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Skill acquisition requires distributed learning both within (online) and across (offline)

days to consolidate experiences into newly learned abilities. In particular, piloting

an aircraft requires skills developed from extensive training and practice. Here, we

tested the hypothesis that transcranial direct current stimulation (tDCS) can modulate

neuronal function to improve skill learning and performance during flight simulator

training of aircraft landing procedures. Thirty-two right-handed participants consented

to participate in four consecutive daily sessions of flight simulation training and

received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal

cortex (DLPFC) or left motor cortex (M1) in a randomized, double-blind experiment.

Continuous electroencephalography (EEG) and functional near infrared spectroscopy

(fNIRS) were collected during flight simulation, n-back working memory, and resting-state

assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in

flight and n-back working memory training, confirming tDCS-related modulation of brain

processes involved in executive function. This modulation corresponded to a significantly

different online and offline learning rates for working memory accuracy and decreased

inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation

group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks

and tDCS to the right DLPFC increased midline frontal theta-band power during n-back

and flight tasks. These results demonstrate a modulation of group variance in skill

acquisition through an increasing in learned skill consistency in cognitive and real-world

tasks with tDCS. Further, tDCS performance improvements corresponded to changes

in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices,

providing a stronger link between modulated neuronal function and behavior.
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INTRODUCTION

There has recently been a rapid increase in the number of
published studies in the field of neuromodulation due to the
availability of non-invasive stimulation technologies such as
transcranial direct current stimulation (tDCS). New tools for
training enhancement are emerging which target specific, basic
cognitive functions, with the goal of increasing performance in
high-level, real-world tasks, such as pilot training. For example,
Clark et al. (2012) demonstrated enhanced concealed image
detection training with tDCS. Others have observed enhanced
skill learning with tDCS in spatial and verbal working memories
(Martin et al., 2014; Richmond et al., 2014), language acquisition
(Flöel et al., 2008) and motor skills development (Banissy and
Muggleton, 2013; Reis et al., 2015; Rumpf et al., 2015). For a
review of tDCS enhancements (see Coffman et al., 2014).

Computerized cognitive training methods have been only
moderately successful in enhancing performance (Ball et al.,
2002). However, computerized procedural training (flight
simulation) has been an important part of airplane pilot training
since the mid 1970’s. Commercial and military pilot training
programs now utilize flight simulation extensively for training
basic flight and combat skills (Bell and Waag, 1998; Rosenkopf
and Tushman, 1998). Research on the effectiveness of flight
simulator training has historically been limited by the high
cost of full flight simulators, and occurs in the context of
ongoing pilot training programs, rather than unbiased third-
party research programs (Hays et al., 1992; Rosenkopf and
Tushman, 1998). The field has recently overcome this limitation
by the commercialization of relatively low-cost flight simulator
devices available for purchase and use in standard research
environments. These personal computer-based flight simulators
are also used in various contexts for flight training (Koonce and
Bramble, 1998), lending ecological validity to simulator studies.

Piloting an airplane is a demanding task requiring skillful
execution of learned procedures. This has been observed as a
correlation between flight simulator performance and measures
of reasoning and working memory in general aviation pilots
(Causse et al., 2011), and a concurrent decline in working
memory and flight errors (Dismukes, 2008; Engle, 2010).
Furthermore, neurophysiological markers of both short-term
(e.g., fatigue) and long-term (e.g., expertise) cognitive functions
correlate with behavioral performance (Ayaz et al., 2013;
Borghini et al., 2014). Pilot skill development requires a synthesis
of multiple cognitive faculties, many of which are enhanced
by tDCS and include: dexterity (Boggio et al., 2006), mental
arithmetic (Hauser et al., 2013), cognitive flexibility (Chrysikou
et al., 2013), visuo-spatial reasoning (Heimrath et al., 2012),
and working memory (Gill and Hamilton, 2014)—an important
predictor of flight situation awareness in novices (Sohn and
Doane, 2004).

Working memory is linked primarily with brain activity in
the dorsolateral prefrontal cortex (DLPFC) (Courtney et al.,
1996; Braver et al., 1997; Curtis and D’Esposito, 2003), an area
often targeted by non-invasive brain stimulation in cognitive
research. Most researchers agree that tDCS of DLPFC has
substantial effects on working memory (for a review see Coffman

et al., 2014); however, Horvath et al. (2015) recently reported
disconfirming evidence for this hypothesis in a meta-analysis of
selected studies investigating the cognitive effects of tDCS. In
this meta-analysis, tDCS did not have a significant effect on any
cognitive measure. However, their approach may be confounded
by calculation of effect sizes based only on post-stimulation
scores, rather than accounting for pre-stimulation differences
between groups. Chhatbar and Feng (2015) illustrated this issue
in their response paper, where they show substantial effects
of tDCS when calculating effect sizes from pre-post difference
scores rather than post-stimulation scores alone.

The focality of stimulation is also a critical component of
tDCS-driven behavioral changes, and this aspect of experimental
design is difficult to capture in meta-study. Large pad-type
electrodes used in previous studies have comparatively poor
focality and target current intensity as compared to the
multiple electrode montage approach (Dmochowski et al., 2011).
Finite elements modeling work with MRI-derived brain models
performed by various groups demonstrate optimization of
currents to the brain that improve focality and intensity to
areas of interest by 80 and 98%, respectively (Bikson et al.,
2009; Datta et al., 2011, 2012; Dmochowski et al., 2011; Faria
et al., 2011; Edwards et al., 2013). The importance of this
modeling work is underscored by clinical investigations that
show differences in targeting and stimulation intensity results in
marked differences in behavioral output and stimulation efficacy
(Valle et al., 2009; Moliadze et al., 2010; Mendonca et al., 2011).
Finally, Santarnecchi et al. (2015) have suggested that the impact
of tDCS on target brain structures is dependent on not only the
placement of electrodes and current density, but also the current
state of activity in those brain areas. This crucial point is often
overlooked in tDCS research, and investigators should carefully
consider the cognitive task performed during stimulation to
maximize the desired effect.

Despite recent controversy over the effects of tDCS on
working memory, tDCS applied to specific brain regions has
been reported to improve behavioral performance in a diverse
array of cognitive categories: attention (Coffman et al., 2014),
reaction time (Teo et al., 2011), object recognition (Clark et al.,
2012), memory (Manenti et al., 2013), creativity (Chrysikou
et al., 2013), and motor skill acquisition (Nitsche et al., 2003). In
addition to acute improvement of various performancemeasures,
some laboratories have also observed persistence of cognitive
enhancement even after the electrical current is removed
(Snowball et al., 2013; Lefebvre et al., 2014). These results indicate
that, in some cases, stimulation need only be applied initially or
periodically to achieve continual performance gains. Although
the modulation of procedural learning through enhancement of
working memory has remained an open question in the field,
non-invasive brain stimulation methods are potential vehicles to
enhance learning and performance and nootropic benefits for
commercial and military applications (Clark et al., 2012; Phillips
and Ziegler, 2014).

The application of neuroimaging techniques, such
as functional near-infrared spectroscopy (fNIRS) and
electroencephalography (EEG), allow the precisemeasurement of
spatial and dynamic functional brain activity. The development
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of these non-invasive, low overhead and high-resolution tools
have given investigators the ability to observe the activity of the
human brain in vivo with an unprecedented degree of control
(Been et al., 2007; McKendrick et al., 2015).

EEG results confirm tDCS-related modulation of brain
processes involved in working memory, as evidenced by
increased midline frontal theta-band oscillatory brain activity
(MFT) during a working memory task (Miller et al., 2015).
MFT is most commonly measured during maintenance of
information in working memory, and reflects theta coupling
between the DLPFC and anterior cingulate cortex (Sauseng
et al., 2004). MFT is positively correlated with attentional
demands during mental calculation (Ishii et al., 2014) and
workingmemory load (Jensen and Tesche, 2002), and theta-band
synchrony between frontal and parietal areas is directly related
to individual working memory capacity (Palva et al., 2010).
Further evidence supporting the functional relationship comes
from studies temporarily disrupting the DLPFCwith transcranial
magnetic stimulation—leading to performance decrements in
working memory tasks (Grafman et al., 1994; Pascual-Leone and
Hallett, 1994). Other frequency bands have also been implicated
in working memory and attentional control. For example,
tonic increases (and phasic decreases) in parietal alpha-band
power reflects greater perceptual involvement for tasks requiring
attention to the environment (Klimesch, 1999), suggesting a
role of alpha in perception. Furthermore, Sauseng et al. (2009)
showed that alpha band activity over sensorimotor areas indicates
greater excitability in that region, as measured with transcranial
magnetic stimulation. Therefore, stimulation of either M1 or
DLPFC could increase tonic alpha band activity in this study
compared to sham by enhancing sensorimotor excitability and/or
perceptual involvement.

Other imaging studies, employing fNIRS have found
significant correlations between cognitive performance
and blood oxygenation in the DLPFC (Yanagisawa et al.,
2010; McKendrick et al., 2014). fNIRS is an non-invasive
imaging technique that measures the relative concentrations of
oxygenated (Hboxy) and deoxygenated (Hbdeoxy) hemoglobin
to infer neuronal activity. fNIRS relies on differences in the near
infrared absorption spectra of oxygenated and deoxygenated
hemoglobin along with a neuro-vascular hemodynamic response
function to relate relative chances in localized cerebral blood
flow to neuronal activity (Villringer et al., 1993).

Hbdeoxy and total hemoglobin concentrations (Hbtot) are
linked to levels of cognitive workload in the anterior prefrontal
cortex (PFC) (Ayaz et al., 2012). For example, using a
Scarborough adaptation of the Tower of London task, Ruocco
et al. (2014) found that difficult problems were associated
with greater Hboxy concentrations in the DLPFC relative to a
baseline condition. The study also found that participants who
scored higher in deliberation, or careful thinking, before acting,
showed greater activation in this same region, regardless of task
difficulty. The magnitude of Hbtot and Hbdeoxy concentration
changes in specific brain regions has been used as a proxy
for mental workload and expertise. Hbtot levels increase in
the PFC during difficult trials in the N-back task, suggesting
greater recruitment of neural resources (Herff et al., 2013). In

addition, during a complex flight task, Hbtot levels decrease
in the PFC over a 9-day learning period with progression
from beginner to intermediate and finally advanced levels of
performance (Ayaz et al., 2012). Furthermore, blood oxygenation
level-dependent (BOLD) responses, which correlate with Hboxy,
Hbdeoxy and Hbtot concentrations (Cui et al., 2011), decrease
with improvements in response time, suggesting more efficient
activation of PFC (Holland et al., 2011). Decreases in hemoglobin
concentrations exist in the motor system (Hbdeoxy—Wolf et al.,
2007), and in prefrontal cortex where they were correlated with
reward value (Hboxy and Hbtot—DiStasio and Francis, 2013).

Although reported effects of primary motor cortex (M1)
stimulation on skill acquisition and procedural learning have
been promising, these methods have primarily been investigated
in standard psychological and motor tasks including the serial
reaction time task (Nitsche et al., 2003), the tower of London
task (Dockery et al., 2009); and sequential visual isometric pinch
task (Reis et al., 2009). Increasing evidence for the application of
tDCS to enhance real-world skills has been reported for vehicle
control (Beeli et al., 2008; Sakai et al., 2014), golf (Zhu et al.,
2015), threat detection in image analysis (Falcone et al., 2012),
air traffic control (Nelson et al., 2014). tDCS has also decreased
resumption lag after interruption (Blumberg et al., 2014),
and maintained vigilance (McIntire et al., 2014) in real-world
tasks.

Critical for the acquisition of these real-work skills are both
online and offline learning. Online learning is the change in
behavioral performance across trials within an experimental
session and is analogous to encoding (Reis et al., 2009). Offline
learning is the change in performance, between sequential
experimental sessions, from the last trial of the n-1th session to
the first trial of the nth session, and is analogous to consolidation
(Robertson et al., 2004). The modulation of online and offline
learning rate for practical, real-world skill acquisition with tDCS
of M1 or DLFPC stimulation have remained unexplored.

Here, we investigated changes in skill acquisition and learning
rates with tDCS applied to either DLPFC or M1 during custom
pilot training exercises developed and administered with a
commercially available flight simulator (X-Plane). These results
were recently reported in a poster presentation at the Society
for Neuroscience Meeting (Choe et al., 2015). We measured
task-evoked changes in functional activity using fNIRS and EEG
as subjects learned to complete flight simulator and N-back
training exercises at increasing levels of expertise across four
daily consecutive sessions. We hypothesized that stimulation of
DLPFC over the course of flight simulation and N-back training
would alter group variability in skill learning, MFT power, and
Hboxy andHbtot concentrations in the DLPFC. Furthermore, we
hypothesized that tDCS of M1 will alter tonic alpha-band power
over parietal cortex.

MATERIALS AND METHODS

Participants
Thirty-two right-hand dominant, healthy adult HRL
Laboratories employees (31 males) participated in this study.
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FIGURE 1 | Experimental design. (A) Experiment timeline depicting the relative timing of each task (see Table 1 for descriptions of each task). The N-Back and

Easy Landing tasks are highlighted, and the duration of tDCS is depicted in red. (B) An example of 6 trials of the N-Back task is shown. 1-back orientation and

location match trials are highlighted in yellow. (C) The flight simulator, neuroimaging (EEG and FNIRS) and tDCS setup is shown with on a subject (1). Flight simulator

equipment includes three-panel display, a radio panel (2), an instrument panel (3) with (from left to right) compass, altimeter, airspeed indicator, vertical speed indicator,

and turn/slip indicator, a multi-panel (4) with (from left to right) autopilot settings, auto throttle switch, flaps switch, and elevator trim wheel, yoke (5), and throttle

quadrant system (6). (D) Autopilot flight path for the Easy Landing task is shown in 3 dimensions, color-coded by vertical speed. Screenshots for initial descent,

approach, and landing are also shown.

Their ages ranged from 21 to 64 (mean ± STD = 38 ± 13).
Participants were randomly assigned to one of four groups:
DLFPC stim (n = 7, age = 35 ± 11), DLPFC sham (n = 7,
age = 42 ± 13), M1 stim (n = 10, age = 41 ± 16), or M1
sham (n = 8, age = 31 ± 5). HRL Laboratories employees are
a vulnerable class of subjects for this study. In order to manage
the risk of any undue influence, coercion, or confidentiality
breach we only allowed individuals who are not directly
supervised by the investigators of this study to volunteer, and
only performed experiments during normal business hours
(9 a.m.–5 p.m.) to mitigate any possibility for recourse or
reward for participation in performance evaluation or job
advancement. To maintain confidentiality, each subject was
assigned a unique number, known only to the investigators of
the study and subject identities were not shared. This design is
in line with the recommendations of Meyers (1979) on student
and employees as a vulnerable population of subjects and
complies with DHHS: protected human subject 45 CFR 46; FDA:
informed consent 21 CFR 50. Inclusion criteria were: (1) normal

or corrected-to-normal vision, (2) no prior history of epileptic
seizures or known neurological disorders, and (3) no females
who are pregnant or are likely to become pregnant during the
course of the study. All participants provided written informed
consent to participate in the experiment. JC, MDZ, and MEP are
listed as inventors in patent applications on brain stimulation
methods.

Materials
Flight Simulator
Flight simulation tasks were designed and administered with the
XForce Dream Simulator package (X-Force PC) and the X-plane
10 Flight Simulator software (Laminar Research). A depiction of
the XForce Dream Simulator package can be seen in Figure 1C,
and included a yoke, a radio panel, an instrument panel
with compass, attitude indicator, altimeter, airspeed indicator,
vertical speed indicator, and turn/slip indicator, a multi-panel
with autopilot settings, auto throttle switch, flaps switch, and
elevator trim wheel, and a throttle quadrant system. This flight
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simulator included an adjustable seat for maximum comfort for
the subject. Three monitors were placed at an optimal distance
from the subject to avoid any eyestrain. Custom scenarios
were designed using the simulator software development kit
following a model of flight training (Williams, 2012, see
Table 1).

Neuroimaging
We recorded continuous EEG and fNIRS data during flight
simulation training, N-back, finger tapping, situational
awareness, and resting-state assessments. Horizontal and
vertical electro-oculogram (EOG) was also recorded. EEG
was collected using a 32-channel acti32Champ system, with
electrodes placed in a custom, 10-10 based arrangement to
accommodate tDCS electrodes (StarStim Neuroelectrics)
and fNIRS illuminators/receivers (NIRSport NIRX) within
custom headcaps (BrainVision). EEG caps were selected for
each subject based on individual head size and aligned to Cz.
Conductive gel (Signagel) was applied onto each EEG electrode
and ultrasound gel (Aquasonic clear) was applied to each fNIRS
source and detector. fNIRS was recorded with dual-wavelength
continuous-wave (CW) near infrared (NIR) diffuse tomographic
measurements at 760 and 850 nm. A total of 20 fNIRS channels
(source-detector pairs) were recorded over the left M1 (10
channels) and right DLPFC (10 channels, see Figure 2). The
distance between source-detector pairs was <3.5 cm (see
Figure 2). EEG data were collected at 500Hz, and fNIRS data
were collected at 8Hz. Locations of EEG electrodes and fNIRS
channels can be seen in Figure 2.

tDCS
Sham or actual tDCS was applied with the Starstim system
(Neuroelectrics) following the finger tapping task (see
Figure 1A). The total current applied was 2mA, with scalp
current density of 0.04 A/m2 for active tDCS (for 60min),
or 0.1mA (0.002 A/m2) for sham tDCS (for 1min). Currents
were applied with a 1min ramp-in at initiation and a 1min
ramp-out at termination. Sham stimulation was used as a
control condition to induce the physical sensation associated
with tDCS (e.g., tingling) without directly stimulating the brain
areas located below the electrodes (Coffman et al., 2012b).
Silver/silver chloride electrodes were each 3.14 cm2 in size
(total anode area = 6.28 cm2; total cathode area = 9.42 cm2).
During stimulation the impedance value was limited to 20 k�
for operation of the device; actual impedance values typically
were below 10 k� and impedances were observed to be stable
throughout the duration of the experiment. tDCS channel
impedances were continually monitored at 1 HZ. To achieve
maximum focality for the targeted brain regions of interest,
electrode placements were derived using HD Targets (Soterix
Medical) with stimulation targets in the left M1 (right posterior
field orientation model) and right DLPFC (left anterior field
orientation model) and possible electrode locations were defined
using standard 10-10 electrode locations (see Figure 2). HD
Targets uses a MRI-derived finite element brain model that
provides predictions for current flow and alignment for multiple
interacting electrodes; this model was used to calculate maximal

FIGURE 2 | Neuroimaging and tDCS experimental setup for DLPFC

(A,C) and M1 stimulation (B,D). (A,B) EEG locations are denoted in blue

and follow the 10–20 locations where possible. fNIRS sources (red) and

detectors (green) are shown over the left-M1 and right DLPFC with channels

depicted as orange lines (M1 channels: FC3-FCC5h, FC3-FCC3h, C5-FCC5h,

C3-FCC5h, C3-FCC3h, C1-FCC3h, C5-CCP5h, C3-CCP5h, C3-CCP3h,

C1-CCP3h; DLPFC channels: AFF6h-AFF2h, AFF6h-F4, F2-AFF2h, F2-F2,

F2-FFC4h, FFC6h-F4, FFC6h-FFT8h, FFC6h-FFC4h, FC4-FFC4h, FC4-F4)

tDCS electrodes are denoted in purple (cathodes) and yellow (anodes) and

follow the current values specified in Section Neuroimaging CandDBal

prefrontal cortex (DLPFC [e confidence bound was >4x the size of the positive

confidence bound]). Predicted electric field intensities from the maximum

focality montages from the Male 1 model in the Soterix HD Targets software

(Soterix Medical).

focality and intensity for regions of interest. For M1 stimulation,
this resulted in current values of: CP1 = 1244µA, CP3 =

745µA, FP1 = −417µA, F8 = −448µA, and F9 = −1124µA.
For DLPFC stimulation, current values were F6 = 1511µA,
FC6 = 482µA, AF8 = −271µA, AF4 = −283µA, and
FP2 = −1439µA (see Figure 2). The predicted field intensities
at the target locations were 0.56V/m (DLPFC) and 0.45V/m
(M1). Groups are denoted as: DLPFC stim, DLFPC sham, M1
stim, and M1 sham.

Procedures
All participants performed flight simulation training, N-back,
finger tapping, situational awareness, and resting-state
assessments once per day for four consecutive daily sessions
(see Figure 1). Resting-state brain activity was collected for
1min both before and after the experiment. During resting
scans, subjects observed autopilot flight (level flight at 5000
ft. altitude) and were instructed to keep their eyes open and
observe the visual scene while keeping their hands in their laps.
Following the pre-experiment resting-state assessment, motor
reference scans were taken during a simple motor sequence task
in which subjects were instructed to touch each fingertip with the
thumb of the right hand in sequence/cycle, continuously for 30 s
(Figure 1A, finger-tapping task). We analyzed neuroimaging
data recorded during the finger-tapping task as a confirmatory
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TABLE 1 | Experimental task schedule performed on each of the four consecutive experimental sessions.

Task # of trials Task instruction/Description Average duration (minutes)

Survey 1 Setup and Explanation (day 1)

Learn the basic controls via explanation

1

Rest 1 Eyes open, hand resting on yoke

Observe straight and level autopilot flight

1

Finger tap 1 Using right hand, touch thumb to each finger in sequence 0.5

N-back 6 Adaptive threshold (at 80% accuracy) N-back on 3× 3 grid of visual

orientation of aircraft, flight number and spatial location (3× 3 grid)

10

Situational awareness 4 Memorize gauge cluster images with 15 s distractor task and 30 s. for recall 10

Climb to fixed altitude 1 Adjust altitude from 5000 to 6000 ft. and back to 5000 ft.

Maintain vertical speed at <1000 ft./min with level roll

5

Turn at constant roll angle 1 Change bearing/azimuth from 90◦ to 180◦ and back to 90◦ with a

maximum roll angle of 20◦
5

Descend @ constant Rate 1 Adjust altitude from 3000 to 1000 ft. at a 800 ft./min rate of descent 5

Autopilot landing (observe) 1 Observe the autopilot approach on the “Easy Landing” runway in perfect

weather and high visibility

2

Easy landing 5 Control all aspects of landing in perfect weather and high visibility 10

Nighttime landing 2 Control all aspects of landing in perfect weather at night, with runway lights

(low visibility)

4

No-lights landing 2 Control all aspects in approach with zero visibility 4

Hard landing (Mountains) 1 Difficult visual-only approach over terrain where the runway is initially

obstructed from view over a mountain range

6

Hard landing (Turbulence) 1 Control all aspects of landing with turbulence value is set to level 1 out of 10

(instead of 0), with high visibility

2

measure (see Supplementary Figures S4, S5), where sensorimotor
network activity was expected to be evident in EEG as increased
power in the beta band, and reduced power in the alpha
band, compared to baseline, and in fNIRS as an increase in
deoxygenated hemoglobin beneath M1 sensors.

Participants then performed the N-back task followed by a
series of basic flight training exercises including a situational
awareness task, climbing to fix altitude, turning at a constant
roll angle, and a controlled descent. Follow these fight control
tasks participants performed a series of landing task including
the “easy landing” task, nighttime landing, nighttime landing
without runway lights, a landing in mountainous terrain, and
a landing in turbulent weather (Figure 1A). Results for the
situational awareness, free flight, climb to fixed altitude, heading
change at constant roll angle, descent at constant vertical speed,
nighttime landing, no-lights landing, mountain, and turbulence
landing task are the subject of subsequent manuscripts.

N-Back
The Brain Workshop N-back task was implemented in
this study (Paul Hoskinson, V.4.8.8 http://brainworkshop.
sourceforge.net/). Participants monitored position and image for
N-back matches without audio feedback. Custom N-back images
were used, showing airplanes in eight different orientations with
1 of 3 possible flight numbers (24 total image possibilities, see
Figure 1B). Subjects completed six blocks of 20 trials each day.
Every subject began the N-Back task at the 1-back level, and
was instructed at the beginning of each block to focus on a
central fixation point. Subjects were free to move their eyes
during the task. Upon reaching an upper threshold of accuracy

within a given block (>80%), the task difficulty was increased
(N + 1) using an adaptive threshold paradigm (Jaeggi et al.,
2008). Upon reaching a lower threshold of accuracy (<20%),
the task difficulty was decreased (N − 1). Each time this
occurred, the changes were explained to the subjects between
blocks. At the completion of each block, subjects were allowed
to review the rules and ask clarifying questions about the
tasks.

Autopilot Landing Observation
Subjects viewed a replay video of the autopilot executing an
“optimal” landing from ∼800 ft. altitude onto a runway. Initial
aircraft position was aligned with the runway and aircraft
was already maintaining proper vertical speed for ideal glide
slope. This scenario presents a wide, long, flat runway with no
visual obstructions and no landscape features that interfere with
landing the aircraft. Subjects were instructed not to manipulate
controls or control the simulation in any way, but were told
to pay close attention to the flight parameters through the
instrumentation, as well as the visual field displayed by the
simulator as the aircraft proceeded with landing. Particular
emphasis was placed on two key parameters: azimuth (20◦)
for runway alignment, and vertical speed (∼700–800 ft./min)
for appropriate glide slope. Attention was also drawn to the
final control input to landing (pitch up at ground contact), and
subjects were instructed to minimize landing force (G-force) as a
top priority. Once the autopilot landing was viewed in its entirety,
subjects were given the opportunity to ask questions about the
landings. Most subjects asked very few, if any questions, typically
on the first trial day.
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Easy Landing Task
Subjects were instructed to complete the landing task as shown
by the autopilot under daylight conditions and 100% visibility.
Subjects attempted landing under these conditions a total
of 5 times per day. As the subject attempted replication of
the autopilot landing, the experimenter made observations in
three categories: (1) Vertical speed maintenance; (2) Runway
alignment; and (3) Final approach dynamics (pitch angle at
touchdown). Any large deviations from the autopilot in any of
these modalities were noted, then provided as feedback to the
subject after the plane had touched down and the simulator
paused. When given, feedback was ∼1–2min in length and
conducted in an informal manner. The time duration of feedback
also shortened throughout training as the subject made fewer
errors. Following feedback, the subject was offered opportunity to
ask any questions regarding landing technique, then the scenario
was restarted. If subjects passed beyond the terminal end of
the runway, the attempt was ended and the landing listed as
“missed landing.” This counted against the number of subject
attempts (i.e., attempts were not repeated due to missed landing).
Feedback methods and handling of missed landings was identical
for all landing task.

Data Analysis
EEG
EEG data were preprocessed using EEGLAB (Delorme and
Makeig, 2004) by applying a 0.5Hz high-pass filter (Butterworth,
12 dB/oct) and removing bad channels (max = 19%). Adaptive
Mixture Independent Components Analysis (AMICA)
(Delorme et al., 2012) was then used to detect and remove
artifacts associated with eye blinks, vertical and horizontal
electrooculogram, electrocardiogram, and tDCS-related voltage
fluctuation. Following artifact rejection using AMICA, data
were back-reconstructed and channels removed prior to
AMICA decomposition were interpolated back into the data
by spherical interpolation. Blocks corresponding to N-back,
resting-state, and Easy Landing tasks were then segmented from
the data.

Frequency decomposition was performed using FieldTrip
(Oostenveld et al., 2011) by first segmenting data for each task
into sequential 1-s epochs. Data were then windowed using a
hanning taper, and frequency content of each trial was assessed
at 1Hz increments from 4 to 7Hz (theta-band) or 8–12Hz
(alpha-band) using Fast Fourier Transform (multitaper method).
After frequency decomposition, epochs with average theta or
alpha power greater than two standard deviations from the
mean were rejected, and remaining epochs were averaged for
each participant, training day, and task. Data missing due to
equipment issues (i.e., amplifier battery failure: N = 4, stimulus
trigger errors:N = 1, or excessive noise/artifact during recording
which could not be removed with AMICA: N = 7) were
replaced with the mean for that participant group and training
day prior to statistical analysis.We verified sensorimotor network
activity during the finger-tapping task on the first day of flight
simulator training (prior to tDCS) within baseline-subtracted
beta and alpha band power maps, calculated across all subjects
(Supplementary Figures S4, S5).

Participants receiving tDCS were compared with sham tDCS
participants at each of the 4 days of training using independent-
samples t-tests, which separately tested differences in alpha-
band and theta-band activity at each sensor. Additionally, day
1 was compared to day 4 within each tDCS group and sensor
using paired t-tests to assess training-related effects on alpha-
band and theta-band activity. Statistical tests were corrected for
multiple comparisons using cluster-based permutation tests (500
repetitions, data point α = 0.05, cluster-level α = 0.05, minimum
spatial extent = 2 channels). Results from these comparisons
are reported separately for each cluster of significant differences
between groups/conditions. We calculated mean alpha/theta
band power within clusters for use in examining relationships
between task-related EEG and fNIRS/behavioral data.

We also examined correlations between behavioral measures,
fNIRS beta values, and mean theta/alpha power across clusters
identified during cluster-based permutation tests comparing days
1 to 4. fNIRS beta values were unavailable for 7 subjects (4
active M1 subjects and 3 sham M1 subjects) because time
stamps could not be parsed from the fNIRS data files; therefore,
the number of participants used in this analysis were: M1
stim = 6, M1 sham = 5, DLPFC sham = 7, and DLPFC
stim = 7. These correlations were examined only within the
stimulation groups where significant clusters were identified.
To investigate relationships between midline frontal theta-band
activity (Midline frontal theta-band activity was calculated as the
mean theta power across electrodes Fz and FC1, the electrodes
nearest to medial prefrontal cortex) and behavioral measures in
the easy landing and N-Back task, Pearson correlation statistics
were examined.We comparedmidline frontal theta-band activity
in the easy landing task with autopilot displacement, g-force
at landing, vertical speed at landing, roll at landing, pitch at
landing, or online/offline learning rates for number of control
inputs, autopilot displacement, vertical speed deviance from
autopilot, or vertical speed variance. In the N-Back task, we
compared midline frontal theta-band activity with average N
level achieved and online/offline learning rates. Correlations were
examined separately for DLPFC and M1 groups, stim and sham
groups, and days of training. Because of the large number of
correlation statistics examined, we used a conservative alpha of
0.001 to determine statistical significance. We additionally report
statistics with a relaxed alpha of 0.05; however, these effects will
be considered trends in this analysis.

In addition to cluster-based permutation tests across all
channels, 3-way split-plot ANOVA was used to compare midline
frontal theta-band activity between tDCS conditions (stim and
sham), days of training (day 1, 2, 3, and 4), and training
block (Block 1, 2, 3, 4, and 5) for the N-back and easy
landing tasks. Huynh-Feldt epsilon was used to correct degrees
of freedom for assumptions of sphericity, and Fishers Least
Significant Difference corrections of alpha were used for simple-
effects/pairwise comparisons (Maxwell and Delaney, 2004).

fNIRS
fNIRS data was processed within the nirsLAB analysis package
(NIRx Medical Technologies, Glen Head, NY; Xu et al., 2014).
The Gratzer Spectrum was used to measure the absorbance

Frontiers in Human Neuroscience | www.frontiersin.org 7 February 2016 | Volume 10 | Article 34

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choe et al. tDCS in Pilot Training

TABLE 2 | Average ± standard deviation of day 1, day 4, and day 4–day 1 Hboxy, Hbdeoxy, and Hbtot concentrations across subjects and channels for M1

and the DLPFC.

Easy landing N-Back

Day 1 Day 4 Day 4–Day 1 Day 1 Day 4 Day 4–Day 1

D
L
P
F
C
S
tim M

1

Oxy −0.00060± 0.0018 −0.0019±0.0013 −0.0013 (8) 0.00059±0.0010 −0.00041± 0.00076 −0.00099

Deoxy −0.00037± 0.00051 0.00012±0.0011 0.0005 (4) −0.00017±0.00012 0.00021± 0.00074 0.00039

Total −0.00098± 0.0017 −0.0017±0.0012 −0.00077 (8) 0.00041±0.0010 −0.00019± 0.00043 −0.00061

D
L
P
F
C Oxy 0.0030± 0.0022 0.00055±0.0014 −0.0024 (8) 0.0021±0.0014 0.00048± 0.00091 −0.0016

Deoxy −0.00024± 0.00058 −0.00034±0.00041 −0.000095 −0.00018±0.00019 −0.00014± 0.00021 0.000041

Total 0.0027± 0.0013 0.00021±0.0014 −0.0025 0.0019±0.0014 0.00034± 0.00088 0.0016

D
L
P
F
C
S
h
a
m M
1

Oxy −0.0018± 0.0020 −0.0018±0.0019 −0.0000082 (10) −0.000094±0.0012 −0.000033± 0.00098 0.000062 (10)

Deoxy −0.00022± 0.00063 0.000065±0.0011 0.00028 (4) −0.000099±0.00053 −0.00011± 0.00022 −0.00001 (4)

Total −0.0020± 0.0019 −0.0017±0.0012 0.00028 (10) −0.00019±0.00077 −0.00014± 0.00086 0.000052 (10)

D
L
P
F
C Oxy −0.000033± 0.0018 −0.00046±0.0014 −0.00043 (1) 0.00067±0.0012 0.00035± 0.0012 −0.00032 (4)

Deoxy −0.00056± 0.00043 −0.00053±0.00021 0.000035 −0.00034±0.00020 −0.00036± 0.00013 −0.000017 (8)

Total −0.00059± 0.0019 −0.00099±0.0013 −0.0004 (4) 0.00032±0.0012 −0.000015± 0.0012 −0.00034 (4)

M
1
S
tim

M
1

Oxy 0.00024± 0.0031 −0.000084±0.0015 −0.00032 (4) 0.0013±0.0017 0.00045± 0.00088 −0.00084

Deoxy −0.00019± 0.0014 −0.00049±0.00028 −0.0003 (5) −0.00048±0.00045 −0.00027± 0.00031 0.00021

Total 0.000043± 0.0039 −0.00057±0.0014 −0.00062 0.00080±0.0016 0.00017± 0.00085 −0.00063

D
L
P
F
C Oxy 0.00050± 0.0026 −0.00060±0.00055 −0.0011 0.00015±0.00051 −0.00031± 0.00036 −0.00046

Deoxy −0.000045± 0.00092 −0.00017±0.00020 −0.00012 −0.00027±0.00030 −0.00012± 0.000088 0.00015

Total 0.00046± 0.0035 −0.000766±0.00056 −0.0012 −0.00012±0.00078 −0.00043± 0.00035 −0.00031

M
1
S
h
a
m

M
1

Oxy −0.00097± 0.0010 −0.00080±0.00085 0.00017 (10) 0.00022±0.0012 0.00047± 0.0016 0.00025

Deoxy −0.00017± 0.00020 −0.00013±0.00021 0.000032 (8) −0.00015±0.00016 −0.00018± 0.00020 −0.000031

Total −0.0011± 0.00091 −0.00093±0.00089 0.0002 0.000074±0.0012 0.00029± 0.0017 0.00022

D
L
P
F
C Oxy −0.00041± 0.00087 −0.00054±0.0019 −0.00013 0.00011±0.00030 −0.00030± 0.00034 −0.00041

Deoxy −0.000019± 0.00038 0.00084±0.0013 0.00086 −0.000087±0.00019 0.00026± 0.00071 0.00035

Total −0.00043± 0.0011 0.00030±0.0032 0.00073 0.000022±0.00029 −0.000043± 0.00041 −0.000065

All values are presented are in mM concentration units. Bold numbers indicate a significant difference between days 4 and 1 as determined by a SPM (see Materials and Methods

Section fNIRS).

spectra of Hbdeoxy and Hboxy, with average wavelengths
of 760 and 850 nm, respectively. The corresponding molar
extinction coefficients ε are εHboxy [1097.0 781.0] cm-1/M and
εHbdeoxy = [645.5 1669.0] cm-1/M, (nirsLAB, NIRx Medical
Technologies). The differential path lengths were 5.98 for Hboxy
and 7.15 for Hbdeoxy (Essenpreis et al., 1993). In the Beer-
Lambert law calculation, the distance between source-detector
pair was =< 3.5 cm, and the exact distances were computed
within NIRSLab according to the corresponding distances on the
headcap.

Hbdeoxy, Hboxy and Hbtot concentration time series were
band-pass filter from 0.01 to 0.2Hz (finite impulse response
with least-squares error minimization), to remove slow drifts
in the signal and respiratory and cardiac rhythms. Inter-trail
data was removed from the time series, and the average baseline
concentration values were subtracted from the task-evoked
concentration measurements.

The average concentration value of Hbtot, Hboxy, and
Hbdeoxy were computed separately for each channel, subject,
task, and day. Concentration values were averages within days,

across all 20 trails of each of the 6 blocks in the N-back, and all 5
trials of the easy landing task. Individual channel concentration
values were then averaged across channels within regions (M1
and DLPFC) and across subjects within each group. Day1 group-
averaged concentration values were then subtracted from Day 4
concentrations to compute the change in concentrations across
the duration of the experiment.

Statistical significance of group-averaged concentrations
changes from days 1 to 4 was determined using Statistical
Parametric Mapping (SPM version 8). SPM was performed
based on a general linear model of the canonical hemodynamic
response function, with a discrete cosine transformation
used for temporal filtering. A t-statistic-thresholded, baseline-
subtracted Beta image was generated for each subject for
baseline-subtracted, task-evoked Hbtot, Hboxy, and Hbdeoxy
concentrations for days 1 and 4 (corrected for multiple
comparisons across channels using the Bonferroni correction: #
channels = 20, p < 0.0025). Paired t-statistic maps
(subtracting the day 1 from day 4 betas) were generated from
baseline-subtracted, trial/block-averaged (within day n = 5
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Easy landing, n = 6 N-back) task betas obtained from
individual subjects. If a t-statistic exceeded the corrected p-value
threshold of 0.0025 the days 4–1 concentration values were
determined to be significant (Table 2—denoted by bolded
values).

Channel-wise statistical analysis was performed on all
channels for measurements of Hboxy, Hbdeoxy, and Hbtot days
4–1 concentrations in easy landing and N-back for all subjects.
Significance was determined if the trial-wise average exceeded 3.5
standard deviations from the null hypothesis of no concentration

change (Bonferroni corrected, two-sided, Fischer’s test p <

0.00035).

Behavioral Performance

N-Back
Raw percent accuracy values for each subject and for each
block were scaled according to the information content required
for each back condition. A 100% score on a 1-back trial
requires both an image match: 9 possible plane orientations,
4 possible flight numbers, and a position match: 9 possible

FIGURE 3 | N-back learning rates across experimental groups. The average group-learning rate is shown for each group in 1 and 2 back trials (left) and for all

back trials (right column scaled by information content see Section N-Back). Learning rates computed by combining across position and image match trials (top

row), for position trails (middle row) and image trials (bottom row) are shown.

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2016 | Volume 10 | Article 34

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choe et al. tDCS in Pilot Training

FIGURE 4 | N-back results across all four experimental groups. (A–D) The average percent correct is plotted across all 4 days (6 trials per day) for each group.

Percent correct values are scaled based on the required information for a 100% correct response (see Section N-Back). (E) Online and offline N-back learning rates

are plotted for each experimental group across the duration of the experiment. Whole numbers on the x-axis represent the average online learning rate (slope of

scaled percent correct linear regression for each subject across 6 blocks within a day and ½ numbers of the x-axis represent offline learning rates (slope of the percent

correct on the last trials of the N-1 day to the first trial of the Nth day).

spatial location, a 100% score on 2-back doubles the required
information kept in working memory, and a 100% score on
a 3-back trial triples this value. The normalization weights
used for the 1–, 2–, and 3–back raw accuracy values were
therefore 0.33, 0.66, and 1.0. Alternative normalization schemes
(e.g., bit-wise maximum information and log-scaling) did not
generate substantial differences in the outcome metrics. Learning
rates were determined by the slope (±standard deviation) of a
linear regression over block-wise group-averaged scaled percent
accuracy: (1) across all 4 days (overall learning rate), (2) within
each day independently (online learning rate), and (3) between
the accuracy of the first trial of the nth day and the last
trial of the n-1th day (offline learning rate) (Reis et al., 2009).
Meta-learning rate was determined from the slope of the linear
regression over the combined online/offline learning rate time
series (the rate of change in the learning rates over time). The

average number of trials for each group to reach the 2 and 3
back levels in the adaptive N-back task and the average streak
(number of consecutive trials) at 2 and 3 back were calculated
for each group. Learning rates were compared using one-sample
against zero or paired, two-tailed t-tests (both α = 0.05) were
noted.

Easy landing
G-force assessment. Flight parameters were sampled from the
simulator at 10Hz, including altitude (above ground level),
longitude, and latitude. The derivative of the vertical speed
of the aircraft at runway touchdown determined the landing
impact g-force (acceleration divided by 9.8 m/s2). Smaller g-force
landings reflected improved skill with the landing task as subjects
were asked to minimize this value to the best of their ability
for each trial. The impact g-force is a “one-shot” assessment
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of landing skill at the most difficult and critical phase of the
landing task, while ignoring other factors of landing performance
(e.g., approach, glide slope, alignment, aircraft attitude). Online,
offline, and meta learning rates are negative indicating a
reduction in the applied G-force at landing (Supplementary Table
S2, Figure 4).

Flight path deviation. Latitude, longitude, and altitude were
transformed into Cartesian (X-Y-Z) coordinates and the
Euclidean distance between coordinates of subject and autopilot
were computed over the flight path 6sqrt(x2+y2+z2) using a
moving window average to resample and align the flight paths.
The Euclidean distances for each sample were then summed in
order to provide the total deviation from the autopilot flight
path. Unlike G-force, this metric takes into account the entire
approach, including all flight maneuvers leading up to the final

descent and touchdown. This measure, however, does not take
into account proficiency with aircraft controls or avionics; it
merely assesses the ability of the subject to adhere to the reference
flight path. Subjects were instructed to replicate the flight path
of the autopilot landing observation. With this metric, a better
landing would have lower deviation values (Supplementary Table
S2, Figure 5).

Vertical speed deviation. The vertical speed of the subject
throughout the landing trial was subtracted from the vertical
speed of the autopilot landing at each time step and summed
as in the flight path deviation. The vertical speed profile of
the aircraft is stereotypic for an excellent landing and this
parameter is visible on the aircraft’s instruments. Subjects could
therefore be reasonably expected to match the vertical speed of
their aircraft with that of the example shown during autopilot

FIGURE 5 | G-force at moment of landing results across all four experimental groups. (A–D) Average g-force at moment of landing across all 4 days is

plotted for each group. Note reduction in between-subject variance in days 3 and 4 of the DLPFC stim group. (E) Online and offline g-force learning rates are plotted

for each experimental group across the duration of the experiment. Whole numbers on the x-axis represent the average online learning rate (slope of scaled percent

correct linear regression for each subject across 6 blocks within a day) and ½ numbers on the x-axis represent offline learning rate (slope of the percent correct on the

last trials of the N-1 day to the first trial of the Nth day). Smaller G-force indicates improved performance.
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observation (vertical speedmaintained at 600 ft./min formajority
of approach, see Figure 1D). Replication of the autopilot-derived
demonstration flight should result in lower overall vertical speed
deviation values as performance improves (Supplementary Table
S2, Figure 5).

Vertical speed variance. The amount of vertical speed variation
throughout the landing approach was summed across trials to
represent the degree to which a subject could maintain a steady,
continuous descent. This measure does not penalize the subject
for deviating from the ideal flight path, it merely assesses the
degree to which the subject can maintain a smooth descent
with little variation. This removes the goal-directed aspect of
flight parameter maintenance while focusing on the motor aspect
of flight parameter maintenance. As a means of comparison,
the autopilot flight data only changes vertical speed in the
final 5 s before landing, which minimizes this variance in the
autopilot. In the ideal scenario, vertical speed stays constant,
with only slight changes necessary for the final phase of landing;
therefore, smaller variances indicate superior flight performance
(Supplementary Table S2, Figure 6).

Control input measure. The number of control inputs was
computed over landing trials by identifying the number of sign-
changes in the vertical speed parameter throughout the landing
period. This metric identifies to what extent subjects could
maintain a consistent vertical speed profile (negative vertical
speed indicates descent, positive ascent). Since maintaining
vertical speed with minimal control input adjustment does not
require specific planning of actions or prediction of flight path,
it was hypothesized to be a primarily motor-processing focused
measure. The number of sign-changes in the vertical speed
variable was summed between start and end of the landing. As
a means of comparison, the autopilot had 1 major control input
at the nose flair∼1 s. before touchdown.

Outlier rejection
For each metric, trial-wise data were examined for outliers across
subjects across all groups. If any trial exceeded three standard
deviations from the mean, it was determined an outlier and
removed from analysis. Outlier rejection was performed on a
trial-wise basis for all computed metrics.

Group variance analysis
For each metric, the variance in the average online learning rate
was computed as the change in the group’s average accuracy
treating each subject’s performance in a trial as a repeated sample
within days. For the n-back task, the metric used was the scaled
percent accuracy across 6 trials per day. For the easy landing task,
flight metrics, performed over the course of 5 landing trials per
day. This measure is the variance in the online learning rate linear
regression (Reis et al., 2009). Significant differences in learning
rate variance was assessed with a two-sample F-test for equal
variances. The null hypothesis that two independent samples of
two subject pools come from a single normal distribution with
the same variance was tested against the alternative that they
come from two normal distributions with different variances.
F-stat criticality was computed by generating a F cumulative

distribution function appropriate to the variance ratio and
degrees of freedom of sample pools. The resulting critical values
are asymmetric and can be used at either tail. We were then
able to determine the distance between computed F and F = 1
(null hypothesis). Across days, Bartlett’s test was performed to
test the hypothesis of equal population variance across groups.
This test was performed on the average subject metrics (across
trials within days) to preserve sample independence. Reported
p-values represent the probability of observing the given result by
chance if the null hypothesis were true (Snedecor and Cochran,
1989).

RESULTS

Finger-Tapping Task
As expected, the finger-tapping task induced beta band
oscillatory activity and increased the concentration of Hbdeoxy
over sensorimotor cortex, and reduced alpha band activity over
frontal and parietal cortex compared to baseline (Supplementary
Figures S4, S5). Power in the beta band was greatest over left
sensorimotor cortex, contralateral to the hand used during the
finger-tapping task.

N-Back Task
Behavioral Results

DLPFC stimulation
The DLPFC stim group showed significant overall learning
in five separate learning rate measures, compared to two
significant learning rates observed for the DLPFC sham
simulation group (one-sample, two-tailed t-test, see Figures 3,
4, and Supplementary Table S1). Significant overall learning was
observed for the DLPFC stim group collectively across all trial
types (combining image and position match trials—denoted as
“combined trials,” and for position match trails) aggregating
across all 1/2/3 back trials (scaled according to the methods in
Section N-Back). Significant overall learning was also observed
for the DLPFC stim group in 1-Back combined, position, and
image trials. Significant overall learning was observed for the
DLPFC sham group for combined and position trials, across all
backs (see Figure 3). Meta-learning regressions did not show
statistically significant changes in learning rates between stim and
sham groups.

Neither the initial nor the final behavioral performance were
significantly different between DLPFC stimulation and sham
groups (Supplementary Table S1). The average trial duration
to reach 2-/3-back was not significantly different between
stimulation and sham groups. In addition, the average number
of trials to reach 2-/3- back and the average 2-/3- back
streak durations were not statistically different between groups.
Significant differences in online, offline, and combined learning
rates were not observed between stimulation and sham groups
(see Supplementary Table S1, Figure 4E).

The variance in the DLPFC stim group’s learning rate was
significantly less than the variance of the DLPFC sham group.
Examined across days, the DLPFC stim group had significantly
reduced variance compared to the DLPFC sham group on
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Day 3 of experimentation [Chi(1) = 5.77, p < 0.02, see
Figures 4A,B]. Examined at the trial-level, the reduced variance
reached statistical significance in >33% of individual N-back
trials comparing DLPFC stim with DLPFC sham, and no trials
showed greater variance in the DLPFC sham group [Day 1 Trial
2: F(6, 6) = 0.21; Day 1 Trial 4: F(6, 6) = 0.18; Day 1 Trial 6:
F(6, 6) = 0.23; Day 2 Trial 5: F(6, 6) = 0.095; Day 3 Trial 1:
F(5, 5) = 0.069; Day 3 Trial 2: F(5, 5) = 0.17; Day 3 Trial 6:
F(5, 5) = 0.15; Day 4 Trial 6: F(5, 4) = 0.021; p < 0.05]. These
results support the hypothesis that tDCS of the right DLPFC
would reduce the variability in individual learning rates in a
cognitive task.

M1 stimulation
The M1 stim group showed significant overall learning in five
separate learning rate measures, compared to six significant
overall learning rates observed for the M1 sham stimulation
group. Significant overall learning was observed for the M1
stim group for combined, image and position trails aggregating
across all 1/2/3 back trials. Significant overall learning was also
observed for M1 stim in 1-Back combined and image trails.
Significant overall learning was observed for the M1 sham group
for combined trails, aggregating across all backs and for 1 and
2-Back trials as well as for position trails (all and 2-Backs) and
2-Back image trials (see Figure 3). Meta-learning regressions
did not show statistically significant changes in learning rates
between stim and sham groups.

As with the DLPFC groups, initial and final behavioral
performance between stimulation and sham groups was not
significantly different (Supplementary Table S1). The average
duration to reach 2-/3-back was not significantly different
between stimulation and sham groups. In addition, the average
number of trials to reach 2-/3- back and the average 2-/3- back
streak durations were not statistically different between groups.
Significant differences in online, offline, and combined learning
rates were not observed between stimulation and sham groups
(see Supplementary Table S1 and Figures 3, 4E).

Unlike the results observed for DLPFC stimulation, M1
stimulation resulted in minimal differences in learning rate
variance between stimulation and sham groups. Only 1 trial
showed reduced M1 stim variance compared to M1 sham
variation, while there were 3/24 trials that indicated smaller M1
sham variance when compared with the values from the M1
stim group. Examined across days, no trials shows significant
differences in variance under Bartlett’s Test.

FNIRS Results

DLPFC stimulation
Hboxy. Exclusion criterion for individual FNIRS channels were
greater than 0.001mM fluctuations between the maximum and
minimum measured concentrations during baseline. We did
not observe any concentration fluctuations above this cutoff
threshold for any of the 20 FNIRS channels (10 above the DLPFC
and 10 above the M1 cortex) across all 4 days of recording for the
25 subjects analyses (7 DLPFC stim, 7 DLPFC sham, 6 M1 stim,
5 M1 sham). Subjects were not included (n = 3 in M1 stim, and

N = 3 in M1 sham) if event time stamps could not be identified
robustly within the fNIRS data files.

Average Hboxy concentrations across subjects and channels
significantly increased between day 1 and day 4 in M1 channels,
and significantly decreased in DLPFC channels for the DLPFC
sham group and (see Table 2, Figure 7). Individual channel
analysis showed no significant change in Hboxy concentrations
from days 1 to 4.

Hbdeoxy. Average Hbdeoxy concentrations across subjects and
channels significantly decreased between day 1 and day 4 in M1
and DLPFC channels for the DLPFC sham group (see Table 2).

Hbtot. Like Hboxy, average Hbtot concentrations across subjects
and channels significantly increased between day 1 and
day 4 in M1 channels for the DLPFC sham group, and
significantly decreased in DLPFC channels for the DLPFC
sham group (see Table 2). Individual channel analysis showed
no significant change in Hbtot concentrations from days
1 to 4.

M1 stimulation
Hboxy. The average Hboxy concentration across subjects and
channels within the DLPFC channels significantly decreased
between days 1 and 4 in the M1 stim group (see Table 2).
Individual channel analysis shows no significant change inHboxy
concentrations from day 1 to 4.

Hbtot. The average Hbtot concentration across subjects and
channels within the DLPFC channels significantly decreased
between day 1 and 4 in the M1 stim group (see Table 2).
Individual channel analysis shows no significant change in Hbtot
concentrations from days 1 to 4.

EEG Results

Theta (4–7Hz)
DLPFC stimulation. In each day, significant differences in theta-
band power were found between DLPFC stim and sham tDCS
groups in frontal/central electrodes (Table 3). In days 1–3,
right frontotemporal theta power was higher in DLPFC stim
participants, compared to sham. Statistical differences were
distributed over midline frontal electrodes in day 4. Comparison
of days 1 and 4 revealed a significant increase in midline
frontal theta-band power in stim, but not sham participants
(see Figure 8A and Table 3). Split-plot ANOVA comparing MFT
in the N-back task revealed a trend-level main effect of tDCS
group, with DLPFC stim participants showing a greater effect
than DLPFC sham participants [F(1, 12) = 4.65, p = 0.052].
There was nomain effect of training or interaction between tDCS
group and day of training (p > 0.1).

M1 stimulation. For M1 stimulation, broadly-distributed
differences in theta-band power were seen between stim and
sham participants during N-Back performance on days 1 and
3, which were mostly left-lateralized, and were strongest near
the site of stimulation (Table 3). Importantly, no differences
between days 1 and 4 were seen for M1 stim or sham participants
in the N-Back (see Table 3 and Figure 8A). Split-plot ANOVA
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TABLE 3 | Cluster statistics for comparisons of alpha- and theta-band

power during the N-back task.

Electrodes t* p**

THETA (4–7Hz)

DLPFC stimulation

Actual vs. Sham

Day 1

Cluster 1

E5, FT8, T8, FC2, CP2,

CP6

2.89 0.020

Day 2

Cluster 1

FT8, FC2, E11, CP2,

CP6, PO10

3.15 0.006

Day 3

Cluster 1

FT8, E11, T8, CP6 3.11 0.020

Day 4

Cluster 1

AF3, F3, Fz 3.21 0.038

Day 4 vs. Day 1

Actual

Cluster 1

FC1, Cz, E19 3.23 0.020

M1 stimulation

Actual vs. Sham

Day 1

Cluster 1

FC5, FC1, T7, Cz, C4,

T8, E19, CP2, P7, Pz,

P8, PO10

2.82 0.004

Day 3

Cluster 1

E5, T8, Cz, CP5, CP2,

CP6, P7, Pz

2.27 0.020

Cluster 2 E5, FC2, C4, CP6 2.35 0.028

ALPHA (8–12Hz)

DLPFC stimulation

Actual vs. Sham

Day 2

Cluster 1

E5, FT8, E11, T8 2.85 0.008

Cluster 2 AF3, F7, F3 2.69 0.042

Day 4

Cluster 1

Pz, P8, Oz 2.74 0.048

Day 4 vs. Day 1

Actual

Cluster 1

FC5, T7, CP5, P7 −3.12 0.032

M1 stimulation

Actual vs. Sham

Day 1

Cluster 1

F3, Fz, FC5, FC1, FC2,

Cz

2.88 0.014

Day 3

Cluster 1

FC5, T7, CP5, P7 2.66 0.034

*Reported t-values are the average t-statistic across all electrodes in a given cluster.
**Reported p-values are corrected for multiple comparisons using cluster-based

permutation tests.

comparing MFT revealed a significant main effect of day of
training [F(3, 48) = 3.23, p = 0.048]; however no significant
or trend-level pairwise comparisons were found, There was no
main effect of tDCS group or interaction between group and day
of training.

Alpha (8–12Hz)
DLPFC stimulation. Alpha-band power differences between
DLPFC stim and sham groups were found in days 2 and 4
(Table 3). In day 2, frontal alpha power was greater in DLPFC
stim than sham participants. In day 4, differences existed in
parietal and occipital electrode sites, with DLPFC stim greater
than sham. Differences between day 1 and 4 were found only for

the DLPFC stim group, characterized by reduced alpha power at
left temporoparietal sites (see Table 3 and Figure 8B).

M1 stimulation. Greater alpha-band power was found for M1
stim compared to sham participants in days 1 and 3 (Table 3).
These differences were distributed over frontal, central, and
parietal electrode sites, mostly near the site of stimulation. No
differences in alpha power were found in the comparison of
days 1 and 4, for either M1 stim or M1 sham (see Table 3 and
Figure 8B).

EEG/fNIRS/behavioral correlations
We did not find any significant correlations between MFT or
alpha power in the N-Back task and behavioral measures (i.e.,
average N level achieved and online/offline learning rates, p’s >

0.05). No correlations were identified between fNIRS beta values
and either MFT or alpha power in the N-Back task for any group
(p’s > 0.1).

Easy Landing Task
G-Force

DLPFC stimulation
tDCS to DLPFC reduced the variability (standard deviation) of
the third and fourth day online learning rates compared to sham
(DLPFC stim: day 3 = 0.355, day 4 = 0.583; DLPFC sham: day
3 = 0.846, day 4 = 0.637, see Figure 5). First trial comparisons
of variance between DLPFC stim and DLPFC sham groups in
day 3 showed statistically significant changes in between-subject
variance [F(4, 5) = 0.046, p < 0.02]. There were no significant
differences in variance for first trials of day 1 and day 2 (p >

0.1). Trial 1 of day 4 also did not show significant changes in
variance (p > 0.1). Examined across days, Bartlett’s comparisons
of variance between DLPFC stim and DLPFC sham groups in
day 3 showed statistically significant changes in between-subject
variance [Chi(1) = 7.33, p < 0.01]. There were no significant
differences in variance for days 1, 2, or 4 (p > 0.1). These
results support the hypothesis that tDCS of the right DLPFC
would reduce the variability in individual learning rates in the
easy landing task.

Learning rates were determined by computing the rates at
which performance improved (i.e., reduction of G Force over
time, see Figures 5A–D). Meta-learning regressions did not show
statistically significant changes in learning rates between stim
and sham groups. The DLPFC stim group exhibited positive
meta-learning rates (DLPFC stim = 0.052 ± 0.090), where the
DLPFC sham group, by contrast, showed overall negative meta-
learning (DLPFC sham = −0.051 ± 0.106), but this between-
group difference did not reach statistical significance due to large
within –group variance (p > 0.1; Figure 5E).

There were also no statistically significant differences in offline
learning rates (p’s > 0.1), but DLPFC stim showed a relatively
strong offline learning between day 1 and 2 (−0.149 ± 0.52)
compared to sham (0.124± 0.990).

The number of missed landings (did not land before or during
the runway) was not different across groups over days (DLPFC
stim: day 1: 2.9%, day 2: 2.9%, day 3: 0%, day 4: 0%; DLPFC sham:
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FIGURE 6 | Flight path deviation results across all four experimental groups. (A–D) Average flight path deviation of subjects from ideal autopilot-guided glide

slope is shown for each group. (E) Online and offline flight path deviation learning rates are plotted for each experimental group across the duration of the experiment.

Whole numbers on the x-axis represent the average online learning rate (slope of scaled percent correct linear regression for each subject across 6 blocks within a

day) and ½ numbers on the x-axis represent offline learning rate (slope of the percent correct on the last trials of the N-1 day to the first trial of the Nth day). Reduced

flight path deviation indicates improved performance.

day 1: 2.9%, day 2: 14.3%, day 3: 5.7%, day 4: 0%).Missed landings
typically occurred on the first trial of the day.

M1 stimulation
tDCS to M1 resulted in no significant changes in inter-subject
variance when compared to the M1 sham group across days
(Bartlett’s Test, p’s > 0.1). M1 sham appeared to have unusually
low variance during day 2 (Figure 3D), and this was determined
to be a statistically significant reduction of variance when
compared to theM1 stim group for three of the five trials of Day 2
[F(8, 7) = 6.32, F(8, 7) = 3.86, F(8, 7) = 5.07; p < 0.05]. However,
this reduction in variance only applied to Day 2 and in single
trials only in Day 1 and 3. All trials on Day 4 had no significant
change between M1 stim and sham variances. There were no
statistically significant changes in learning rates between stim and
sham groups (Supplementary Table S2). As with DLPFC stim

group, there were also no statistically significant differences in
offline learning rates (p’s > 0.1), but M1 stim showed a relatively
strong offline learning between day 1 and 2 (−0.235 ± 0.676)
compared to sham (0.258± 1.330).

Initial starting (day 1 average), group averaged (across all
days and the final (day 4 average) G-forces were not significantly
different between experimental and control groups (paired t-test
p > 0.1), which are similar to the results found with the
N-back task. Though performance improved in both sham
and stimulation cohorts (reduced overall G-force), the ultimate
performance of each subject group was similar. It is probable
that the landing task was effectively learned over the course of
four training days, and subjects reached a G-force performance
ceiling.

The number of missed landings were not different across
groups over days (M1 stim: day 1: 10%, day 2: 10%, day 3: 2.0%,
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day 4: 0%; M1 sham: day 1: 0%, day 2: 0%, day 3: 0%, day
4: 2.5%).

3D Autopilot Displacement
No group (DLPFC stim/sham nor M1 stim/sham) exhibited
statistically significant learning (i.e., reduction of flight path
displacement over time), as inter-subject variability was very high
for this metric (Figures 6A–D). All groups showed inconsistent
positive and negative learning slopes, and though the M1
stim group had negative online learning slopes for all 4 days,
none of these reached statistical significance (p’s>0.1). When
comparing group variances for 3D autopilot displacement over
experiment days, the M1 stim group showed greater variance
compared with the M1 sham group during Day 1 [Chi(1) = 8.46,
p < 0.01]. The variance for the M1 stim group, however, was
significantly lower than that of DLPFC stim group for 3 trials
across 3 days of training [Day 1, Trial 1: F(5, 9) = 5.1032; Day
2, Trial 4: F(6, 9) = 6.03; Day 3 Trial 2: F(6, 7) = 3.99; p < 0.05].
Interestingly, this was also true for M1 sham vs. DLPFC stim
[Day 1, Trial 1: F(5, 7) = 13.67; Day 2 Trial 4: F(6, 7) = 4.74;
p < 0.001]. No other variance comparisons yielded statistically
significant results (Supplementary Table S2, Figure 6). While
the combined learning intercept for the M1 sham group was
negative (−13140 ± 13300, p < 0.05) this resulted from an
isolated day 1/2 offline learning rate with a large standard
deviation (−29011± 41147).

Vertical Speed Variance
The M1 stim group exhibited the lowest average values of
vertical speed variance on the final day of training (4.955 ±

0.433; Supplementary Figure S2C). This is similar to the M1
sham (Supplementary Figure S2D) value of 5.051 ± 0.502
and an improvement over DLPFC groups (5.684 ± 0.690 and
5.647 ± 0.718, for stim and sham groups, respectively, but this
does not reach significance under 2-way ANOVA (p > 0.1;
Supplementary Figures S2A,B). This appears to be derived from
the relatively higher online/offline learning rates in both M1
groups as compared with the DLPFC groups, though the overall
rates were not statistically significant. ANCOVA, covarying the
learning rates of vertical speed variance with group identity,
performed on this data shows that the slopes appear identical
(p > 0.9 vs. null hypothesis) but the initial performance
(intercept) approaches significance (p < 0.07).

Online, offline and meta-learning rates were largely flat, and
training effects were not observes within any group (p’s <

0.1 level (Supplementary Table S2, Supplementary Figure S2).
Because vertical speed variation is primarily a motor-centric task,
it may be subject to a different learning curve that was not
specifically measured during this study.

Autopilot Vertical Speed Deviation
M1 sham showed significant overall offline learning, with smaller
deviations of vertical speed on Day 4 as compared with Day 1
(−12.21 ± 2.51, p < 0.05, Supplementary Figure S3D). DLPFC
sham (Supplementary Figure S3B) also had a negative slope
indicating reduced deviation from ideal vertical speeds, but this
was not statistically significant (−69.71 ± 952.145, p > 0.05).

However, both of these offline learning effects were washed out
when combined into overall learning rates across the 4 days (M1
sham: −5.98 ± 20.26; DLPFC sham: −17.09 ± 25.80). Overall
performance did not significantly change over the course of
the 4 days, and initial/final performance were not significantly
different across groups (p’s > 0.1; Supplementary Figure S3E).

Unlike tests of G-force and flight path deviation, F-tests do not
show any significant difference for inter-subject variance during
1st trial comparisons across all groups (p’s > 0.1).

Number of Control Inputs
Variance between subjects for both DLPFC groups appeared
larger than that of both M1 groups (Supplementary Figure S1).
However, no meta, online, offline, or combined learning rates
reach significance, and no significant changes were observed
between groups (see Supplementary Table S2 and Supplementary
Figure S1).

fNIRS Results
DLPFC Stimulation

Hboxy
Average Hboxy concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels
for the DLPFC stim and DLPFC sham groups, and decreased
between days 1 and 4 in DLPFC channels for the DLPFC stim
group (see Table 2, Figure 7).

Furthermore, individual channel analysis revealed that only
two subjects (S7 in the DLPFC stim group, and S7 in the
DLPFC sham group) showered a significant change in Hboxy
concentrations from days 1 to 4 (−0.01mM decrease at DLPFC
channel: source AFF6h to detector F4 in DLPFC stim subject 7,
and 0.02mM increase at DLPFC channel: source FC4 to detector
FFC4h in DLPFC sham subject 7, see Figure 2 for channel
locations). Within the DLPFC stim group, of all 70 channels
measured across subjects in the DLPFC region (10 channels per
subject, 7 subjects per group) 65 showed a decrease in Hboxy
concentration from days 1 to 4 (compared to 40/70, 33/60, 325/50
for DLPFC sham, M1 stim, and M1 sham respectively).

Hbdeoxy
The average Hbdeoxy concentration across subjects and channels
within M1 significantly increased between day 1 and day 4
in the DLPFC stim and DLPFC sham groups (see Table 2).
Individual channel analysis shows no significant change in
Hbdeoxy concentrations from days 1 to 4.

Hbtot
Average Hbtot concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels for
DLPFC stim and in the DLPFC channels for the DLPFC sham
group, and increased in M1 channels for the DLPFC sham group
(see Table 2). Individual channel analysis revealed that only one
subject (S7 in the DLPFC stim group) showed a significant
change in Hbtot concentrations from days 1 to 4 (−0.01mM
decrease at DLPFC channel: source AFF6h to detector F4, see
Figure 2). Within the DLPFC stim group 64/70 channels in the
DLPFC region showed a decrease in Hbtot concentration from

Frontiers in Human Neuroscience | www.frontiersin.org 16 February 2016 | Volume 10 | Article 34

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choe et al. tDCS in Pilot Training

FIGURE 7 | Example fNIRS Hboxy, Hbdeoxy, and Hbtot concentration time-series and group average t-statistic beta maps. (A) N-back concentration

time series for DLPFC sham subject #S6 recorded on day 1. Traces denote DLPFC channel #10: source: FC4, detector: F4. (B) Easy landing blocked concentration

time series for DLPFC stim subject #S1 recorded on day 1. Traces denote DLPFC channel #5: source FFC6h, detector: F4 [vertical solid and dotted lines denote

blocks, solid lines indicate 1/2 and 2/3-back block types in (A), and easy landing trials in (B)]. An upward displacement in Hboxy and Hbtot concentrations can be

seen during pauses between subsequent blocks. (C) fNIRS t-statistic beta maps of Day 4 vs. Day 1 Hboxy (top) and Hbtot (bottom) in the Easy landing task. Images

are the averages for the DLPFC stim (left) and DLPFC sham (right) groups (Bonferroni corrected p < 0.0025, see Table 2 for the corresponding concentration changes

averaged over all channels within M1 and DLPFC).
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days 1 to 4 (compared to 37/70, 34/60, 32/50 for DLPFC sham,
M1 stim, and M1 sham respectively).

M1 Stimulation

Hboxy
Average Hboxy concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels for
the M1 stim group, and increased within M1 channels for the M1
sham group (see Table 2). Individual channel analysis shows no
significant change in Hboxy concentrations from days 1 to 4.

Hbdeoxy
Average Hbdeoxy concentrations across subjects and channels
significantly decreased between days 1 and 4 in M1 channels for
the M1 stim group, and increased within M1 channels for the M1
sham group (see Table 2). Individual channel analysis shows no
significant change in Hbdeoxy concentrations from days 1 to 4.

Hbtot
The average Hbtot concentration across subjects and channels
significantly increased between days 1 and 4 in M1 channels for
the M1 sham group (see Table 2). Individual channel analysis
shows no significant change in Hbtot concentrations from days
1 to 4.

EEG
Theta (4–7Hz)

DLPFC stimulation
In each day, significant differences in theta-band power were
found between DLPFC stim and sham groups in frontal/central
electrodes (Table 4). In days 1 and 3, right frontotemporal
theta power was higher in DLPFC stim participants. Statistical
differences were more broadly distributed in days 2 and
4, encompassing bilateral frontotemporal and midline frontal
electrode sites. Comparison of days 1 and 4 revealed a significant
increase in midline frontal theta-band power in DLPFC stim, but
not DLPFC sham participants (see Figure 8A and Table 4). Split-
plot ANOVA comparing MFT in the easy landing task revealed
a significant main effect, with DLPFC stim greater than DLPFC
sham [F(1, 12) = 4.86, p = 0.048]. Additionally, an interaction
was found between group and day of training [F(3, 36) = 4.54,
p = 0.014]. Simple-effects comparisons revealed increased MFT
in stim compared to sham for only day 4 [day 4: F(1, 12) =

6.47, p = 0.026]. Simple-effect of day within the DLPFC stim
group reached trend-level significance [F(3, 16) = 3.15, p =

0.087].

M1 stimulation
Theta-band differences between M1 groups during the easy
landing task were found only in day 3, and were restricted
to central/parietal electrodes (Table 4). Broadly-distributed
differences in theta-band power were seen between days 1 and
4 in M1 stim participants, but not M1 sham participants (see
Table 4 and Figure 8A). No main effects or interactions were
found in ANOVA comparing MFT in the easy landing task
between M1 groups.

TABLE 4 | Cluster statistics for comparisons of alpha- and theta-band

power during the Easy Landing task.

Electrodes t* p**

THETA (4–7Hz)

DLPFC stimulation

Actual vs. Sham

Day 1

Cluster 1

E5, FT8, C4, CP6 2.58 0.024

Day 2

Cluster 1

AF3, F3, E5, FT8, FC1, FC2, E11,

T7, Cz, C4, T8, E19, CP2, CP6

3.51 0.020

Day 3

Cluster 1

FT8, E11, T8, CP6 2.99 0.008

Day 4

Cluster 1

AF3, F3, FT8, FC1, FC2, E11, Cz,

C4, T8, CP5, CP2, CP6, Pz, P8,

Oz

3.81 0.002

Day 4 vs. Day 1

Actual

Cluster 1

AF3, F3 3.23 0.044

M1 stimulation

Actual vs. Sham

Day 3

Cluster 1

Cz, CP2, CP5, P7, Pz 2.72 0.030

Day 4 vs. Day 1

Actual

Cluster 1

F7, E5, FC5, FC1, T7, C4, CP5,

E19, CP2, CP6, P7, Pz, P8, Oz,

PO10

3.28 0.002

ALPHA (8–12Hz)

DLPFC stimulation

Actual vs. Sham

Day 1

Cluster 1

CP2, CP6, Pz, Oz 2.85 0.030

Day 4

Cluster 1

E5, FT8, Fz, FC2, E11, C4, T8 2.73 0.026

Cluster 2 FT8, E11, T8 3.56 0.040

Cluster 3 AF3, F3, Fz 2.94 0.048

M1 stimulation

Actual vs. Sham

Day 1

Cluster 1

F3, E5, Fz, FC5, FC1, FC2, C4,

CP2, CP5, CP6

2.85 0.014

Day 4 vs. Day 1

Actual

Cluster 1

CP5, E19, Pz 2.89 0.034

Cluster 2 E11, T8 −2.62 0.050

*Reported t-values are the average t-statistic across all electrodes in a given cluster.
**Reported p-values are corrected for multiple comparisons using cluster-based

permutation tests.

Alpha (8–12Hz)

DLPFC stimulation
Significant differences in alpha-band power were found between
DLPFC stim and sham groups in parietal/occipital electrodes
(day 1) and frontal/central electrodes (day 3), with greater power
in the DLPFC stim group (Table 4). No differences in alpha
power were found in the comparison of day 1 and 4, for either
DLPFC stim or sham groups (see Table 4 and Figure 8B).

M1 stimulation
Alpha-band differences between M1 groups during the easy
landing task were found only in day 1, and were broadly
distributed over frontal, central, and parietal electrode sites

Frontiers in Human Neuroscience | www.frontiersin.org 18 February 2016 | Volume 10 | Article 34

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Choe et al. tDCS in Pilot Training

FIGURE 8 | Day 4 vs. day 1 average theta power (A) and alpha power (B) changes per group (t-statistic maps). Significant electrode clusters are depicted

by white circles at electrode locations. Increases in midline frontal theta power were seen between days 1 and 4 in both tasks for all groups; however, cluster-level

significance between days was found only for the DLPFC stim group. Decreased alpha power was found between days 1 and 4 for DLPFC stim in the N-Back task,

where cluster-level significance was found in left temporoparietal electrodes. For M1 stimulation, cluster-level increases in central/parietal alpha and broadly-distributed

theta power were found in the Easy Landing task.

(Table 4). Two separate clusters of significant differences in
alpha-band power were seen between days 1 and 4 for M1 stim
participants, but not M1 sham participants (see Table 4 and
Figure 8B). The first cluster revealed increased alpha power in
the M1 stim group over parietal electrode sites. The second
revealed decreased alpha power in right temporal electrodes.

EEG/fNIRS/behavioral correlations
There were positive correlations between change in MFT power
(day 4minus day 1) and both average Hbtot and average Hboxy
beta values in DLPFC channels for M1 stim subjects. The
direction of this correlation indicates that increased theta from
days 1 to 4 is correlated with less reduction of Hboxy/Hbtot
from days 1 to 4 in DLPFC fNIRS channels (Table 5). There
were also strong negative correlations between change in alpha
power and both average Hbtot and average Hboxy beta values
in M1 channels for M1 stim subjects, indicating that increased

parietal alpha power is correlated with reduced fNIRS beta values.
No correlations were identified between theta/alpha power and
fNIRS beta values for sham groups, there was no correlation
between theta and fNIRS beta values at M1 channels, and there
was no correlation between alpha power and fNIRS beta values at
DLPFC channels (p’s > 0.1).

DISCUSSION

Overview
In this study, we measured task-evoked changes in functional
neural activity and the modulation of learning from tDCS to the
right DLPFC or left M1. Simultaneous fNIRS and EEG measured
changes in neural activity as subjects learned to complete flight
simulator and n-back training exercises at increasing levels of
expertise across four daily consecutive sessions. Assessment of
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TABLE 5 | Significant correlations among EEG, fNIRS, and behavioral

results in the Easy Landing task, for the M1 stim group.

r p

SIGNIFICANT EEG/BEHAVIOR CORRELATIONS

Day 2

Online Learning

MFT × Number of control inputs

0.66 0.038

MFT × autopilot displacement 0.85 0.002

MFT × VSDFA 0.84 0.002

MFT × vertical speed variance 0.84 0.002

Offline learning

MFT × autopilot displacement

−0.85 0.002

MFT × VSDFA −0.85 0.002

MFT × vertical speed variance −0.85 0.002

Day 4

Online Learning

Broadly-Distributed Theta Power × VSDFA

−0.70 0.025

Central/Parietal Alpha Power × VSDFA −0.85 0.002

SIGNIFICANT EEG/fNIRS CORRELATIONS (DAY 4–DAY 1)

MFT × Hbtot 0.82 0.045

MFT × Hboxy 0.81 0.051

Parietal Alpha Power × Hbtot −0.95 0.005

Parietal Alpha Power × Hboxy −0.94 0.005

VSDFA, Vertical Speed Deviance from Autopilot.

TABLE 6 | Summary of behavioral and neurophysiological results.

Group N-Back G-force fNIRS EEG

DLPFC Stim - Variance - Variance - Hboxy and Hbtot

in the DLPFC

(flight only)

+ MFT power

(N-back and flight)

M1 Stim + Parietal Alpha

power (flight only)

behavioral performances were performed on n-back accuracy,
flight metrics of landing performance, as well as for online
and offline learning rates associated with practice and skill
acquisition. We report that tDCS to the right DLPFC reduced
the variability in online learning across individuals in the n-back
task, and in g-force on the easy landing task. This was associated
with decreased Hboxy and Hbtot in the DLFPC across days for
the landing task, and increased MFT power in both the n-back
and landing tasks. Additionally, tDCS to the left M1 increased
tonic parietal alpha power, which was correlated with changes in
Hboxy and Hbtot at M1 fNIRS channels.

Interpretation—Behavior
The observed reduction in group variability in online learning
may be attributed to “convergence to the mean” (i.e., increasing
online learning rates of low performing individuals and reducing
online learning rates of high performing individuals). Subjects
may have employed distinct cognitive and behavioral strategies,
with correspondingly different brain networks, to complete and
learn the n-back task across sessions. tDCS of the right DLPFC

may have therefore facilitated the deployment and consolidation
of a particular strategy in some subjects, and inhibited certain
behaviors in others. The variance in the learning rates did
not arise from individual differences of untrained performance,
as initial and final performances were similar (see Section
Behavioral Results). Furthermore, the results could indicate
that all groups reached a ceiling of behavioral performance,
or that our measures are under-powered to detect a change
in performance statistically, or that a reduction in individual
variability produced this observation.

The variability results reported for the easy-landing task
were specific to DLPFC stim subjects for the g-force metric [a
similar reduction in variance was not seen for the same data
in the autopilot displacement (Figure 6), the number of control
inputs (Supplementary Figure S1), the variability of vertical speed
(Supplementary Figure S2), and the vertical speed deviation from
autopilot (Supplementary Figure S3)]. Since both the initial and
final g-force values were not significantly different across stim
and sham groups, the reduction in DLPFC stim group variability
implies a similar convergence to themean phenomenon observed
for n-back learning. tDCS of the DLPFC may therefore, facilitate
the learning of a smoother landing procedure in subjects who
would otherwise consolidated an incorrect landing procedure
and increased landing g-forces in subsequent days. Likewise,
tDCS of the DLPFCmay have hindered some subjects who would
have otherwise consolidated a superior landing procedure and
decreased landing g-forces in subsequent days.

It should be noted that for the measure of 3D autopilot flight
path deviation (Section 3D Autopilot Displacement), it was not
readily apparent to subjects when the aircraft deviated from
the prescribed flight path of the autopilot; there is no visual
field indication that they are deviating from the glide slope,
and the Flight Director instrument does not indicate degree
of displacement from optimal glide slope. Additionally, for
deviation from the autopilots vertical speed (Section Autopilot
Vertical Speed Deviation) is possible that, because vertical speed
was a peripheral skill required for landing (i.e., non-essential for
a successful landing), subjects did not train to maintain a low
vertical speed deviation from the reference glide path. As subjects
needed only to maintain one constant vertical speed during the
landing task, they may have reached maximal capacity to do so
beginning from day 1. The combined learning rates and online
learning metrics seem to support this view (see Supplementary
Table S2, Supplementary Figure S3). Furthermore, low-G Force
landings can be performed from a wide range of glide slopes,
which can mask large deviations from the “ideal” flight path.

Interpretation—Neurophysiology
We observed an increase in MFT in the DLPFC stim group
compared to the DLPFC sham group, as well as experience-
related increase in MFT and decrease in central/parietal alpha
in DLPFC stim, indicating increased working memory and
attention (Klimesch et al., 1997; Jensen and Tesche, 2002;
Ishii et al., 2014). Increased theta/alpha band activity in M1
stim compared to M1 sham near the site of stimulation may
indicate greater motor cortex excitability (Sauseng et al., 2009).
Furthermore, experience-related increases (day 4 vs. 1) in
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broad central/parietal theta/alpha in M1 stim during flight tasks
implicate greater tactile/proprioceptivemonitoring. For example,
Baumeister et al. (2008) observed that increased parietal theta
during goal-directed learning was associated with increased
motor skill performance. Although MFT nor parietal alpha
power increases were correlated with behavioral performance
increases in this study, it is possible that increases in MFT
or parietal alpha may be indirectly associated with cognitive
performance enhancement. The significant correlations observed
between MFT and online and offline learning of autopilot
displacement, vertical speed variance and deviation in the M1
stim group support this hypothesis (Table 5).

We observed a decrease in Hboxy and Hbtot in DLPFC
channels for the DLPFC stim group in the easy landing
task (Table 2 and results Hboxy and Hbtot). This evidence
suggests that tDCS produced more efficient neural activation
to consolidate the newly-learned procedural skills as has been
previously reported (Wolf et al., 2007; Holland et al., 2011; Ayaz
et al., 2012; DiStasio and Francis, 2013). Previous literature from
McKendrick et al. (2015) suggest that some, but not all, of these
changes may be related to the task performance enhancements
associated with tDCS. However, changes in Hbtot concentration
may also be related to task reward value (DiStasio and Francis,
2013), the recruitment of additional motor resources (Herff
et al., 2013), or a behavioral ceiling effect where low-performing
subjects were not able to advance to expert performance levels as
shown by Ayaz et al. (2012). Although reward was not explicitly
manipulated in the easy landing task, subject’s motivations may
have played a role based on their prior day’s performance.
Similarly, the motor resources required for the easy landing
task may have changed as subjects learned more advanced
motor programs to complete the task. Finally, a ceiling effect
could explain the more efficient neural activation, and the
trend in meta-learning for stim groups supports this theory
(Figure 5E).

Hbtot and Hboxy were also significantly correlated with MFT
from days 4 to 1 in the easy landing task in the M1 stim group.
These results suggest that these separate neurophysiological
measures are not totally independent. Future studies should
examine the relationships between MFT, Hbtot, and behavioral
performance in a larger cohort to determine whether these effects
are truly concomitant.

Relation to Prior Investigations of tDCS in
Real-World Tasks
To date, there have been few studies in which procedural/real
world learning tasks have been tested with a tDCS intervention
(Izzetoglu et al., 2014; Nelson et al., 2014), and even
fewer with a significant motor component as the focus of
performance/training enhancement (Zhu et al., 2015). However,
tDCS enhancement of real-world skills has been reported for
complex motor control tasks. For example, Beeli et al. (2008)
reported that anodal tDCS to either the left or right DLPFC
(10/20 EEG site F3 or F4) significantly improved the care of
driving style as measures by following distance, average speed
and number of errors. Similarly, Sakai et al. (2014) reported that

anodal tDCS to the right DLPFC significantly improved car-
following and lane-keeping performance in a driving simulator
task across days. Finally, Zhu et al. (2015) reported that cathodal
tDCS to the left DLPFC suppressed verbal working memory but
improved motor learning. The results presented here support
these findings, as we observed that tDCS to the right DLPFC
reduced online learning variability in higher cognitive measures
(e.g., affecting the g-force value of landing by judging multi-
modal flight-data in a timely fashion, or n-back accuracy
variance) more than those related motor planning or judgment
(e.g., flight path deviation see Table 6).

Furthermore, real-world skill enhancement from right
inferior frontal tDCS has been reported in a perceptual threat
detection (Clark et al., 2012; Falcone et al., 2012), and tDCS of
the DLPFC has been shown to increase regional cerebral blood
oxygenation and behavioral performance in target detection in
an air traffic control task (Nelson et al., 2014). The results
presented here are indirectly related to these findings as the
reduction in behavioral variance we observed from tDCS to the
right DLPFC could be attributed to increase in spatial attention,
vigilance, or perceptual discrimination (e.g., when to judge an
n-back match or the correct time for a nose-flare maneuver
during landing). We also observed that tDCS of the right DLPFC
decreased Hboxy and Hbtot in DLFPC channels across days in
the easy landing task. One possible explanation for the difference
reported in cerebral blood oxygenation between the two studies
concerns the disparate experimental designs employed. Here, all
subjects returned for four consecutive days of testing, regardless
of physiological or behavioral measures, whereas Nelson et al.
(2014) had subjects return for days 2–4 only if performance and
blood flow velocity declined over the course of the first 40-min
session.

Relation to Prior Investigations of tDCS in
Working Memory
Previous studies have reported evidence that working memory
improvements are correlated with the administration of tDCS
in diverse contexts (Grafman et al., 1994; Nitsche et al., 2003;
Dockery et al., 2009; McKendrick et al., 2015). Specifically, tDCS
over DLPFC was associated with acute increases in working
memory accuracy (Stagg and Johansen-Berg, 2013; Chhatbar and
Feng, 2015; De Putter et al., 2015; Santarnecchi et al., 2015).
Although, we observed a reduction in learning rate variance
from tDCS to the right DLPFC in the n-back task, but did
not find an increase in working memory accuracy for tDCS of
either the DLPFC or M1. This discrepancy may be attributed to
the adaptive n-back design employed here, the long durations
of experimental sessions, and a potential ceiling effect from
repeated tDCS and n-back sessions across consecutive days. In
addition, the application of tDCS began directly prior to the
n-back task (see Figure 1) and the effects of stimulation may
require more time to produce the reported improvements in
n-back accuracy.

Limitations and Future Directions
A goal of this research was to determine if tDCS stimulation
would improve training techniques for pilots in a flight simulator.
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Such improvements could drastically reduce time and therefore
the cost of training a pilot, as it would in any training
environment. While our results show decreased variability
in training, it is too early to confirm or deny any useful
improvements to simulation training until an understanding of
the sources and contributing factors to the observed behavioral
variance is achieved.

Additional studies must be performed to further investigate
n-back accuracy improvement with tDCS by comparing different
stimulation montages, stimulation timing, and task paradigms.
Because we were unable to parametrically manipulate these
parameters in this study, we are unable to determine which of
these factors may have led to null effects of tDCS on n-back
accuracy. The baseline performance of individuals with differing
initial skill levels in n-back and flight tasks are important, and
measures of this were limited by the study design employed. In
addition, the experimental design employed here (continuous,
multiple tasks over 60min duration) did not provide a sufficient
means to control the endogenous brain state of subjects before
and throughout the experimental session given the numerous
tasks, and instructions and feedback required for subjects to
perform them. Thus, subject’s diverse experiences and resultant
brain states throughout the session may be a significant factor
in the interpretation of our findings. For example, the n-back
task was performed near the beginning of the stimulation
period, while the easy flight landing was performed near the
end of the stimulation period. Future studies should examine
relationships between tDCS effects and EEG microstates and/or
brain metabolic activity.

Some of the null findings in this study were related
to exceptionally high within-group variance. One potential
method to examine within and across group behavioral
variance is to categorize subjects by learning rate bins or
perform a cluster analysis of tDCS responders and non-
responders. Since the same tDCS protocol may have variable
effects across individuals, possibly due to neuroanatomical and
neurophysiological differences, and that the same tDCS protocol
may produce different effects within an individual over time,
due to changes resulting from neural plasticity, the absence of
post-hoc categorization of subjects likely reduces the statistical
power and interpretability of our results (e.g., Supplementary
Table S2). Future studies may benefit from real-time assessments
and individualized tDCS planning rather than a “one size fits all”
approach. While a priori selection or post-hoc classification of
subjects within experimental groups can control for differences
in baseline performance levels, it is not realistic when transferring
this technology into real-world training environments.

The high variability between subjects and the need for
personalized training becomes more important when we
recognize the subject pool for this experiment all fit the
western, educated, industrialized, rich and democratic (WEIRD)
population. Although this population of subjects for the
experiment goal of pilot training was acceptable, we speculate
that the inclusion of a wider demographic range of the world
populous may produce an even larger variability in behavioral
performance. Therefore, a systematic understanding of the
sources and contributing factors to the observed behavioral
variance is extremely important for the application of tDCS
across a wider range of subjects.

CONCLUSIONS

The results presented here underscore the importance of
developing the understanding to identify and optimize
neurostimulation protocols. Our results suggest that the
time course of both online and offline learning is critical for
the observed changes in working memory and procedural
flight performance. Repeated training sessions reveal time-
dependent factors regarding the interaction between tDCS and
the learning processes that remain unclear in the literature.
Applying such interventions in the real-world will require
a much larger investment than initially anticipated in order
for the scientific community to measure and catalog the
precise behavioral, learning, and neurophysiological changes
resulting from each component of procedural skill acquisition.
Because there appears to be a differential, region-based
effect of neurostimulation interventions, it is critical to
determine the optimal targets, stimulation parameters, timing
relative to the target behaviors, and synchrony between innate
learning processes and strategies and exogenous stimulation for
maximally-effective augmentation.
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