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Abstract

Transcranial direct current stimulation (tDCS) modulates spontaneous neuronal activity that can 

generate long-term neuroplastic changes. tDCS has been used in numerous therapeutic trials 

showing significant clinical effects especially when combined with other behavioral therapies. One 

area of intensive tDCS research is chronic pain. Since the initial tDCS trials for chronic pain 

treatment using current parameters of stimulation, more than 60 clinical trials have been published 

testing its effects in different pain syndromes. However, as the field moves in the direction of 

clinical application, several aspects need to be taken into consideration regarding tDCS 

effectiveness and parameters of stimulation. In this manuscript, we reviewed the evidence of tDCS 

effects for the treatment of chronic pain and critically analyzed the literature pertaining its safety, 

efficacy and how to optimize tDCS clinical effects in a therapeutic setting. We discuss 

optimization of tDCS effects in three different domains: (i) parameters of stimulation; (ii) 

combination therapies and (iii) subject selection. This article aims to provide insights for the 

development of future tDCS clinical trials.
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INTRODUCTION

The management of chronic pain syndromes is currently a challenging task, since only 

40-60% of patients experience a favorable outcome from pharmacological treatments1. 

Several studies have shown that the majority of currently available treatments including 

antidepressants, opioids and topical anesthetics have limited long-term effectiveness and are 

often associated with moderate, or in some cases, severe adverse effects2. One of the main 

reasons for the lack of efficacy is that current pharmacological approaches have limited or 

no effect on the mechanisms underlying chronic pain3–5. For instance, central sensitization 
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is one of the main neural mechanisms associated with chronic pain. Opioid analgesics may 

increase, rather than decrease, central sensitization6.

Over the years, alternative therapies such as acupuncture, mirror therapy and thermotherapy, 

as well as different procedures (i.e. Botox injections) have been performed in an attempt to 

decrease pain levels. However, behavioral therapies have limited effects on brain plasticity 

and treatment effectiveness in chronic pain patients. In this context, recent alternative 

approaches such as neuromodulation techniques have been used not only to alleviate pain 

but also to revert maladaptive plasticity and may also be used to enhance the effects of 

behavioral therapies6.

Transcranial Direct Current Stimulation (tDCS) has significantly advanced in the past 15 

years as a treatment tool7–9. TDCS has a theoretical advantage when compared with 

traditional chronic pain treatments since it directly affects central neural targets, thus having 

a potential stronger effect on central sensitization10. On the other hand, its effects may take 

longer to appear (i.e., only after 5-10 sessions, may subjects notice pain decrease)11.

The accepted neural mechanism of tDCS is the modulation of spontaneous neuronal firing: 

decrease or increase according to the polarity of stimulation that results in a change in neural 

excitability. Cathodal stimulation generally results in reduced excitability (“inhibition”) and 

anodal stimulation generally results in increased excitability of neurons in the area 

underneath the tDCS scalp electrodes12. The final effect of tDCS depends on parameters of 

stimulation and also ongoing neural activity12. Although all the mechanisms and neural 

circuits involved with tDCS are not completely known, tDCS of the motor cortex 

contralateral to the site of pain has been suggested to activate inhibitory systems, thus 

reducing overactivation of thalamic nuclei2,13. Several preliminary studies have 

demonstrated initial efficacy of tDCS for pain control7,8,14. The effects of tDCS on pain 

control are not limited to cortical structures only as its effects can be seen in the thalamus 

and also on descending pain control mechanisms15–17.

Due to its relatively low cost, ease of use and safety profile, tDCS may be a suitable 

alternative treatment for pain in different disorders18. However, as the field moves towards 

larger clinical trials, new questions arise regarding its effectiveness, safety, methodology and 

specifically optimal approaches. In this review, we will discuss the current knowledge of 

tDCS and possible mechanism to enhance its effects for the treatment of chronic pain.

tDCS CURRENT EVIDENCE

Efficacy

The efficacy of tDCS treating chronic pain, including neuropathic pain, has been 

investigated through multiple clinical trials in the past years8,9,11,19–28. In this manuscript, 

we have reviewed the meta-analyses published in the past 5 years through a PubMed (table 

1) database search that estimated the effect sizes of tDCS treatment for pain. Table 1 

presents summarized characteristics of the six included meta-analyses in chronic pain 

conditions, including the subgroups analysis of each one. We excluded two meta-analyses 
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due to methodological discrepancies related to mean effect size calculation29,30. Only the 

comparison between active and sham groups was included in this analysis.

These meta-analyses included from 231 to 16 clinical trials32 with moderate sample sizes (up 

to 572 subjects included in the largest meta-analysis); however, for the majority of studies, 

the sample sizes were relatively small including around 50 subjects31,33. Five meta-analyses 

presented statistically significant results, with the effect size ranging from 0.51 to 

1.924,31–34. From these, only one study evaluated the effects of tDCS in overall chronic pain, 

showing a small effect size and no significant diference35. Most of the studies estimated the 

effects of tDCS in specific chronic pain conditions such as fibromyalgia, migraine, low back 

pain and spinal cord injury pain. The majority of these meta-analyses have positive 

results24,31–34.

Another point to be considered is the large variability between the tDCS protocols, such as 

differences in electrode placement (M1 or DLPFC) and polarity of the stimulation (anodal or 

cathodal) that can contribute to the significant heterogeneity between the tDCS trials. Most 

of the tDCS studies used anodal stimulation over the primary motor cortex (M1 area:C3/C4 

– International 10-20 system for the electroencephalography (EEG) electrode) of the 

hemisphere contralateral to the location of pain (Table 1). Other montages have been tested 

including anodal/cathodal over the left dorsolateral pre-frontal cortex (DLPFC) for 

fibromyalgia and migraine33,34; and primary visual cortex (V1) for migraine36–38. In most of 

the studies, the cathode was placed over the contralateral supraorbital region.

The majority of clinical trials included in the meta-analyses used protocols with five and 10 

consecutive 20-min tDCS sessions (mostly with an intensity of 2mA with an electrode size 

of 35 cm2). The analgesic after-effect has been demonstrated to be cumulative and last for 

2-6 weeks8,19,39,40. Moreover, in the last 2 years, there was a clear trend towards increasing 

session duration and number of sessions (15 to 20) with a positive impact in pain 

improvement after the end of the treatment and in the follow up sessions11,23.

Even though positive results of tDCS on chronic pain have been shown in several studies, to 

date, clinical recommendation has only been given for two pain conditions: fibromyalgia 

[level B of evidence (probable efficacy)] and lower limb pain due to spinal cord injury [level 

C of evidence (possible efficacy)]23.

Therefore, the need for more clinical trials evaluating the effects of tDCS in chronic pain is 

evident. A better understanding of tDCS mechanism and the standardization of the main 

parameters are critical for achieving clinical meaningful effects on reducing pain levels. 

Besides that, so far most of the tDCS clinical trials are phase II studies which have typically 

small sample sizes and show small to moderate effects on pain levels. There is still a need 

for phase III pivotal clinical trials evaluating tDCS effects in a larger sample size; however, 

these studies should take into consideration all the parameters and different population 

aspects discussed here.
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Safety

The Food and Drug Administration (FDA), Health Canada and other international agencies 

consider tDCS as a non-significant-risk therapy, meaning it is a technique without 

reasonable expectation of any Serious Adverse Effect9,18. A recent review updated the 

evidence on the safety of tDCS based on the published serious adverse effects seen in human 

trials and brain damage seen in animal tests. There was no record of serious adverse effects 

related to repetitive tDCS across more than 32,000 sessions over 1000 subjects using a 

conventional tDCS protocol: 40 min, 4 milliamperes, 7.2 Coulombs. In animal models, the 

finding of brain injury by direct current stimulation occurred at intensities over an order of 

magnitude above that used in conventional tDCS trials18. In addition, there have been 

hundreds of more subjects treated with tDCS that were not analyzed due to unpublished 

pilot research41.

Overall, tDCS is a safe technique with adequate tolerability and acceptability. Safety has 

been tested in several research centers and in different protocols42–45 which stated that the 

adverse effects experienced by subjects were mild and slowly disappeared after the tDCS 

session ended. The latest systematic review published to date reinforced that the most 

common adverse effects are: mild tingling, burning sensation, itching, transient headaches 

and skin redness46. Recently, authors investigated whether adverse effects become more 

prevalent and dangerous with increased exposure to tDCS and a larger number of treated 

subjects. For this analysis, 158 studies (total 4130 participants) were reviewed, taking into 

consideration tDCS exposure (cumulative charge), revealing that there was no evidence in 

regards of tDCS as a trigger of maladaptive plasticity or a negative influence for cognitive 

function18,47–50. Moreover, higher cumulative currents were not related to serious adverse 

effects; however, both erythema and paresthesia were more likely to occur in active 

conditions as compared to sham46.

These findings reinforce the notion that tDCS is overall safe and well tolerable in healthy 

subjects and patients with different conditions18,47–50. In the specific case of chronic pain, 

several sessions of tDCS have proven to be safe in fibromyalgia, spinal cord injury, low back 

pain and phantom limb pain (PLP)7,35,43,51,52. Considering other diagnoses, this technique 

had no severe harm in epileptic subjects53,54, or in stroke patients regardless of those with 

large vessel occlusion55. Only transient adverse effects, such mild headache, have been 

reported. Nevertheless, additional monitoring is required when including these at-risk 

populations55. Pre-existing implants such as metal in the head or neck (e.g., plates or pins) 

as well as any electronic medical devices in the head or neck (e.g., cochlear implants, vagus 

nerve stimulator) remain as exclusion criteria for most of clinical trials using tDCS. 

However, theory based on modeling and limited clinical experience does not show an 

increase in serious adverse effects in participants with pre-existing implants18.

Regarding special populations such as children, tDCS treatment for several conditions 

including: cerebral palsy, encephalitis, and epilepsy have been investigated with no report of 

serious adverse effects18. Nevertheless, there is relatively limited tDCS experience across 

pediatric populations compared to adults, and extra caution is required. On the other hand, in 

elderly populations, tDCS proved to be safe and there were no reports of severe adverse 

events in over 40 studies with more than 600 older adults with a variety of diagnoses18.
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Notwithstanding, the safety of tDCS has been demonstrated primarily for short-term use. So 

far, to our knowledge, in chronic pain, Castillo-Saavedra et al. tested the longest protocol 

regimen with 30 consecutive sessions but with a small sample size11. This study also showed 

no evidence of moderate nor severe adverse effects. Further data collection is required to 

understand the effects of continued tDCS over longer periods56. So far, the chronic use of 

tDCS did not lead to any serious adverse event and some examples to the literature can 

confirm it: a) a patient with schizophrenia that received two 30 minutes sessions daily over a 

3-year period57; b) depressive patients that received multiple courses of tDCS (>100 

sessions in total)58 and c) the longest acute treatment trial to date that delivered about six 

weeks of tDCS, with up to 30 sessions.59,60.

In summary, the increasing amount of literature on tDCS reinforces its safety and the 

unlikelihood of it causing serious adverse effects. However, it is important to keep 

investigating and collecting data on this matter in order to better understand tDCS effects 

over long term brain plasticity and the manipulation of physical properties of neural tissue.

PERSPECTIVES IN REGARDS OF HOW TO ENHANCE tDCS EFFECTS

As previously discussed, although there is increasing evidence towards the effectiveness of 

tDCS and preliminary small sample-size phase 2 studies showing positive results for the 

treatment of different types of neuropathic pain23, there is a lack of confirmatory trials and 

the neurological mechanisms involved with its effects are not yet fully ununderstood. 

Therefore, the definition and understanding of factors that might enhance tDCS effects and 

how to reach optimum parameters are critical to design pivotal studies.

Combination therapies

Recent studies have been using tDCS as an augmentative type of treatment combining this 

technique with other pharmacological or behavioral therapies aiming to increase its 

individual effects; these combinations have been showing promising results. In depression, 

noninvasive brain stimulation combined with pharmacotherapy has been proven safe and has 

shown that the combination is more effective in reducing depression symptoms than either 

of the therapies alone61,62. Regarding chronic pain, recent research has been using tDCS as 

an augmentative type of therapy combined with other techniques aiming to enhance its effect 

size. To review the current evidence of combining tDCS with other therapies, we 

systematically searched on PubMed all pain studies that combine tDCS with other therapies 

(behavioral and pharmacological) in the last 5 years, as to discuss more recent methods of 

combination. In total, 13 clinical trials and six clinical protocols were identified in several 

pain conditions and are summarized in Table 2.

A total of 592 subjects were randomized in thirteen clinical trials involving different chronic 

pain conditions; 4 in low back pain26,27,63,64; 2 in fibromyalgia65,66, 2 in Myofascial Pain 

Syndrome67,68, 1 in chronic visceral pain69, 1 in chronic regional pain (CRPS)70, 1 in spinal 

cord injury (SCI)71, 1 in general neuropathic pain subjects72 and 4 ongoing studies.73–77 

Most of the studies combined tDCS with a behavioral therapy such as cognitive behavioral 

training, exercise, visual illusion or with other types of stimulation such as peripheral 

electrical stimulation (PES) or transcranial pulsed current stimulation (tPCS). Most of the 
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studies26,27,65,66,68 showed that the combined group had increased pain reduction effects 

compared with the control or individual therapies alone.

Mendonça et al. obtained positive and larger effects on pain relief, quality of life, depression 

and anxiety65 by combining tDCS with aerobic exercise for the treatment of fibromyalgia 

when compared with either intervention alone. Using the same rational, 2 other research 

groups76,77 are conducting a clinical trials combining tDCS with exercise to treat 

osteoarthritis pain. In addition, Pinto et al. have been combing tDCS with mirror therapy for 

the management of phantom limb pain75. Moreover, for chronic low back pain (CLBP) the 

combination between tDCS and PES improved pain, of cortical organization and 

sensitization, more effectively than when applied alone or compared with the control26,27,63.

In addition, Kumru and Soler et al. demonstrated that the combination between tDCS and 

visual illusion can effectively induce significant changes in contact heat-evoked potential 

(CHEPS), evoked pain and heat pain thresholds71. Previously, Soler also demonstrated long 

lasting effects of tDCS combined with VI in pain relief in patients with spinal cord injury, 

given that 12 weeks after the end of the intervention the group that received the combined 

intervention still presented a significant improvement on overall pain intensity, while in the 

other three groups, no improvement was reported78.

In this context, mirror therapy and visual feedback seem to be optimal behavioral 

interventions to be combined with tDCS over M1 since several studies have shown the 

activation of sensorimotor cortex followed by these interventions79. Besides that, previous 

research indicates that mirror illusion (MI) increases cortical excitability as well80. This is 

an important aspect to be considered while selecting the most appropriate combination 

therapy, since it is believed that the neurophysiological mechanisms underlying the isolated 

effects of each treatment tool should point towards similar directions or pathways. Hence, 

the use of tDCS to enhance the effects of mirror therapy may be a promising treatment for 

chronic pain disorders such as SCI pain and phantom limb pain81.

In addition, tDCS over the dorsolateral prefrontal cortex (DLPFC) has been known to 

enhance cognitive function in both healthy and clinical populations82. This can have 

implications for chronic pain treatment, as this brain area is related to emotional processing 

and pain, and it is intimately responsible for different cognitive processes such as working 

memory82. In this case, the combined task should recruit the same area to optimize the 

effects of TDCS. For instance, Powers and collaborators analyzed the effects of tDCS 

combined with brief cognitive intervention in thermal pain tolerance in healthy controls83. 

The group combining cathodal tDCS (left DLPFC) and brief cognitive intervention showed 

the largest analgesic effect of all the combinations. In this context, Silva et al. used the 

Go/No-go Task, which is known for requiring attention and the inhibition of a response 

according to certain conditions, to modulate distinct attentional networks in fibromyalgia 

patients84.

Likewise, tDCS has also been combined with pharmacotherapy. However, in contrary to its 

use with behavioral therapies, Silva et al. obtained controversial results by using Melatonin 

combined with tDCS on acute induced pain treatment72. In their study, although melatonin 
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significantly reduced pain, the association with tDCS did not show any additional 

modulatory effects. However, positive results were also described in children with cerebral 

palsy. Anodal tDCS over M1 combined with treadmill training led to improvements in static 

balance and functional performance85.

In spite of the positive results shown in therapy combination, an important aspect that is still 

not completely elucidated is which therapy primes which. Either the medications or 

behavioral therapies can be the ones to prime the effects of tDCS on neuroplasticity and 

excitability or, in counterpart, the use of noninvasive brain stimulation may the reason why 

the effects of other interventions (i.e. medication) increase. There is also the possibility of a 

mutually enhancing effect, in which both interventions would have a complimentary effect 

on each other. This is important to determine the timing between both interventions, which 

is sometimes not completely well established. Cabral et al., for instance, investigated 

whether tDCS should be applied before, during or after motor training86. Their data 

suggested that noninvasive brain stimulation should be applied before, but not after nor 

during a motor training task to optimize motor learning processes. Hence, the need for more 

information regarding the relationship between noninvasive brain stimulation, additional 

therapies and brain pathways is evident.

Understanding tDCS dosage in pain studies

Another strategy used to increase the effectiveness of tDCS is to increase the dosage of the 

stimulation as to increase its magnitude and duration of after-effects12. It is still not fully 

understood which parameters define the dosage to change magnitude and duration of tDCS 

studies. We discuss a few parameters that may have such association such as: (1) stimulation 

intensity (current dosage- amperes); (2) stimulation duration (from 10 up to 30 min) (3) 

number of sessions (i.e., number of sessions per week) and (4) electrode montage (plus 

current density)87.

The potential of tDCS to modify brain excitability parameters has been demonstrated with 

currents as low as 0.28 A/m2 88,89. Currently most of the tDCS protocols apply 1- 2 mA for 

a period of 20 to 40 min and have been empirically established as safe over single and 

multiple sessions. However, an approach to boost tDCS effects is to increase stimulation 

intensity and current densities, which in theory, leads to a deeper reach of the electrical field 

and consequently, modulates a different population of neurons.

At the same time, animal studies showed that higher intensity results in enhanced brain 

modulatory effects without increasing the risk of tissue damage90; however, few studies in 

this regard have been completed in humans. Even though, safety studies in animals provide 

evidence towards maximal current intensities (threshold in humans, neuroplasticity has non-

linear features that need to be considered); therefore, a systematic exploration of the effects 

of intensity escalation is required91,92. Chhatbar and collaborators explored the effects of 

tDCS dose escalation (1 to 4 mA) showing that a single session of tDCS up to 4 mA for a 

duration of 30 minutes is safe and has adequate tolerability among ischemic stroke 

subjects93. This is the first evidence demonstrating the safety and tolerability profiles of 

increased intensity of tDCS stimulation. However, important aspects need to be taken in 

consideration, including the brain state-dependency from specific conditions.
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To date, there are no studies investigating the effects of intensity escalation in neuropathic 

pain patients, but it is known that at greater intensities, tDCS can cause discomfort and pain 

and may not necessarily lead to increased clinical effects.

Therefore, another effective approach would be to increase the tDCS session duration 

instead of increasing the intensity27,94,95. A growing body of literature has investigated the 

effects of short (a few minutes) and long durations of tDCS application of either anodal 

and/or cathodal tDCS. Short tDCS duration (up to 5 min) resulted in brain excitability 

modulation only during the application period; in addition, the tDCS after-effects lasted for a 

short period (max 5 min). On the other hand, longer sessions (above 9 min −13 min) resulted 

in prolonged after-effects in brain excitability96. However, in healthy subjects, it has been 

shown that longer sessions may induce the opposite effect: a study by Monte e Silva and 

collaborators showed that 26 min of anodal tDCS (1 mA; M1) results in reduced motor 

cortex excitability, while shorter durations such as 13 min resulted in the expected 

enhancement in motor cortex excitability97. Controversially, different results are observed 

for cathodal stimulation (1mA; M1); although 9 min of cathodal stimulation reduced motor 

cortex excitability, 18 min resulted in the prolongation of the after-effects98. However, this 

effect may be different and needs to be tested in subjects with chronic pain.

Longer-lasting effects are crucial in the attempt of increasing clinical effectiveness; however, 

only few studies exceeded the usual 20 min of tDCS application duration. Two studies 

testing 30 minutes of tDCS stimulation for the treatment of chronic pain were performed by 

(1) Boggio and collaborators94 and (2) Schabrun and collaborators27. In both studies, anodal 

tDCS was applied over the motor cortex and combined with peripheral stimulation. The 

combined group showed a decrease in pain perception superior to the effects of tDCS alone. 

However, there was no comparison of effectiveness within shorter stimulation durations such 

as the usual 20 min protocol.

Recently, Esmaeilpour and collaborators99 evaluated tDCS dose-response in different 

perspectives including computational modeling, human and animal neurophysiology, 

neuroimaging and behavioral/clinical measures. Overall, the results indicate that the 

response to the tDCS treatments is not strictly a linear relationship with increasing tDCS 

intensity (even in the limited range of 1–2 mA). Moreover, the nature of tDCS changes in 

brain excitability are deeply influenced by variations in brain state. Therefore, there is still a 

need for systematic evaluation of the underlying mechanism by which stimulation duration 

can be a tool to improve tDCS therapeutic effects for the treatment of chronic pain.

Moreover, factors other than stimulation duration such as the number and frequency of 

stimulation sessions can also change the duration of the after-effects; consequently, altering 

the magnitude of tDCS effectiveness. To date, most clinical tDCS studies tested five or more 

consecutive days of tDCS (once a day)11,23,100 since multiple sessions are necessary to 

achieve long lasting modulation of behavioral effects. As an example, a single session of 

anodal tDCS (2mA, 15 min) over the primary motor cortex induces a selective short-lasting 

decrease of phantom limb pain in amputees101; however, five consecutive days of anodal 

tDCS (2mA, 15 min, motor cortex) were associated with stronger cumulative effects and 
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resulted in greater long-lasting relief, up to two months, of both phantom-limb pain and 

stump pain28.

The optimal number of sessions and repetition rate to promote and enhance tDCS-induced 

plasticity effects remains under investigation; recently, authors are focused on more 

accurately understanding the dosing-calculation required to induce a clinically significant 

effect. In a recent study, Castillo-Saavedra and collaborators showed that 15 sessions of high 

definition-tDCS (2 mA; 20 min) is the median number of sessions required to induce a 

clinically significant decrease of at least 50 % of pain in fibromyalgia patients11. Other 

studies with fewer sessions have shown that conventional tDCS applied over the M1 region 

is associated with pain relief; however, those effects are still not clinically relevant. Further 

investigation needs to be performed to understand the optimal number of sessions necessary 

to induce the largest and longest pain relief, as well as the minimum number of sessions 

required in order to induce clinically significant effects.

Another important point to increase the duration of the effects of tDCS stimulation is the 

targeted cortical areas. As discussed in the previous section, brain excitability states vary 

from different brain areas. For example, working memory studies showed that changing the 

electrode positioning from DLPFC to M1 abolishes the tDCS effects82. In the case of pain, 

the first report comparing tDCS over the primary motor cortex with DLPFC in fibromyalgia 

showed that anodal tDCS over M1 was superior to the stimulation in the DLPFC in reducing 

pain scores8.

Several studies showed the increased M1 excitability assessed by the increased motor 

evoked potential (MEP) amplitude after the application of anodal tDCS96,102–104 and how 

this M1 excitability increase correlates with pain modulation. However, some other areas of 

the brain, such as the DLPFC, can be related with additional cognitive aspects of pain105. 

Besides that, recent studies have shown increased M1 corticospinal changes after anodal 

tDCS over the DLPFC106. Moreover, anatomical studies suggested a functional connection 

between the DLPCF and M1, that could explain the increased levels of M1 excitability after 

DLPFC stimulation107–110.

The mechanism underlying M1 excitability changes after DLPFC stimulation are still poorly 

understood; however, during tDCS, the area under stimulation can induce functional and 

connectivity changes in the other areas of the brain. Since tDCS physiological changes can 

modulate local and distant areas of the brain, there is a major importance on the selection of 

the area that will be stimulated. Despite the latest increase of tDCS research on this topic, 

there is still a need for studies that systematically assess the optimum doses required to reach 

clinically significant results, especially in chronic pain.

Subject selection

Our knowledge of enhancing tDCS effects is largely based on limited data; however, recent 

literature shows the increase of tDCS effects by selecting subjects that can respond better to 

this type of treatment. One of the most frequent limitations in noninvasive brain stimulation 

(NIBS) studies is sample heterogeneity, since for most of the studies the severity of the 

condition can vary significantly, from drug naïve to refractory patients. In the case of pain, 
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this heterogeneity can be even higher since pain is a self-assessed condition, with large 

differences in pain thresholds and very subjective upon measurement111.

A growing body of literature has been dividing subjects as responders and non-responders to 

NIBS techniques and has recently been trying to identify response predictors to it. A 

previous study from Nurmiko and collaborators showed that approximately 40 % of the 

chronic pain patients evaluated responded to high frequency rTMS stimulation achieving at 

least 20 % of pain reduction112. However, the underlying reason for this type of response 

remains unknown.

Recent evidence suggests that in chronic pain patients, there is an imbalance between 

excitatory and inhibitory pathways associated with pain response. As an example, 

fibromyalgia (FM) patients demonstrated a lower conditioned pain modulation (CPM) 

activity since the rate of FM patients that report pain facilitation during CPM assessments is 

significantly increased compared with controls (41.7% vs 21.2%)113. In this case, there is 

strong evidence towards an impaired endogenous pain regulatory system in some of the 

patients with FM. Considering that the CPM efficacy has already been related to pain 

development 6 months after surgery114, and that tDCS over the motor cortex enhances CPM 

responses115, it could be a suitable marker for response prediction or could be used as 

selection technique for chronic pain subjects. Consequently, following this theory, the 

subjects with the highest CPM response (more impairment) should be the ones with higher 

responses to tDCS11.

On the other hand, there is also evidence of central nervous system (CNS) alterations in 

neuropathic pain patients; these changes are associated with a lack of inhibitory control 

activity, such as decreased short intracortical inhibition (SICI) and facilitation (SICF) and 

increased resting motor threshold113. This inhibitory deficit is associated with altered 

thalamic anatomy and activity frequently observed in chronic pain patients116, resulting in 

abnormal thalamocortical circuits, which explains the association between central pain and 

thalamic dysrhythmia117–119.

In this regard, selecting patients with more pronounced alteration in cortical networks 

involved with pain can be a good strategy to enhance the effects of NIBS treatment120. 

Likewise, changes in motor cortex mapping showed by functional magnetic resonance 

imaging (fMRI) in amputees were associated with presence and level of phantom limb 

pain121,122, and the induction of cortical reorganization by tDCS showed pre-clinical 

significance for the treatment of this chronic pain. In the same way, EEG changes were 

correlated with pain levels in fibromyalgia patients123. These alterations in 

neurophysiological outcomes observed in several chronic pain conditions can be used as a 

tool to better understand the tDCS treatment and select patients that might respond better.

Consequently, selecting patients based on neurophysiological markers - such as TMS 

assessments of SICI and SICF, EEG and/or MRI- can be an advantage towards the future 

increase in the effects of tDCS for the treatment of chronic pain. A more accurate 

understanding of neurophysiological markers for pain onset and response can lead to a 

transformation in the way pain is treated and diagnosed. An approach based on 
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neurophysiological changes that takes into consideration brain processes and circuits leads 

to a better target for treatment; this concept is already being applied in mental disorders by 

the development of the Research Domain Criteria (RDoC) framework.

Moreover, the level of pain could also be a target to select better responders. As an example, 

in the case of low back pain (LBP), tDCS combined with peripheral stimulation reduced 

pain levels and improved high sensory function. However, subjects with more pronounced 

primary and secondary hyperalgesia responded better to the treatment26,27.

Similarly, cognitive processes of pain have been used as targets to select and treat patients 

with chronic pain. In chronic pain, pain catastrophizing is related to the perseverative 

intrusive thoughts of pain and evaluation of the pain stimuli as threatening124,125 leading to 

the enhancement of painful stimuli. High levels of pain catastrophizing are associated with 

maladaptive cognitive changes126–131; for instance in phantom limb pain patients, pain 

catastrophizing was related to higher stump limb pain and phantom limb pain 

averages132,133. Regarding fibromyalgia, there is a significant association between pain 

catastrophizing and increased fMRI activity in brain areas related to anticipation of pain 

(medial frontal cortex, cerebellum), attention to pain (dorsal ACC, dorsolateral prefrontal 

cortex), emotional aspects of pain (claustrum, closely connected to amygdala) and motor 

control134–136. In this regard, selecting subjects with chronic pain and pain catastrophizing 

can also be used as an alternative to enhance tDCS effects of overall pain relief. This 

condition is associated with several brain excitability and connectivity impairments that can 

respond better to excitability modulation through tDCS.

Therefore, future studies should target the inhibitory deficits underlying pain maintenance 

mechanisms since reestablishing/resolving the deficits in the regulatory pain system might 

lead to decrease in pain levels.

Medication interaction

An increased number of studies have tested tDCS to modulate plasticity and cortical 

networks aiming to decrease chronic pain. However, tDCS effects on neuroplasticity might 

seem small compared to the big inter-individual variability. In this review, we discussed 

several options in regards of how to overcome some of these limitations and increase tDCS 

effects.

Furthermore, a substantial issue that needs to be taken into consideration to better 

understand tDCS mechanism and improve its efficacy is the interaction between this 

stimulation technique and pharmacological treatments. In this regard, studies have been 

showing the acute effects of neurotransmitters enhancing or blocking the tDCS effects on the 

brain137,138. Gamma-aminobutyric acid (GABA)139, glutamate and other neurotransmitters 

such as serotonin140, dopamine141142, norepinephrine/epinephrine143, amphetamine144, 

acetylcholine145, nicotine146–148 and ion channels149,150can modulate excitability and 

consequently alter the tDCS effects and after-effects.

However, most tDCS studies do not discuss the interaction between medication use and 

effectiveness. In chronic pain clinical practice, most of the patients will be under a long-term 
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pain medication regimen and this can affect the effects of tDCS stimulation, which can be a 

problem for the study data interpretation151. Therefore, medication interaction and 

medication screen usage should be systematically assessed in tDCS studies since it can 

cause excitability enhancement or reduction and change or suppress tDCS modulatory 

effects.

CONCLUSION

This manuscript reviewed the main aspects of tDCS in chronic pain. TDCS has become a 

potential candidate for the treatment of chronic pain; however, there is a lack of 

confirmatory pivotal clinical trials and most pilot-feasibility trials show a small to moderate 

effect size reducing pain. Besides that, the results of these trials are heterogeneous due to 

large variability within protocols and parameters as well as between chronic pain subjects. 

Further work needs to be done to develop optimized protocols to increase its effects sizes. 

Recent literature describes the advantages of combining tDCS with behavioral therapies 

such as exercise and mirror therapy. This combination strategy offers a unique perspective 

combining a top-down strategy (tDCS) with a bottom up intervention (for instance, mirror 

therapy). The initial clinical trials testing combined interventions as compared to single 

interventions show positive results. Besides that, the clinical effects of tDCS in chronic pain 

varies significantly depending on the specific parameters of stimulation, including polarity, 

size and position of electrodes and number of sessions. In addition, specific population 

characteristics, such as presence or absence of neurophysiological markers can be a good 

strategy to enhance tDCS effects and identify better responders. Therefore, choosing 

optimum doses, patients and the best combination therapies is required to reach clinically 

significant results, especially in chronic pain. To date, it is still not possible to conclude 

whether tDCS is associated with a meaningful clinical effect for the treatment of chronic 

pain. Hence, further studies should explore these mechanisms and better define the optimal 

protocols to enhance tDCS’ effects.
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