
 Open access  Book Chapter  DOI:10.1017/CBO9780511735233.008

Transcendental Dynamics and Complex Analysis: Residual Julia sets of rational
and transcendental functions — Source link 

Patricia Domínguez, Núria Fagella

Published on: 01 Jun 2008

Topics: Julia set, Meromorphic function, Riemann sphere, Riemann surface and Boundary (topology)

Related papers:

 Iteration of meromorphic functions

 Residual Julia Sets of Meromorphic Functions

 Iteration of Rational Functions

 On Julia limiting directions of meromorphic functions

 Some connectedness properties of julia sets

Share this paper:    

View more about this paper here: https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-
4pb9zwz2e4

https://typeset.io/
https://www.doi.org/10.1017/CBO9780511735233.008
https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-4pb9zwz2e4
https://typeset.io/authors/patricia-dominguez-4y7qgvodyc
https://typeset.io/authors/nuria-fagella-1b73489c73
https://typeset.io/topics/julia-set-tdfhblul
https://typeset.io/topics/meromorphic-function-3br9eysh
https://typeset.io/topics/riemann-sphere-3f3whmx5
https://typeset.io/topics/riemann-surface-3ng80qmq
https://typeset.io/topics/boundary-topology-2w4tu6ys
https://typeset.io/papers/iteration-of-meromorphic-functions-5an8yxam4g
https://typeset.io/papers/residual-julia-sets-of-meromorphic-functions-2uhzdrsb3c
https://typeset.io/papers/iteration-of-rational-functions-46k9pihdl7
https://typeset.io/papers/on-julia-limiting-directions-of-meromorphic-functions-24t6yb1gwq
https://typeset.io/papers/some-connectedness-properties-of-julia-sets-52sab6xw5a
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-4pb9zwz2e4
https://twitter.com/intent/tweet?text=Transcendental%20Dynamics%20and%20Complex%20Analysis:%20Residual%20Julia%20sets%20of%20rational%20and%20transcendental%20functions&url=https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-4pb9zwz2e4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-4pb9zwz2e4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-4pb9zwz2e4
https://typeset.io/papers/transcendental-dynamics-and-complex-analysis-residual-julia-4pb9zwz2e4


Residual Julia sets of rational and transcendental functions

Patricia Domı́nguez

F.C. F́ısico-Matemáticas, B.U.A.P
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Abstract

The residual Julia set, denoted by Jr(f), is defined to be the subset of those points
of the Julia set which do not belong to the boundary of any component of the Fatou
set. The points of Jr(f) are called buried points of J(f) and a component of J(f) which
is contained in Jr(f) is called a buried component. In this paper we survey the most
important results related with the residual Julia set for several classes of functions. We
also give a new criterium to deduce the existence of buried points and, in some cases, of
unbounded curves in the residual Julia set (the so called Devaney hairs). Some examples
are the sine family, certain meromorphic maps constructed by surgery and the exponential
family.

1. Introduction

Given a map f : X → X, where X is a topological space, the sequence formed by its iterates
will be denoted by f0 := Id, fn := f ◦ fn−1, n ∈ N. When f is a holomorphic map and X is
a Riemann surface the study makes sense and is non-trivial when X is either the Riemann
sphere Ĉ, the complex plane C or the complex plane minus one point C \ {0}. All other
interesting cases can be reduced to one of these three.

In this paper we deal with the following classes of maps (partially following [Be]).

R = {f : Ĉ → Ĉ | f is rational of degree at least two}.

E = {f : C → C | f is transcendental entire}.

M = {f : C → Ĉ | f is transcendental meromorphic with at least one not omitted pole}.

Note that functions in M have one single essential singularity. This class is usually called
the general class of meromorphic functions (see [BKY]).

If f is a map in any of the classes above and we denote by X its domain of definition, the
Fatou set F (f) (or stable set) consists of all points z ∈ X such that the sequence of iterates
of f is well defined and forms a normal family in a neighborhood of z. The Julia set (or
chaotic set) is its complement and it is denoted by J(f) = Ĉ \ F (f).

The second author was partially supported by MEC’s grants BFM2003-09504 and BFM2002-01344 and
CIRIT’s grant 2001/SGR-70.
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Classes R and E are classical and were initially studied by P. Fatou and G. Julia, and later
by many other authors. Introductions to rational functions can be found in the books by
Beardon [Bea1], Carleson and Gamelin [CG], Milnor [Mi] and Steinmetz [S] .

Functions in E and M have been studied more recently. For a general survey including all
the above classes we refer to Bergweiler in [Be] or [XC].

Many properties of J(f) and F (f) are much the same for all classes above but different
proofs are needed and some discrepancies arise. For any of these maps we recall some well
estabished facts: by definition, the Fatou set F (f) is open and the Julia set J(f) is closed;
the Julia set is perfect and non-empty; the sets J(f) and F (f) are completely invariant under
f ; for z0 any non exceptional point, J(f) coincides with the closure of the backward orbit of
z0; and finally the repelling periodic points are dense in J(f).

The possible dynamics of a periodic connected component U of the Fatou set of f (i.e.
fp(U) ⊂ U , for some p ≥ 1), is classified in one of the following possibilities: attracting
domain, parabolic domain, rotation domain (Siegel disc or Herman ring) or Baker domain
also called parabolic domains at ∞. Herman rings do not exist for f ∈ E . A Fatou component
that is neither periodic nor pre-periodic is called a wandering domain. Neither Baker domains
nor wandering domains exist for f in R or in E of finite type (i.e. such that the inverse function
has only finitely many singularities).

We define the residual Julia set of f denoted by Jr(f) as the set of those points of J(f)
which do not belong to the boundary of any component of the Fatou set F (f). The points
of Jr(f) are called buried points of J(f) and a component of J(f) that belongs to Jr(f)
is called a buried component. This concept was first introduced in the context of Kleinian
groups. Abikoff in [Ab1, Ab2] defined the residual set Λr(Γ) of a Kleinian group Γ to be
the subset of those points of the limit set Λ(Γ) which do not lie on the boundary of any
component of the complement of Λ(Γ). Abikoff gave examples where Λr(Γ) 6= ∅. In his
well known paper [Su] Sullivan draws attention to the dictionary of correspondences between
complex dynamics and Kleinian groups (see [Mo2, Chapter 5] for a first version of what is
called a Sullivan’s dictionary). Following this idea in 1988 McMullen [M] defined a buried
component of a rational function to be a component of the Julia set which does not meet the
boundary of any component of the Fatou set. Similarly, for a buried point of the Julia set.
McMullen gave an example of a rational function with buried components. Beardon studied
this example in his book [Bea1] and he also gave conditions under which the existence of
buried components was assured (see [Bea2]). After these results several mathematicians have
studied buried components for rational functions (see [BD1] [Mo1],[Mo2] [Q2]). The first
discussion about residual Julia sets for functions in class E of finite type was given by Qiao
in 1995 [Q1]. He also gave some conditions for f ∈ E , of finite type, under which the Julia
set contained buried points [Q2]. Different examples of f ∈ E with Jr(f) 6= ∅ and related
results were given independently by Domı́nguez in 1997 [D1]. In [BD1] Baker and Domı́nguez
discused some results of Morosawa and Qiao on conditions for f ∈ R to have buried points
or buried components. They showed that these results can be extended to functions in class
M.

This paper attempts to describe some of the results mentioned above on the residual Julia
set for different classes of functions such as rational, transcendental entire and transcendental
meromorphic (see Sections 2, 3 and 4).

In Section 5 we prove some new results about the residual Julia set of some classes of
entire or meromorphic functions and apply them to the sine family and to some meromorphic
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functions constructed by surgery. We also give certain conditions under which all points on
the so called Devaney hairs (or rays) are buried points. In the particular case of exponential
functions, having an attracting periodic orbit of period greater than one we show that all
hairs except possibly a countable number of them are buried components. Moreover we
characterize these exceptions in terms of the kneading sequence.

2. Basic properties of the residual Julia set

We give here some basic results about the residual Julia set which hold for functions which
belong to any of the classes defined in the introduction. In this section, f will denote a
function in R, E or M.

The first proposition deals with completely invariant components of the Fatou set.

Proposition 2.1.. If the Fatou set of f has a completely invariant component, then the
residual Julia set is empty.

Proof. If the Fatou set has a completely invariant component U , then U is also completely
invariant. Hence, by the minimality of J(f), we have ∂U = J(f) so that the residual Julia
set Jr(f) = ∅ by definition.

In particular for a nonlinear polynomial P the unbounded Fatou component is completely
invariant and the residual Julia set is empty. Perhaps this contributed to the relatively late
recognition of the possible existence of residual Julia sets.

The following is a trivial observation.

Proposition 2.2.. If there exists a buried component of J(f), then J(f) is disconnected.

Proof. Observe that buried components are defined as connected components of the Julia set
which are all buried. For such components to exist, J(f) must be disconnected.

Notice that this is only for buried components, not for buried points. There are examples
(see next section) of maps with a connected Julia set and residual julia set nonempty.

Finally, what follows is a result that was proven by Morosawa [Mo1] for rational functions
and by Baker and Dominguez [BD1] (in a slightly stronger form) for functions in the remaning
classes.

Proposition 2.3.. If the residual Julia set of f is non-empty, then Jr(f) is completely in-
variant, dense in J(f) and uncountably infinite.

Proof. The complete invariance of Jr(f) follows easily from the complete invariance of F (f).
Then Jr(f) must be completely invariant and has more than three points. By the minimality
of J(f) we have that J(f) = Jr(f). To prove the second part, Morosawa constructs a Cantor
set contained in Jr(f), following the method of Abikoff in [Ab2].

In their paper [BD1], Baker and Dominguez prove something slightly stronger, namely
that Jr(f) is residual in the sense of category theory. We recall that a residual set is the
complement of a countable union of nowhere dense sets (which are in this case the boundaries
of the Fatou components). Any residual set in this sense, must contain an intersection of
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open dense subsets. Since J(f) is a complete metric space, it is a Baire space and therefore
any residual subset is dense.

3. The residual Julia set for rational functions

The first example of a rational function with Jr(f) 6= ∅ was given by McMullen [M]. The
idea behind this example is to have a Julia set that consists of a Cantor set of nested Jordan
curves (see Figure 1). Such an object necessarily has plenty of buried components, as in the
middle thirds Cantor set C, where the extreme points of each interval belong to the set but
many other points in C are not extreme points and therefore do not belong to the boundary
of any component of Cc.

More precisely let

R(z) = z2 +
λ

z3
, λ > 0.

One can see that ∞ is a super-attracting fixed point of R. It can be shown that zero
and ∞ lie in different components of the Fatou set, say F0 and F∞ respectively. When λ is
sufficiently small the following facts can be proved.

(a) F0 and F∞ are simply connected, while other components of the Fatou set are doubly
connected;

(b) Rn → ∞ on F (R);

(c) ∞ attracts all critical points of R(f);

(d) the Julia set is a Cantor set of nested Jordan curves;

(e) there are components of the Julia set which do not meet the boundary of any component
of the Fatou set. Such components are quasicircles.

This example can also be found in [Bea1, Chapter 5, p. 266]. In [Bea2] Beardon proves
the first general theorem about buried components for f ∈ R.

Theorem 3.4 ([Bea2]). Suppose that J(f) is disconnected, and that every component of the
Fatou set has finite connectivity. Then J(f) has a buried component, so Jr(f) 6= ∅

The proof of Theorem 3.4 is based on the following result.

Theorem 3.5. If J(f) is disconnected, then it has uncountably many components, and each
point of J(f) is an accumulation point of distinct components of J(f).

Indeed, if each component of F (f) has finite connectivity, and if J(f) is disconnected, then
there are only countably many components of J(f) which lie on the boundary of some com-
ponent of the Fatou set. The theorem follows immediately. Qiao in [Q2] improves Beardon’s
result by showing the following statement.

Theorem 3.6 ([Q2]). Let f ∈ R and J(f) 6= Ĉ. The Julia set J(f) contains buried com-
ponents if and only if (i) J(f) is disconnected and (ii) F (f) has no completely invariant
component.
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Figure 1: Dynamical plane of R(z) = z2 + λ
z3 where λ = 10−8. The Julia set is a Cantor set of

quasicircles.

Proof. If all Fatou components are finitely connected, the result follows from Beardon’s theo-
rem. If not, he proves the existence of a periodic connected component of the Julia set which
can be surrounded by a closed curve γ in the Fatou set, such that the bounded component of
C \ γ contains no periodic Fatou component. Such component of the Julia set is necessarily
buried.

Thus by Qiao’s Theorem 3.6, it is not difficult to find examples of rational functions with
degree greater than one for which the Julia set contains buried components, so the residual
Julia set Jr(f) is not empty. See [Q2] for the complete proof of Theorem 3.6 and examples.

In [BD1] the authors gave a proof of Theorem 3.6, differing from that in [Q2], which can
be used also for transcendental entire functions with some changes.

Similar results were proved (independently) by Morosawa (see [Mo1] and [Mo2]).

One can ask if it is possible to have a rational function with connected Julia set and non-
empty residual Julia set. Naturally, such a function will have buried points but not buried
components. In what follows we describe this example due to Morosawa [Mo1], [Mo2].

A function f ∈ R is hyperbolic if each critical point of f has a forward orbit that accu-
mulates at a (super) attracting cycle of f . The following theorem gives a characterization of
those hyperbolic functions with non-empty residual Julia set.

Theorem 3.7 ([Mo1]). Let f be a hyperbolic rational function with degree at least two. Then
the residual Julia set is empty if and only if either (i) F (f) has a completely invariant
component or (ii) consists of only two components.

In his proof, Morosawa relies on the fact that the boundary of Fatou components of hy-
perbolic functions is locally connected. This allows a great control on the union of all these
sets.

The example of Morosawa consists of the following hyperbolic rational function.
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R(z) =
−2z + 1

(z − 1)2

Observe that the set {0, 1,∞} is a super-attracting cycle of R(z), since the critical points of
R(z) are 0 and 1. Thus F (R) has countably many components. Moreover, every component
of F (R) is eventually absorbed into this super-attracting cycle and R is hyperbolic. Hence the
residual Julia set is not empty by Theorem 3.7. It can be shown that each component of the
immediate basin on this super-attracting cycle is simply connected. An arbitrary component
of F (R) except that of the immediate basin contains no critical point. Thus, every component
of F (R) is simply connected. Therefore, the Julia set of R is connected.

This class of examples with locally connected Fatou boundaries was somehow generalized
in the following theorem.

Theorem 3.8 ([Q3]). Lef f ∈ R with degree d ≥ 2 and J(f) 6= C. Suppose that F (f) has
no completely invariant components. Then, either the residual Julia set is nonempty, or the
Julia set is not locally connected.

In fact, this result proves, in the case of locally connected Julia sets, the stronger conjecture
of Makienko which reads as follows.

Conjecture 3.9 (Makienko, [EL2]). Lef f ∈ R. Then, J(f) has buried points if and only if
F (f) has no completely invariant components.

4. Residual Julia set for transcendental entire functions

The results in Section 2 for rational functions can be extended mainly to transcendental
meromorphic functions, as we will see in Section 4. However, when we deal with functions in
class E , the statements are considerably different. We recall that a component U of the Fatou
set that is neither periodic nor preperiodic is called a a wandering component. Sullivan in
[Su] proved the non existence of wandering components for a rational function. This result
was later extended to functions in class E of finite type in [EL1] and [GK]. However functions
in class E with infinitely many singularities of f−1 may have wandering domains. Examples
in class E can be found in [B] such that F (f) contains some wandering components which
roughly speaking form an unbounded sequence of concentric rings Un. For such functions J(f)
is not connected. Thus for functions in class E it is possible to have both cases of wandering
and no wandering components. This turns out to be an important difference when dealing
with the residual Julia sets.

4.1 Functions with no wandering domains

An important class of transcendental entire functions is the class S of functions f of finite
type. As mentioned above, functions in class S do not possess wandering domains. The main
results related with the residual Julia set for functions in class S were given by Qiao [Q2]
and Baker and Domı́nguez [BD1]. In [Q2], Qiao stated the following theorem.

Theorem 4.10. Let f ∈ S and J(f) 6= C. The Julia set of f contains buried points if and
only if F (f) is disconnected.
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The ’only if ’ part of Theorem 4.10 is immediate since F (f) being connected would imply
the existence of a unique connected component of the Fatou set which has to be completely
invariant. In the ’if’ part Qiao separates the proof in two cases. If the components of the
Fatou set are all bounded, then he shows that there exist continua of buried points, all
tending to infinity under iteration (in fact these are the ”Devaney hairs”, see Section 5).
The construction he uses is the same as in [DT]. When some component of the Fatou set is
unbounded, a new construction is needed. The author constructs a set of unbounded regions
and shows that they all contain points of the Julia set, but at the same time one of them does
not contain any periodic component of the Fatou set. Hence all repelling periodic points in
this region must be buried.

The last steps in Qiao’s proof were not clear to the authors in [BD1] who gave an alternative
construction to show the following result. We remark that functions in class E can have at
most one completely invariant component of F (f) but, a priori, there could also be other
Fatou components. If f ∈ S, any completely invariant component must form the whole Fatou
set.

Theorem 4.11. Let f ∈ E such that F (f) is not connected. Suppose that there are no
wandering domains, no completely invariant Fatou component and no Baker domains in
which f is univalent.

(i) If all periodic components of F (f) are bounded, then Jr(f) 6= ∅.

(ii) If there are unbounded periodic Fatou components and ∞ is an accessible boundary
point in one of these components, then there are buried components of J(f) which are
unbounded, so Jr(f) 6= ∅.

Before proving Theorem 4.11, we state the following useful lemma (for a proof see [BD1]).

Lemma 4.12. If f ∈ E has no wandering domains and J(f) has no buried components, then
there is some periodic cycle of Fatou components G1, G2, . . . Gp, such that J(f) = K(Gj) for
all 1 ≤ j ≤ p, where the bar denotes closure and K(Gj) denotes the union of all components
of J(f) which meet ∂Gj .

Sketch of the proof of Theorem 4.11 (ii). Suppose that the Fatou set has an unbounded
periodic component H such that fp(H) = H and ∞ is accessible in H. Since H is unbounded
it is simply-connected and either the immediate basin of attraction of an attracting, parabolic
fixed point of fp, a Siegel disc or a Baker domain such that fp is not univalent in H.
Further, since H is not completely invariant there is a non-periodic component K such that
fp(K) ⊂ H.

The set E = {eiθ : radial limit Ψ(eiθ) = ∞, Ψ : D(0, 1) → H is the Riemann map}
contains infinitely many points by a result in [BD2]. Let us take values θj, 1 ≤ j ≤ 4, such
that 0 < θ1 < θ2 < θ3 < θ4 < 2π and radii λj : z = reiθj , 0 < r < 1. Assume that eiθ1 and
eiθ3 are in E and that the limits ( as r → ∞) on the radii λ2, λ4 exist and are finite points
α2, α4 in ∂H. It can be shown that there is a simple path Γ ⊂ H which runs to ∞ at both
ends. If g is an appropiate branch of f−p, then consider the continuation of g along Γ and
obtain a simple path Γ′ which runs to ∞ at both ends and divides K.

The points α2, α4 in ∂H are separated by Γ and the points p2 = g(α2), p4 = g(α4) in
∂K are separated by Γ′. If we assume that there are no buried components, then there is
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a periodic component L of the Fatou set such that J(f) = T ,where T is the union of all
components of the Julia set which meet ∂L (see Lemma 4.12). Thus there are points q2, q4 of
T so close to p2, p4 that are separated by Γ′. The points q2, q4 belong to different components
of the Julia set which are also separated by Γ′. These components contain points r2, r4 in ∂L.
Then there are points in L which are also close to r2, r4 but they are separated by Γ′. This is
impossible since the Fatou components L and K are distinct. �

Remark 4.13. Observe that when f ∈ S and F (f) is not connected there is neither wandering
domains, completely invaraint domain nor Baker domains. Thus Theorem 4.11 gives the
following corollary.

Corollary 4.14. Let f ∈ S such that F (f) is not connected. If either all periodic components
of F (f) are bounded or there exists an unbounded periodic component in which ∞ is an
accessible point, then Jr(f) 6= ∅. In the latter case there are buried components of J(f).

Examples of the above results can be given such as the family λ sin z for some values of λ
and the family λez for any λ such that there is an attracting p-cycle (see also Section 5).

Remark 4.15. We do not know any examples of an unbounded Fatou component G such
that ∞ is not accesible along any path in G. If there are no such examples then Corollary
4.14 would imply Theorem 4.10.

4.2 Functions with wandering domains

It is well known for f ∈ E that a multiply connected component of F (f) must be wandering
[B]. The Julia set for f ∈ E cannot be totally disconnected, as may happen for polynomials.
However singleton components in the Julia set can occur. If the Julia set has a singleton
component {ψ} 6= ∞ then F (f) has a multiply-connected component. The converse of this
statement is also true and we will see that this yields to the existence of buried points in the
Julia set. The main result in [D1] is as follows.

Theorem 4.16. If f ∈ E and F (f) has a multiply-connected component, then the Julia set
has singleton components and such components are buried and dense in J(f).

Sketch of the proof. The result of Baker [B] mentioned above states that if F (f) has a
multiply-connected component U , then U and all its iterates are bounded wandering compo-
nents and fn → ∞ in U (as n→ ∞). Also there is a simple curve γ in U such that fn(γ) is a
curve in fn(U) = Un on which |z| is large and winds round zero. In [D1] the following results
were shown: (i) fn+1(γ) is in Un+1 6= Un, winds round zero and must be outside γn, (ii) there
is a component Nn of the Fatou set between Un and Un+1 and an integer m ≥ 2 such that
f(Nn) ⊂ Un and (iii) the component Nn is a multiply-connected component which does not
wind round zero i.e. zero is in the unbounded component of N c

n. Thus picking a repelling
periodic point η with period p, Nn (as above) for five different values of n and choosing m ∈ N

so that the spherical derivative of fmp at η satisfies the hypothesis of Ahlfors five island The-
orem (see [A]), it can be shown that the disc D(η,R), R > 0 contains a sequence of different
multiply connected components Nk of the Fatou set with diameter tending to zero and Nk+1

is inside in one of the inner boundary components of Nk. A sequence ψk ∈ ∂J(f) is a Cauchy
sequence which converges to a point ψ ∈ J(f). By construction, ψ is a buried component
of the Julia set. Thus there is a dense subset G of J(f) such that each α ∈ G is a buried
singleton component of J(f). �
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5. The residual Julia set for transcendental meromorphic

functions

In Section 2 we discussed some results of Morosawa [Mo1] and Qiao [Q2] on conditions for a
rational function to have buried points or buried components. In this section we will focus
on those results that can be extended to transcendental meromorphic functions.

5.1 Functions with no wandering domains

For a meromorphic function in C, Baker and Domı́nguez [BD1] proved the following result
for functions with no wandering domains, which is almost a generalization of Theorem 3.6 to
meromorphic maps.

Theorem 5.17. Let f be meromorphic in C with no wandering components. Assume that J(f)
is not connected and that F (f) has no completely invariant component. Then the residual
Julia set Jr(f) is non-empty.

In order to give the proof of Theorem 5.17 we start with the following lemma.

Lemma 5.18. If f is meromorphic in C with no wandering components and U is a multiply-
connected periodic Fatou component such that ∂U = J(f), then U is completely invariant.

Sketch of the proof. Assume that U is a multiply-connected Fatou component such that for
some p ∈ N we have fp(U) ⊂ U and that ∂U = J(f) but that U is not completely invariant.
Observe that any other Fatou component is simply-connected because, otherwise, there would
be part of the Julia set bounded away from ∂U . Since there is one component H such that
H 6= U , f(H) ⊂ U we obtain a contradiction at once in the case of rational functions, since
then f(H) = U , f(∂H) = ∂U and f(∂H) is connected while ∂U is not. Thus we may assume
that f is transcendental so that J(f) and U are unbounded. If g denotes the branch of f−1

and if γ is a simple closed path in U which encloses some points of ∂U , it can be proved
that the continuation of g maps γ to a simple curve Γ in H which goes to ∞ at both ends.
Then the Gross Star Theorem is used to show that U meets both components of Γc which is
impossible since Γ ⊂ H 6= U . �

Now we are able to prove Theorem 5.17.

Proof of Theorem 5.17. Suppose that f is meromorphic without wandering domains, J(f) is
not connected and Jr(f) is empty. Then there is a periodic Fatou component U such that
∂U = J(f) (see [BD1] for a proof of this fact). Since J(f) is not connected, then there exists a
component of the Fatou set which is multiply connected. But ∂U = J(f), and hence U is mul-
tiply connected. By Lemma 5.18, U is completely invariant which is a contradiction with the
hypothesis. �

Note that only meromorphic functions may satisfied the conditions of Theorem 5.17 since,
for f ∈ E , the existence of a multiply-connected component in F (f) implies the existence of
wandering domains [B].

For functions f ∈ M the following theorem covers almost all cases when J(f) is not
connected (see [D2] for the proof).
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Theorem 5.19. Suppose that f ∈ M and either (a) F (f) has a component of connectivity at
least three, or (b) F (f) has three doubly-connected components Ui, 1 ≤ i ≤ 3, such that one
of the following conditions holds.

(i) Each Ui lies in the unbounded component of the complement of the other two.

(ii) Two components U1, U2 lie in the bounded component of U c
3 but U1 lies in the unbounded

component of U c
2 and U2 lies in the unbounded component of U c

1 .

Then J(f) has singleton components which are buried and dense in J(f).

Another attempt to generalize Theorem 3.6 would be the following.

Theorem 5.20. Let f ∈ M with no wandering domains. If F (f) has no completely invariant
components and if J(f) is disconnected (in such a way that f satisfies the assumptions of
Theorem 5.19), then Jr(f) contains singleton components of J(f) which are buried.

Explicit examples of Theorem 5.20 satisfying hypotesis (a) and (b) of theorem 5.19 can be
found in [BD1], such examples were obtained by using Runge’s theorem.

In Section 5.2 we provide an example of a meromorphic function obtained by surgery as in
[DF] satisfying the hypothesis of Theorem 5.20 and containing unbounded continua of buried
points. It is an open problem to find an example with disconnected Julia set not satisfying
any of the hypothesis of Theorem 5.19. Likewise it would be interesting to know under which
conditions a function with connected Julia set must have non empty residual Julia set.

5.2 Functions with wandering domains

All the theorems mentioned above have the condition that the function has no wandering
domains. For functions in class M it is well know that there are examples with wandering
domains of any prescribed connectivity. Thus it is possible to give examples of functions in
class M with wandering domains where the Julia set is disconnected and the Fatou set has
no completely invariant domain. The following theorem in [D2] gives an example of this fact.
The idea of this example was motivated by a similar example for f ∈ E (see [B]).

Theorem 5.21. Let f(z) ∈ M and suppose that F (f) has multiply-connected components
Ai, i ∈ N all different, such that each Ai separates 0,∞ and F (Ai) ⊂ Ai+1 for i ∈ N. Then
J(f) has a dense set of buried singleton components.

More interesting examples can be constructed by using results of complex approximation
theory, see [D2].

6. Hairs in the Residual Julia Set

In this section we deal with some classes of entire or meromorphic transcendental maps that
contain unbounded continua of buried points in their Julia sets. These continua are the well
known Devaney hairs, also called dynamic rays.

If f : C → C is an entire transcendental function, a hair of f is defined as a curve
γ : (0,∞) → C in the Julia set of f , such that γ(t) −→

t→∞
∞ and fn(γ(t)) −→

n→∞
∞ for any

t ∈ (0,∞). If the limit limt→0 γ(t) exists (say, it equals z0) and is finite we say that the hair
lands at z0. This point is called the endpoint of the hair. In other words, all points on the
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curve γ have orbits that tend (exponentially fast) towards the essential singularity at infinity,
while endpoints might escape or not.

Hairs were initially described for the exponential function by Devaney and Krych in [DK]
and then extended to the exponential family, z 7→ λ exp(z) (for several classes of parame-
ter values) in [DGH] and later in [Bet al]. More recently, Schleicher and Zimmer [SZ] have
extended this description to most parameter values. For more general classes of entire tran-
scendental functions the main reference is by Devaney and Tangerman [DT], where they show
that Cantor Bouquets i.e., Cantor sets of hairs, appear in any entire transcendental function
of finite type that has at least one hyperbolic asymptotic tract. A hyperbolic asymptotic tract
is an unbounded connected open set where orbits that remain in it behave in an “exponential
fashion”, that is, f increases the modulus and the derivative exponentially (see [DT] for pre-
cise definitions). As an example, the right half plane is a hyperbolic asymptotic tract for the
exponential family, while the upper and the lower half plane are hyperbolic asymptotic tracts
for any map in the sine family z 7→ λ sin(z). It seems reasonable to think that the proof of
the existence of Cantor bouquets can be easily generalized for entire transcendental maps of
bounded type (the set of singularities of f−1 is contained in a bounded set) with at least one
hyperbolic asymptotic tract. In fact, such extension has been announced by Rottenfüsser and
Schleicher for an even larger class of functions of bounded type. Similar and other extensions
can also be found in [BK].

Transcendental meromorphic functions may also contain Devaney hairs in their Julia sets.
Although no general theory is known, many examples can be constructed using, for example,
surgery techniques or otherwise adding a pole to a known entire map (see Section 6.2).

We will refer to the class of transcendental functions that possess unbounded continua of
escaping points, i.e. Devaney hairs as H.

In this section we want to give a new criterium to assure the existence of buried points in
the Julia set, and also some conditions for a transcendental map under which we can assure
that the Devaney hairs are in the residual Julia set, i.e., unbounded curves of buried points.
If the endpoints are also buried then the hair and its endpoint form a buried component.
The precise statement is as follows.

Proposition 6.22. Let f ∈ (R ∪ E ∪M), and A ( C a closed set with nonempty interior.
Suppose the following conditions are satisfied:

a) (C \ A) ∩ J(f) 6= ∅, and

b) all Fatou components of f eventually iterate inside A and never leave again. That is,
if Ω is a Fatou component, fn(Ω) ⊂ A for all n > N , where N depends on Ω.

Then the residual Julia set is nonempty. More precisely, the residual Julia set contains the
set

{z ∈ J(f) | fn(z) /∈ A for infinitely many values of n}.

In particular if A is bounded, any point of the Julia set with an unbounded forward orbit
belongs to the residual Julia set.

Proof. Since any point on the boundary of a Fatou component maps to another point with
the same property, we have that all these points must eventually fall into A and never leave
again. Thus no point of the Julia set which leaves A infinitely often can be in the boundary
of a Fatou component.

11



Now, the complementary of A is an open set which contains points of J(f). Let z ∈
(J(f) ∩ C \A), and let U be a neighborhood of z entirely contained in C \A. Since periodic
points are dense in J(f), it follows that U must contain a periodic point of the Julia set.
This point has to come back to itself infinitely often. Since it lies in the complementary of
A, this must be a point in the residual Julia set.

Remark 6.23. 1. The hypothesis inmediately rule out the case of a completely invariant
component. Indeed if U is a completely invariant component, then J(f) = ∂U . But
U must be in A because it is invariant, which implies that the whole Julia set is in A,
contradicting that some Julia set must be in the complement.

2. The hypothesis allow for wandering domains (as long as they eventually wander inside
A) or Baker domains of any kind (as long as they are contained in A)

3. If A is bounded and we assume f ∈ H, then it follows that all points in the Devaney
hairs are buried points. Clearly no point on a hair (except may be the endpoint) can be
in the boundary of any Fatou component, since such points escape exponentially fast
to infinity.

4. If A is bounded and the map is meromorphic, it follows that all poles and its preimages
are buried points.

In what follows we will analyze three examples which fall under the hypothesis of Proposi-
tion 6.22. The two first examples – the sine family and an example of a meromorphic surgery
constructed by surgery – have bounded Fatou components while the third example is the
exponential family that has unbounded Fatou components, and we treat it apart.

6.1 The Sine family

An important example is given by the sine family Sλ(z) = λ sin(z). This family has two
critical values (with symmetric orbits) and no asymptotic values, hence Sλ ∈ S for all λ.
Since both, the far upper and the far lower half plane are hyperbolic asymptotic tracts, it
follows from the standard arguments that Sλ ∈ H and all functions in this family have a pair
of Cantor Bouquets [DT], one in the upper half plane and another one in the lower half plane.
See Figure 2. How the landing of these hairs occurs is a fact that depends on the parameter
value.

For |λ| < 1, the fixed point z = 0 is attracting and its basin is completely invariant and
therefore unbounded [DS]. For λ = 1, the Fatou set consists of the parabolic basin of 0, all
whose connected components are bounded (see [Bha]). For λ = e2πiθ with θ and irrational
number of bounded type, the map Sλ has an invariant Siegel disk around z = 0 and all other
Fatou componets are its preimages. It has been announced in [Z] that this Siegel disk must
be bounded (and therefore all its preimages because Sλ has no asymptotic values). For other
λ parameter values, it is not known to our knowledge wether the Fatou components of Sλ

are bounded or not.

At the end of this section we prove the following.

Proposition 6.24. Let λ ∈ C such |Re(λ)| ≥ π
2 . Then, all Fatou components of Sλ are

bounded.
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Figure 2: Dynamical plane of Sλ(z) = λ sin(z) where λ = 1.88853 + i0.673125. There are two
attracting orbits of period three. Their inmediate basins of attraction are bounded and all other
Fatou components are preimages of those. All Devaney hairs consist of buried points.

Remark 6.25. In fact, we conjecture that this is true for all |λ| ≥ 1, but our construction
only works for this smaller set (see Subsection 6.1.1).

Since the sine family cannot have neither Baker domains nor wandering domains, it follows
that we are always under the hypothesis of Proposition 6.22. Hence we have the following
corollary.

Corollary 6.26. Let λ ∈ C such |Re(λ)| ≥ π
2 . Then, all Devaney hairs of Sλ consist of

buried points.

Notice that if the Julia set is the whole plane then, trivially, all its points are buried.

6.1.1 Boundedness of Fatou components (Proof of Proposition 6.24)

The main point in the proof is the following Proposition.

Proposition 6.27. Let λ ∈ C be such that |Re(λ)| ≥ π
2 . Then there is a fixed hair in the

upper half plane whose endpoint is the repelling fixed point z = 0. More precisely, there exists
an invariant curve {γ(t)}0≤t<∞ such that

1. |Reγ(t)| ≤ π/2 for all t ≥ 0.

2. limt→∞ γ(t) = ∞ and limt→0 γ(t) = 0.

3. For all t > 0, limn→∞ Sn
λ (γ(t)) = ∞.

Proof. Let B consist of the vertical strip

B = {z ∈ C | −
π

2
< Re(z) <

π

2
}.
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See Figure 3. The right (resp. left) vertical boundary of B is mapped to the ray segment
starting at λ (resp. −λ) and going to infinity, given that

λ sin(±
π

2
+ yi) = ± cosh(y).

Any horizontal segment of the form {x + y0i}|x|< π
2

joining the two boundaries is mapped

λ

−λ

π
2-π

2
0

π
2 + y0i

Sλ
γ(t)

Figure 3: Setup of the proof of Proposition 6.27 for |Re(λ)| ≥ π
2
.

under Sλ to half an ellipse of radii cosh(y0) and sinh(|y0|), rotated by λ. The simmetric
segment is mapped to the other half.

It follows from these observations that B is mapped one to one to the whole plane except
the 2 ray segments. Hence the standard construcions apply (see e.g. [DT]) to prove, in
particular, that the “tail” of the hair γ(t) (i.e. for t large enough) exists in B.

In order to see that it lands at z = 0, observe that a box like the one in Figure 3 (in fact,
independently of its height y0) is mapped one to one to a set that completely covers it. Hence
a well defined branch of the inverse exists inside the box and satisfies the hypothesis of the
Schwarz lemma. It follows easily by iterating the inverse that z = 0 is the unique fixed point
in the box and that γ(t) must converge to zero as t→ 0.

We proceed to see how the boundness of the Fatou components follows from Proposition
6.27.

Having a fixed hair γ(t) landing at z = 0 gives, by symmetry, another invariant hair
γ̃(t) = −γ(t) coming from below landing at the same point. These two hairs together with
{0} form an invariant curve Γ in the Julia set, contained in the strip

B = {z ∈ C | −
π

2
< Re(z) <

π

2
}.

Since the function Sλ is 2π-periodic, all the 2π-translations of Γ are vertical curves in the
Julia set all mapped to Γ under one iteration.

Hence the Julia set divides the plane in infinitely many “vertical strips” and, as a conse-
quence, no Fatou component can have unbounded real part, or else it would have to intersect
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the Julia set. Let us name these strips by {Rk}k∈Z, where RK intersects R at the interval
[2kπ, 2(k + 1)π].

Now, let us suppose that a periodic Fatou component U , (Sλ has no wandering domains)
has unbounded imaginary part. Since U is periodic, all its images must be contained in a
finite set of strips, say R−N , . . . , R0, . . . , RN , for some N ∈ N. We will show that no open set
can remain forever in these strips under iteration, unless its imaginary part is bounded.

To that end, choose a point z0 = x0 + iy0 ∈ U with high enough imaginary part so that

sinh(y0 − 2π) >
4(N + 1)π

|λ|
. (1)

Since U is open, there exists δ0 = δ0(y0) such that the round disk D0 = D(z0, δ0) is contained
in U , see Figure 4.

−2π 4π0

sinh(y0 − δ0)

D0

D1

A0

R0R
−1 R1

Figure 4: Sketch of the disks D0 and D1 in the case N = 1.

Assuming U is in Rk0
, with |k0| ≤ N , the “rectangle” Rk0

∩ {y0 − δ0 < Im(z) < y0 + δ0} is
mapped to a huge annulus A0 formed by two concentric ellipses, both transversal to Rk for
all |k| ≤ N , since they contain a disk of radius R where

R = |λ| sinh(y0 − δ) > |λ| sinh(y0 − 2π) > 4(N + 1)π.

See Figure 4. Since Sλ(D0) belongs to the Fatou component Sλ(U) which is constrained to
lie in a strip Rk1

with |k1| ≤ N , it follows that D0 must be mapped under Sλ to one of the
two connected components of A0 ∩Rk1

. W.l.o.g. we suppose that Sλ(D) is in the component
that lies in the upper half plane.

Let z1 = x1 +y1 = Sλ(z0). Since Sλ is univalent in D0, it follows from the Koebe distortion
theorem that

dist(z1, ∂Sλ(D0)) ≥
1

4
|S′

λ(z0)|dist(z0, ∂D0).

Hence, Sλ(D0) contains a round disk D1 = D(z1, δ1) where

δ1 ≥
1

4
|λ|| cos(z0)|δ0 ≥

1

4
|λ| sinh(y0)δ0,
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given that | cos(x+ iy)| ≥ sinh(y) for y ≥ 0.

Now we can apply the same argument to D1 and conclude that S2
λ(U) must contain a

round disk around z2 = Sλ(z1) of radius δ2 with

δ2 ≥
1

4
|λ|| cos(z1)|δ1 ≥

1

42
|λ|2 sinh(y1) sinh(y0)δ0.

Using that sinh y0 > sinh(y0 − 2π) and Equation (1), we have that y1 >> y0 and hence

δ2 ≥

(
|λ| sinh(y0)

4

)2

δ0.

Applying the same argument n times we obtain that Sn
λ (U) contains a round disk of radius

δn ≥

(
|λ| sinh(y0)

4

)n

δ0,

which tends to ∞ as n → ∞. This contradicts the fact that Sn
λ (U) is constrained to lie for

all n inside one of the strips Rk with |k| ≤ N .

Once established that all periodic components of the Fatou set are bounded, it follows
easily that the other ones are too. Indeed, any preimage of a bounded component must be
bounded since Sλ has no asymptotic values. Moreover, Sλ has no wandering domains. This
concludes the proof of Proposition 6.24.

6.2 A meromorphic function constructed by surgery

Using surgery methods exactly as in [DF] one can construct meromorphic functions with
buried Devaney hairs.

Let us consider as a first map for example the function f(z) = λ sin(z) where λ is chosen
so that f has a bounded invariant Siegel disk. This can be acomplished for instance by either

1. taking an appropiate λ with Re(λ) ≥ π/2 on the boundary of the main hyperbolic
component attached to the unic disk at λ = 1 (which has period one), or

2. taking λ = e2πiθ with θ an irrational number of bounded type.

In the first case, as λ runs along the boundary of the component, the multiplier of one of
the fixed points runs along the unit disk, so there will be invariant Siegel disks for infinitely
many values of λ. Moreover, it follows from Proposition 6.24 that they must be bounded. In
the second case, it has been proven in [Z] that Siegel disks for these class of parameters are
bounded.

We assume in either case that that the Siegel disk of f is centered at z = 0 (making an
affine change of coordinates if necessary) and its rotation number is a certain number θ.

As a second map consider the quadratic polynomial f̃(z) = ρz(1− z) where ρ = e−2πiθ. It
is well known that f̃ has an invariant Siegels disk at z = 0 of rotation number −θ.

The surgery construction consists of “gluing” the two dynamical planes (or spheres) where
f and f̃ act, along one of the invariant curves in each of the Siegel disks, γ and γ̃. The result,
after performing the details of the surgery, is a new function F which reflects the dynamics
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γ ∼ γ̃

Figure 5: The surgery procedure to construct a meromorphic function with buried Devaney hairs.

of f on the unbounded component of the complement of γ and the dynamics of f̃ in the
bounded one. See Figure 5 and [DF] for the complete details.

The new map F (or an affine conjugate) has still a transcendental singularity at ∞ and
no other. It has a bounded Herman ring around γ (since both Siegel disks were bounded),
and poles where f̃ had zeros (i.e. one single pole). The point z = 0 is now a superattracting
point whose inmediate basin is in the bounded component of the complement of the Herman
ring. The function F has also two Cantor bouquets since the dynamics around ∞ have not
changed.

It follows easily that all periodic Fatou components of F are bounded and there are no
wandering components. Hence we are under the hypothesis of Proposition 6.22 and we
conclude that all points which tend to infinity under iteration are buried points. In particular
the pole and all its preimages are buried and all Devaney hairs are unbounded continua of
buried points.

6.3 The exponential family

The discusions above deal with the cases where all Fatou components are bounded. Notice
that this excludes from the discussion an important family like the exponential, since all
hyperbolic members of the exponential family have unbounded inmediate basins of attraction.
See Figure 6.

With some work, we could see that hyperbolic exponential functions also fall under the
hypothesis of Proposition 6.22, with a set A which is unbounded and which contains the in-
mediate basin of attraction. Hence we could conclude that the residual Julia set is nonempty.
However, it is simpler and more profitable to closely study the functions to conclude some-
thing stronger, namely that most of the hairs in the Julia set are buried. More precisely we
prove the following.
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Figure 6: Dynamical plane of Eλ(z) = λ exp(z), where λ is chosen so that there is an attracting
periodic orbit of period 3.

Proposition 6.28. Let λ ∈ C such that Eλ(z) = λez has an attracting periodic orbit. Then
all hairs, except possibly a countable number of them, are buried components.

To prove this proposition we will associate to the parameter λ an infinite integer sequence
called the kneading sequence K(λ) = 0s1 . . . sn−1, and likewise to each point z in the Julia
set another infinite sequence called the itinerary of z and denoted by K(z). After seeing the
precise construction, it will be clear that all points on a hair must share the same itinerary.

With this notation, Proposition 6.28 is a consequence of the following.

Proposition 6.29. Let λ ∈ C such that Eλ(z) = λez has an attracting periodic orbit of period
n. Supose K(λ) =: K = 0k1 . . . kn−1 is the kneading sequence. Then, all hairs in the Julia
set are buried components except those with itinerary T K u1K u2K u3K . . . , where T is any
finite sequence, and u1, u2, . . . are arbitrary entries. Hence only countably many hairs can
have points which are not buried.

The rest of this section is dedicated to prove Proposition 6.29. We start by sketching the
construction that allows us to define the kneading sequence of a map. We refer the reader to
[DFJ] and [BhDe] for all missing details.

6.3.1 The fingers and the glove

Let z0, z1 = Eλ(z0), . . . zn−1 = Eλ(zn−2) be the points of the attracting periodic orbit.

Let A∗ denote the immediate basin of attraction of the periodic orbit and, for 0 ≤ i ≤ n−1,
define A∗(zi) to be the connected component of A∗ which contains zi. We name the points
in the orbit so that the asymptotic value 0 belongs to A∗(z0).

We now construct geometrically and define what we call fingers. For ν ∈ R, let Hν = {z |
Re(z) > ν}.

Definition. An unbounded simply connected F ∈ C is called a finger of width c if

18



a) F is bounded by a single simple curve γ ⊂ C.

b) There exists ν such that F ∩Hν is simply connected, extends to infinity, and satisfies

F ∩Hν ⊂

{
z | Im(z) ∈

[
a−

d

2
, a+

d

2

]}
for some a ∈ R,

and c is the infimum value for d.

Observe that the preimage of any finger which does not contain 0 consists of infinitely
many fingers of width smaller than 2π which are 2πi–translates of each other.

We begin the construction by choosing B to be a topological disk in A∗(z0) that contains
both 0 and z0, and having the property that B is mapped strictly inside itself under En

λ .
This set can be defined precisely using linearizing coordinates.

We now take successive preimages of the disk B (see Figure 7). More precisely, let Bn−1

be the open set in C which is mapped to B. Note that, since 0 ∈ B, it follows that Bn−1 has
a single connected component which contains a left half plane, and whose image under Eλ

wraps infinitely many times over B \ {0}. Note that the point zn−1 belongs to the set Bn−1,
which lies inside A∗(zn−1).

We now consider the preimage of Bn−1. It is easy to check (by looking at the image
of vertical lines with increasing real part) that this preimage consists of infinitely many
disjoint fingers of width less than 2π which are 2πi-translates of each other. We define
Bn−2 ⊂ A∗(zn−2) to be the connected component for which zn−2 ∈ Bn−2. The map Eλ takes
Bn−2 conformally onto Bn−1.

Similarly, we define the sets Bn−3, . . . , B0, by setting Bi to be the connected component
of E−1

λ (Bi+1) that contains the point zi. These inverses are all well defined and the map
Eλ sends Bi conformally onto Bi+1. Each Bi belongs to the immediate basin A∗(zi). The
following characterization of the sets Bi, i = 0, . . . , n− 2 is proved in [BhDe].

Proposition 6.30. Let n > 2. For i = 0, . . . , n− 2, Bi is a finger of width ci < 2π.

It follows immediately from the above construction that the width of the finger Bn−2 that
is mapped by Eλ conformally onto Bn−1 is π, while the widths of the other fingers is 0. So
we will refer to Bn−2 as the big finger.

We proceed to the final step, by defining the set

G = {z ∈ C | Eλ(z) ∈ B0}

which we call the glove. We observe from the above construction that G is a connected set and
Bn−1 ⊂ G ⊂ A∗(zn−1). See Figure 7. Moreover, the complement of G consists of infinitely
many fingers, each of which are 2πi translates of each other. We index these infinitely many
connected components by Vj, j ∈ Z, so that 2πij ∈ Vj .

In fact, these Vj form a set of fundamental domains for the Julia set of Eλ in the following
sense:

• J(Eλ) ⊂
⋃

j∈Z
Vj .

• Eλ maps each Vj conformally onto C \B0, and so Eλ(Vj) ⊃ J(Eλ).
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Figure 7: Sketch of the sets B0 to Bn−1, G and Vj for j ∈ Z. Points in grey belong to the basin of
attraction of the periodic orbit.

Hence, for each j ∈ Z we have a well defined inverse branch of Eλ:

Lj = Lλ,j : C \B0 −→ Vj.

Note that B0 lies inside V0 since 0 ∈ B0. The other fingers B1, . . . , Bn−2 may lie inside any
of the fundamental domains Vj , depending on the value of λ. In particular, several Bi may
lie in the same Vj .

6.3.2 Kneading sequence and itineraries

We first introduce the kneading sequence given by the fundamental domains Vj . We define
the kneading sequence of λ to be

K(λ) = 0 k1 k2 k3 . . . kn−2 ∗

where Bj ⊂ Vkj
for all 1 ≤ j ≤ n− 2. We use ∗ for the position of the point zn−1, since this

point does not belong to any of the Vj .

We define the K–itinerary of any point z ∈ J(Eλ) to be

K(z) = k0 k1 k2 k3 . . .

where Ej
λ(z) ∈ Vkj

for any j ≥ 0.
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Notice that if γ is a hair of the Julia set, all points in γ must share the same itinerary,
since the curve cannot cross the boundaries of the fundamental domains Vj given that these
belong to the Fatou set.

One can then use these itineraries together with the kneading sequence to give a complete
description of the structure of the Julia set for Eλ in terms of symbolic dynamics. See [BhDe].

6.3.3 Conclusion of the proof of Proposition 6.29

We first observe that the connected components of the inmediate basin of attraction satisfy
that A ∗ (zi) ⊂ Vj where 0 ≤ i ≤ n − 2 and j is such that Bi ⊂ Vj . In other words,
the boundary of each of these components is entirely contained in one and only one of the
fundamental domains, more precisely the one whose index provides the corresponding entry
in the kneading sequence. The only exception is the connected component A ∗ (zn−1, whose
boundary intersects all the fundamentla domains Vj for all j ∈ Z. This means that any point
z in the boundary of the inmediate basin of attraction, say on the boundary of A ∗ (z0) for
example, must have an itinerary equal to

K(z) = k0 k1 k2 , . . . kn−2 ∗

where ∗ stands for any integer (which may be different at every period).

On the other hand, any connected component of the Fatou set will eventually map to the
inmediate basin of attraction. Hence any point on the boundary of the Fatou set must have
an itinerary which, after a finite number of entries, ends up exactly as K(z). This concludes
the proof of Proposition 6.29.
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