p. 880 (this proof would look nicer if n were replaced by n − 1 through-
out), in response to the article by S. K. Khattri, Vol. 117, pp. 273–277.

—Submitted by Michael D. Hirschhorn
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