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Abstract

There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with
this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right
dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved
by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a
within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We
show Active stimulation had no effect on model-based control or on model-free (‘habitual’) control compared to Sham
stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power
to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had
no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude
more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that
anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based
control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region.
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Introduction

Electrical stimulation of the human brain has received

widespread attention over recent years. It has been used to study

the function of healthy cortex [1], connectivity between regions

[2], as an avenue for treatment in disorders such as depression,

Parkinson’s disease and stroke [3–6], and to improve normal

function such as in skill learning [7,8].

Here we used transcranial direct current stimulation (tDCS), a

technique whereby two electrodes are placed on the skull and a

fixed current level is applied [9]. This technique is reported to

increase and decrease the excitability of the neural tissue

underlying the anodal and cathodal electrode respectively [8,9].

A number of studies have suggested that high-level cognition can

be improved by anodal stimulation of the prefrontal cortex.

Specifically, stimulation of the dorsolateral prefrontal cortex

(dlPFC) has been shown to decrease risk-taking [10], improve

working memory [11,12] and improve classification learning [13].

We attempted to influence the process of decision-making

through anodal stimulation of the right dlPFC. Decision-making is

often dissected into a slow, deliberative, goal-directed component

and a fast, automatic, habitual component [14–16]. In value-based

choice, such a distinction is made as model-based versus model-

free control [15,17]. A model-free system learns a cached value for

each action based on reward prediction errors and guides behavior

based on these alone, trading a minimum of computational effort

against a relative lack of flexibility in adjusting to current goals.

Model-based control, by contrast, dynamically computes optimal

actions by forward planning, a process that is computationally

demanding but allows for flexible, outcome-specific behavioral

repertoires [15].

We focused on the right dlPFC based on evidence for its role in

model-based processes such as the construction and use of

associative models [18–20] and the coding of hypothetical

outcomes [21]. Work on non-human primates also implicates

the dlPFC as a site for convergence of reward and contextual

information [22]. Furthermore, we recently showed that right, but

not left, dlPFC is necessary for model-based control, evidenced by

a reduction in model-based control after disruptive theta-burst

transcranial magnetic stimulation to the right dlPFC [23]. Here we

sought to enhance, rather than disrupt, model-based control

through anodal stimulation. We used a task which has been shown

to quantify model-based and model-free control [24–26] and

tested participants undergoing anodal or Sham tDCS stimulation

to the right dlPFC in a double-blind, counterbalanced design. We

hypothesized that anodal stimulation would improve model-based
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control without affecting model-free control, an effect driven by an

enhancement of a component process of model-based control

subserved by the right dlPFC.

Materials and Methods

We recruited 23 healthy participants to participate in an

experiment over 2 sessions. All participants had normal or

corrected-to-normal vision and no history of psychiatric or

neurological disorders. One participant was excluded from

analysis due to failed stimulation after an increase in resistance

from drying electrodes, leaving 22 participants (11 female, mean

age6 SD: 22.565.3 years, all participants were at least 18 years of

age at the time of consent) for analysis.

Ethics Statement
Written informed consent was obtained from all participants

prior to the experiment and the UCL Research Ethics Committee

approved the study (project number 3450/003).

Setup of Experiment and Double-blinding Procedure
Participants were tested on 2 occasions between 3 and 8 days

apart, going through the same procedure on each day: after

obtaining informed consent we determined the electrode locations,

explained the task, guided participants through a short practice

session, placed the electrodes on the scalp, turned on stimulation,

and started the task. The experiment was double-blind, with both

experimenter and participant unaware of the stimulation condi-

tion (Active or Sham). This was achieved through a system of

blinding codes embedded in the stimulation machine (Neuro-

Conn, Germany). First, co-author GP selected 24 pairs of 5-digit

codes, each pair containing one code associated with Active and

one code associated with Sham stimulation as programmed into

the stimulation machine. These were then permuted such that half

the pairs had Active stimulation on session 1 and Sham stimulation

on session 2, whereas the other half of pairs had the reversed

order. GP kept the unblinded version of the codes and handed the

permuted set to PS, who acquired the data. Each participant was

assigned a pair in order of testing date. When the participant was

prepped for stimulation, their session-specific code was entered

into the stimulation machine, which then administered the

corresponding Active or Sham protocol without any indication

as to the stimulation condition. We tested the participant’s

awareness of the stimulation condition at the end of the

experiment (see below). PS was deblinded after acquisition of all

23 datasets.

Task
The task design was based on Daw et al. [24] and identical to

Wunderlich et al. [25] except for faster trial timings and a larger

number of trials. The task was programmed in Cogent 2000 &

Graphics (John Romaya, Wellcome Trust Centre for Neuroimag-

ing and Institute of Cognitive Neuroscience development team,

UCL) in Matlab (The Mathworks Inc).

Each trial consisted of two choice stages. Each choice stage

contained a 2-alternative forced choice, with choice options

represented by a fractal in a colored box on a black background

(Figure 1A). On each choice participants had to respond within 2

seconds using the left/right cursor keys or the trial was aborted

and not rewarded. Missed trials were omitted from analysis.

Choice at the first stage always involved the same two stimuli.

After participants made their response the rejected stimulus

disappeared from the screen and the chosen stimulus moved to the

top of the screen. After 0.5 s one of two second stage stimulus pairs

appeared, with the transition from first to second stage following

fixed transition probabilities. Each first stage option was more

strongly (with a 70% transition probability) associated with one of

the two second stage pairs, a crucial factor in allowing us to

distinguish model-free from model-based behavior (see below). In

both stages the two choice options were randomly assigned to the

left and right side of the screen, forcing the participants to use a

stimulus- rather than action-based learning strategy. After the

second choice the chosen option remained on the screen together

with a reward symbol (a pound coin) or a ‘no reward’ symbol (a

red cross). Each of the four stimuli in stage two had a reward

probability between 0.2 and 0.8. These reward probabilities

drifted slowly and independently for each of the four second stage

options through a diffusion process with Gaussian noise (mean 0,

SD 0.025) on each trial. Three random walks were generated

beforehand and randomly assigned to sessions. We chose to pre-

select random walks as otherwise they might, by chance, turn out

to have relatively static optimal strategies (e.g. when a single

second-stage stimulus remains at or close to p(reward) = 0.8).

Prior to the experiment participants were explicitly instructed

that for each stimulus at the first stage one of the two transition

probabilities was higher than the other, and that these transition

probabilities remained constant throughout the experiment.

Participants were also told that reward probabilities on the second

stage would change slowly, randomly and independently over

time. On both days, participants practiced 50 trials with different

Figure 1. Two-step task design. (A) On each trial a choice between
two stimuli led probabilistically to one of two further pairs of stimuli,
which then demanded another choice followed probabilistically by
reward or no-reward. Participants could learn that each first-stage
stimulus led more often to one of the pairs; this task structure could be
exploited by a model-based, but not by a model-free controller. (B)
Model-based and model-free strategies for reinforcement learning
predict differences in feedback processing after uncommon transitions.
If choices were exclusively model-free, then a reward would increase
the likelihood of staying with the same stimulus on the next trial,
regardless of the type of transition (left). Alternatively, if choices were
driven by a model-based system, the impact of reward would interact
with the transition type (middle).
doi:10.1371/journal.pone.0086850.g001

Neurostimulation and Model-Based Decision-Making
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stimuli before starting the task. The main task consisted of 350

trials with 20 s breaks every 70 trials. The participant’s bonus

money in pounds sterling was the total number of rewarded trials

minus 170, divided by 5. Added to this money was a flat rate of

£7/hour.

Analysis
We analyzed stay-switch behavior on the first choice of each

trial to dissociate the relative influence of model-based and model-

free control. A model-free reinforcement learning strategy predicts

that choices followed by rewards will lead to a repetition of that

choice, irrespective of whether it followed a common or

uncommon transition (Figure 1B, left). This is because model-

free choice works without considering structure in the environ-

ment. A reward after an uncommon transition would therefore

adversely increase the value of the chosen first stage cue without

updating the value of the unchosen cue. In contrast, under a

model-based strategy we expect an interaction between transition

and reward, because a rare transition inverts the effect of a

subsequent outcome (Figure 1B, middle). Under model-based

control, receiving a reward after an uncommon transition

increases the propensity to choose the previously unchosen first-

stage stimulus. This is because the rewarded second stage stimulus

can be more reliably accessed by choosing the rejected first stage

cue than by choosing the same cue again. To summarize, this

analysis quantifies model-free behavior as the strength of the main

effect of reward, and model-based behavior as the strength of the

reward by transition interaction, even when actual behavior is a

hybrid of model-free and model-based control (Figure 1B, right).

Whereas most studies using this task have only looked at the

preceding trial to explain choices on the current trial [24–26], here

we expanded on this approach to examine model-based and

model-free influences that go up to 3 trials back. This provides a

more fine-grained dissection of the influences of each system on

behavior. We used hierarchical logistic regression implemented in

lme4 [27] in the R software package. The dependent variable for

trial t was 1 when stimulus A was chosen and 0 when stimulus B

was chosen in the first stage. Each regressor then described

whether events on trial t-1, t-2, and t-3 would increase (coded as

+1) or decrease (coded as 21) the likelihood of choosing A

according to a model-based or model-free system. If a trial

contained a common transition the model-based and model-free

system would make identical predictions, whereas on trials with

uncommon transitions these predictions would be inverted. We

additionally modeled the main effect of transition type (common as

+1, uncommon as 21) on trial t-1, t-2 and t-3, which we predicted

would have no effect on the propensity to choose stimulus A. We

also tested 3 alternative models that used 1) one set of model-based

regressors for both conditions, 2) one set of model-free regressors

for both conditions and 3) one set of model-based and one set of

model-free regressors for both conditions (‘null model’). These

models allowed us to test whether the additional complexity of

having separate regressors for the stimulation conditions was

appropriate. These models were compared using the BIC and AIC

values provided by the lme4 package.

We estimated coefficients for the regressors shown in Table 1,

taking all coefficients as random effects over participants. That is,

the regression model is fit to each participant’s data while

simultaneously maximizing the likelihood of the parameters across

the population. This method accounts for both within- and

between-subject variance, providing unbiased estimates of the

population coefficient for each regressor. This hierarchical

approach is different from the more common approach whereby

a full model is fit to each participant separately, and statistics are

performed on the parameter estimates. The latter ignores within-

subject variance and is only concerned with variance between

subjects (i.e. random effects).

We then performed contrasts over the population coefficients to

test for differences between conditions in model-free and model-

based control. All p-values reported in the manuscript that pertain

to the logistic regression were estimated using the ‘‘esticon’’

procedure in the ‘‘doBy’’ package which relies on the chi-square

distribution [28]. Power analyses were performed using the Matlab

7.12.0 ‘sampsizepwr’ function and G*Power 3.1.7 [29,30]. Other

tests were performed in SPSS 17.0.

Stimulation
On both sessions the anodal electrode was placed over right

dlPFC and the cathodal electrode over the inion. The inion was

chosen for cathodal electrode placement in order to maximize

current flow through the dlPFC. The right dlPFC was located

using the 10/20 system, which is appropriate given the limited

level of spatial resolution of tDCS [31]. In brief, we first located

Fpz, Fz and Oz as 10%, 30% and 90% of the nasion-inion

distance, measured from the nasion. We then located F8 as 30% of

the distance between Fpz and Oz, measured from Fpz passing

over the ears. Electrode F4, commonly used for the right dlPFC

[31], was then determined as 50% of the distance between F8 and

Fz. We used conductive rubber electrodes inserted in a sponge

cover measuring 7.5 by 6 cm, secured to the head using a bandage.

We placed the electrode along the gyrus, i.e. the electrode was

placed in superior-medial to inferior-lateral direction.

We used a DC-stimulator system (NeuroConn, Germany). In

the Active condition a 2 mA current was delivered for 25 minutes

with 15 s ramping-up and ramping-down. In the Sham condition

Table 1. Regressors in the full model for first-stage choices.

regressor estimate SE z-value p

intercept 0.25 0.03 7.81 ,0.0001

Active 2264.18 194.46 21.36 0.1743

Active MF Lag-1 287.02 62.06 4.63 ,0.0001

Active MF Lag-2 293.64 50.73 5.79 ,0.0001

Active MF Lag-3 172.87 51.73 3.34 0.0008

Active MB Lag-1 244.48 72.35 3.38 0.0007

Active MB Lag-2 180.58 66.90 2.70 0.0069

Active MB Lag-3 200.76 44.92 4.47 ,0.0001

Sham MF Lag-1 374.51 51.11 7.33 ,0.0001

Sham MF Lag-2 287.55 54.85 5.24 ,0.0001

Sham MF Lag-3 246.79 59.53 4.15 ,0.0001

Sham MB Lag-1 226.13 64.93 3.48 0.0005

Sham MB Lag-2 207.15 77.43 2.68 0.0075

Sham MB Lag-3 170.37 60.91 2.80 0.0052

Active transition Lag-1 24.62 36.24 20.13 0.8985

Active transition Lag-2 9.20 32.34 0.28 0.7760

Active transition Lag-3 219.03 34.09 20.56 0.5767

Sham transition Lag-1 26.61 42.27 20.16 0.8758

Sham transition Lag-2 15.68 33.42 0.47 0.6389

Sham transition Lag-3 22.77 36.88 20.08 0.9400

MF=model-free; MB=model-based; SE = standard error. Lag denotes the effect
of time. Bold-face indicates p,.05 uncorrected for multiple comparisons.
doi:10.1371/journal.pone.0086850.t001

Neurostimulation and Model-Based Decision-Making
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the current ramped up then down over 15 s, and then performed

continuous impedance testing. This manipulation made it very

hard for the participant to tell which type of stimulation was given

at what time. We confirmed this by giving a 2-alternative forced-

choice at the very end of the experiment asking which session

contained the Active stimulation. This test showed that partici-

pants as a group were not significantly different from chance at

determining the session that contained Active stimulation (10 out

of 22 participants guessed correctly, binomial test, p = .83). We

employed a number of post-hoc checks to safeguard against

experimental error. Firstly, we monitored the resistance reported

by the DC-stimulator throughout the experiment, rejecting one

participant for whom stimulation was stopped after a strong

increase in resistance (.55 kV). Secondly, after the experiment we

confirmed for a random set of 4 sham and 4 active codes that they

were correctly linked to the sham or active stimulation procedure

by examining the current with an amperometer. This was the case

for all 8 codes. Thirdly, we note that of the 100,000 possible codes

that can be entered into the DC-stimulator only 200 are allowed,

minimizing the possibility of erroneously entered codes.

After turning on stimulation the participant waited for 10

minutes before starting the task in order to ensure the effects of

stimulation were fully established [9]. Altogether participants

received 25 minutes of stimulation at 2 mA. It is known that

cortical excitability changes outlast such stimulation durations by

over an hour ([9], though see [32]). The window of stimulation

therefore need not fully overlap with the task, and in our design

stimulation ended approximately halfway through the task. It

should be noted that choices for stimulation parameters are based

on studies of motor cortex stimulation. It is possible that these

parameters, when used on frontal areas, have different effects. To

our knowledge there is no published data on this, though we note

our protocol is similar to that of other studies using tDCS on

dlPFC [10,13].

Results

Participants earned (mean6SD) £8.2562.56 during Active

stimulation and £8.3062.39 during Sham stimulation (no

difference in paired samples t-test, t(21) ,1). Participants missed

0.1060.37% of trials during Active stimulation and 0.0960.18%

of trials during Sham stimulation (no difference in paired sampled

t-test, t(21) ,1).

For comparison to previous studies using this task we plot the

stay probabilities based on reward/no-reward and common/

uncommon transition on the previous trial (Figure 2). Qualitatively

the pattern in both the Active and Sham condition resembles that

of a hybrid controller (Figure 1B, right) in which choices are

influenced both by model-based and model-free control. To

quantify these influences and examine effects of trials that extend

beyond the previous (lag-1) trial, we performed a hierarchical

regression analysis (see Table 1 for regressors). This revealed that

all model-based and model-free regressors were significantly larger

than zero, meaning both systems rely on events at least 3 trials into

the past (Figure 3; see Table 1 for statistics). Contrary to our

hypothesis we did not find a difference between the Active and

Sham stimulation conditions in any of the contrasts (see Table 2

for statistics). We therefore report no evidence for an effect of

anodal tDCS to right dlPFC on model-free or model-based

control. In subsequent analyses we explored whether this null

effect was due to a lack of power in our experiment or due to an

inability of tDCS to right dlPFC to modulate model-based or

model-free control.
To estimate the power in our experiment we gathered effect size

estimates in the published literature for manipulations involving

Figure 2. Stay probabilities as a function of reward and
transition on previous trial. Participants showed a pattern of stay
probabilities characteristic of hybrid model-based/model-free control
(cf. Figure 1B) during both Sham and Active stimulation of dlPFC. Error
bars indicate SEM.
doi:10.1371/journal.pone.0086850.g002

Figure 3. Model-based and model-free influences on choice.We
estimated the dependence of a choice at trial t on reward and transition
events in trials t-1 up to t-3. These regression coefficients can be
interpreted as model-based and model-free influences on choice, and
larger coefficients indicate a stronger influence over choice. Firstly, all
regression coefficients in the plot are significantly larger than zero,
suggesting that model-based and model-free systems did not just rely
on events on the previous trial but rather on events as far as 3 trials in
the past. We did not observe any difference between Active and Sham
conditions. Error bars indicate SEM.
doi:10.1371/journal.pone.0086850.g003

Neurostimulation and Model-Based Decision-Making
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the 2-step task [23,25] and for two tDCS experiments on dlPFC

(enhancement of working memory [11]; reduction in risk-taking

[10]). We were unable to extract effect size estimates from three

other tDCS studies on the dlPFC [13,33,34]. For purposes of the

power analyses we assumed that a tDCS effect on model-based

control has an effect size, expressed in Cohen’s d, similar to these

studies. Our power to detect this effect, given a two-tailed alpha of

0.05 and sample size of 22, was then at least 0.60 (Figure 4).

Although this is not as high as the normative power of 0.80, it is

considerably higher than many studies in cognitive neuroscience

[35]. However, to support our claim that tDCS to right dlPFC

does not affect model-based and model-free control we formally

tested this hypothesis in a model comparison.

The analyses presented above rely on a frequentist approach

and hence are framed in terms of null hypothesis testing, which

precludes strong conclusions being drawn about the absence of an

experimental effect. Hence, based on the preceding analyses we

cannot decisively conclude that the null model is more likely

compared to the full model that allows for differences in model-

free or model-based control in Active versus Sham conditions.

Bayesian statistics, by contrast, allow inferences to be made about

the absence of experimental effects, and we thus exploited this

approach to further probe our results. Thus, we fit three models to

the data that were identical to the full model, except that the

model-free and/or model-based regressors were assumed identical

between stimulation conditions. The first model contained a single

set of model-free regressors for both stimulation conditions; the

second contained a single set of model-based regressors for both

stimulation conditions; and the third (‘null’) contained a single set

of model-based and a single set of model-free regressors for both

stimulation conditions (see Table 3 for the regressors in the null

model). We then performed Bayesian model selection using the

Bayesian Information Criterion (BIC) and Akaike Information

Criterion (AIC) that are returned by the lme4 package for each

model (see Table 4). Although derived within different frame-

works, both the BIC and AIC can be thought of as approximations

to the true model evidence [36], both containing a term reflecting

the likelihood of the model given the data (the ‘accuracy’ term) and

a penalization term reflecting the number of parameters in the

model (the ‘complexity’ term). As such, the difference in the values

of the Information Criteria between models approximates the log

Bayes factor, which is the ratio of probabilities of the model given

the data. The BIC difference was 900 in favor of the null model

when compared to the full model that contains a separate set of

model-based and model-free regressors for the Active and Sham

condition. This indicates the null model was e900 times more likely

than the full model. The AIC, which penalizes model complexity

less harshly than the BIC, was 100 in favor of the null model

compared to the full model, i.e. the null model was e100 times more

likely. We found a similar pattern of results for the model-free

clamped and model-based clamped models which were .e29 and

.e44 less likely than the null model, respectively. Therefore we can

conclude that it is significantly more likely that tDCS had no effect

on model-based or model-free control than that it did.

To test for session effects we performed a hierarchical logistic

regression with identical regressors as those described in Table 1,

but instead of Active and Sham we coded the regressors as session

1 and 2, respectively. The equivalent contrasts to Table 2 were all

p..15 except effect for Lag on MF in session 1, p= .003, and

session 2, p = .06. This suggests that model-based and model-free

control do not change with additional exposure to the task, which

replicates previous studies [23,25].

Both model-based and model-free control make equivalent

predictions for second-stage choices as there is no task structure to

exploit. We nevertheless explored the effects of stimulation on 1-

step reward learning. We examined second-stage choices using

hierarchical logistic regression similar to our analysis of first-stage

choices: stay-switch behavior was regressed against reward

received on the most recent trial involving that second-stage pair

Table 2. Contrasts performed on the full model.

Contrast estimate SE x2 (1 df) p

MF Active.Sham 2155.32 119.50 1.69 0.1937

MB Active.Sham 22.17 131.42 0.03 0.8661

MF/MB6Active/Sham 2177.49 192.33 0.85 0.3561

MF Lag-1 Active.Sham 287.49 55.46 2.49 0.1146

MF Lag-2 Active.Sham 6.09 54.82 0.01 0.9115

MF Lag-3 Active.Sham 273.93 50.87 2.11 0.1461

MB Lag-1 Active.Sham 18.35 59.86 0.09 0.7592

MB Lag-2 Active.Sham 226.57 60.15 0.20 0.6587

MB Lag-3 Active.Sham 30.39 54.31 0.31 0.5758

Lag MF Active 114.16 55.61 4.21 0.0401

Lag MF Sham 127.72 45.43 7.90 0.0049

Lag MB Active 43.72 60.32 0.53 0.4686

Lag MB Sham 55.76 45.04 1.53 0.2157

Lag MF.MB 142.40 124.64 1.31 0.2532

Lag MF Active.Sham 213.57 65.62 0.04 0.8362

Lag MB Active.Sham 212.04 70.89 0.03 0.8651

Lag MF/MB6Active/Sham 21.53 102.76 0.00 0.9882

MF=model-free; MB=model-based; SE = standard error; x2 = chi-square
distribution; df = degrees of freedom; Lag denotes the effect of time. Bold-face
indicates p,.05 uncorrected for multiple comparisons.
doi:10.1371/journal.pone.0086850.t002

Figure 4. Statistical power to detect true effects. We estimated
statistical power in our study based on effect size estimates taken from
the published literature. We could then compute the power in our
study based on 22 participants and a false positive rate of 0.05 (two-
sided alpha). Assuming any true effect of tDCS would have a similar
magnitude as the studies shown in the figure, the current study had a
power of 50–80%.
doi:10.1371/journal.pone.0086850.g004

Neurostimulation and Model-Based Decision-Making
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(i.e. lag-1 only). Transition was not included as a factor because

second-stage choices are assumed to be independent of the

transition type that led to the state. We observed that in both

stimulation conditions there was a main effect of reward, such that

if a particular stimulus was rewarded in the most recent encounter

with that second-stage pair it was more likely to be chosen again

(Active, mean 6 SE=0.9660.13, p = 9.4610213; Sham, mean 6

SE=0.8260.11, p = 5.46610213). There was a trend-level effect

of stimulation-by-reward suggesting a stronger influence of reward

under Active stimulation (mean 6 SE difference = 0.1460.08;

p = .07), but given the large amount of statistical tests performed

we do not further consider this marginal effect. Together, these

results suggest stimulation had no effect on second-stage choices.

Discussion

Here we provide evidence that tDCS to right dlPFC does not

affect model-based or model-free control in an established

behavioral paradigm. In a double-blind design we confirmed that

participants used both model-free and model-based strategies to

solve the task, and we could quantify the extent to which either

strategy was used. A putative enhancement of right dlPFC activity

through Active compared to Sham anodal tDCS stimulation did

not significantly change the level of model-based or model-free

control. Formally testing this null effect, we provide evidence that

a null model predicting no effect of stimulation performed

significantly better than more complex models predicting an effect

of stimulation on model-based control, model-free control, or

both.

We hypothesized that an enhancement of right dlPFC would

improve model-based control, similar to beneficial tDCS effects

observed on risk taking [10], probabilistic learning [13] and

working memory [11]. Based on published tDCS studies and

studies of model-based control, we estimated our study had more

than 60% statistical power to detect such an effect were it to exist.

Although our power was potentially lower than the often cited

80% power standard (e.g. [37]), it was considerably higher than

.75% of neuroscience studies as determined recently in a meta-

analysis [35]. Despite this, we observed a null effect of tDCS on

model-based control. However, frequentist statistics do not allow

us to conclude the null hypothesis was a significantly better

explanation than the alternatives in which stimulation does have

an effect. We therefore performed a complementary model

comparison using information-theoretic measures to formally

show this [38]. Together, these analyses support our conclusion

that tDCS to right dlPFC has no effect on model-based or model-

free control.

There is a modest literature on improvement in cognition

through tDCS of the right dlPFC, and this begs the question why

no effect was found in our experiment. This is even more

surprising because the dlPFC is implicated in model-based

processes [18–22] and when the region is transiently disrupted

using transcranial magnetic stimulation, model-based control is

selectively impaired [23]. Here we speculate that our null result is

most likely due to an inability of tDCS to improve the specific

component processes of model-based control subserved by the

dlPFC.

Firstly, little is known about the physiological effects of tDCS in

prefrontal cortex [39], though this is a rapidly developing field

[32]. While there is evidence that anodal stimulation over M1

increases the motor evoked potential (MEP) size elicited by TMS

[40], it is not clear how the cellular physiology of the dlPFC is

changed following anodal stimulation, nor what the physiological

underpinnings of model-based control in the dlPFC are. Despite

Table 3. Regressors in the null model which contains the
same MB and MF regressors for the Active and Sham
stimulation conditions.

regressor estimate SE z-value p

intercept 0.24 0.03 7.78 ,0.0001

Active 2269.68 179.42 21.50 0.1328

MF Lag-1 332.27 48.71 6.82 ,0.0001

MF Lag-2 285.59 43.58 6.55 ,0.0001

MF Lag-3 208.50 48.78 4.27 ,0.0001

MB Lag-1 234.64 61.35 3.82 0.0001

MB Lag-2 194.46 64.68 3.01 0.0026

MB Lag-3 180.81 45.37 3.99 0.0001

Active transition Lag-1 211.12 35.88 20.31 0.7566

Active transition Lag-2 7.89 31.01 0.25 0.7993

Active transition Lag-3 220.15 33.11 20.61 0.5428

Sham transition Lag-1 0.98 40.73 0.02 0.9809

Sham transition Lag-2 15.32 32.40 0.47 0.6365

Sham transition Lag-3 2.99 35.05 0.09 0.9320

MF=model-free; MB=model-based; SE = standard error. Lag denotes the effect
of time. Bold-face indicates p,.05 uncorrected for multiple comparisons.
doi:10.1371/journal.pone.0086850.t003

Table 4. Model comparison between a null model (one set of model-based and model-free regressors for both stimulation
conditions) and more complex models that allow for an effect of tDCS on model-based control, model-free control, or both, which
shows the null model is significantly more plausible than any of the models that allow for an effect of tDCS on behavioral control.

Model
No. of regressors
per subject BIC DBIC AIC DAIC

Bayes factor in favor of null model
based on AIC

null model 13 18553 0 17752 0 –

separate model-free
regressors for Active and Sham

16 18962 409 17796 44 1.361019

separate model-based
regressors for Active and Sham

16 18947 394 17781 29 3.961012

full model 19 19453 900 17852 100 2.761043

The second column refers to the number of regressors in the hierarchical regression at the individual subject level (cf. Table 1 and 3).
BIC: Bayesian Information Criterion; AIC: Akaike’s Information Criterion.
doi:10.1371/journal.pone.0086850.t004
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these unknowns, we suggest here that the neural mechanisms for

model-based control in right dlPFC are not amenable to

improvement through anodal tDCS.

Secondly, we used a task to assess model-based control that has

previously been shown to be susceptible to manipulation

[23,25,26], we used a set of stimulation parameters that are

widely used in the tDCS community [41], and we replicated

previous observations of dual control by model-based and model-

free systems. Together, this suggests our null result is not due to the

introduction of uncertain elements (e.g. novel task or novel

stimulation parameters) into the study design.

Despite the use of established methods, we cannot exclude

methodological issues as the cause of the null effect altogether.

Although we are confident the null effect is not due to faulty

equipment or errors in the double-blinding procedure (see

Methods), potential other issues might include inaccurate electrode

placement, a problem that can be alleviated by stereotactic

navigation using anatomical scans as commonly used in transcra-

nial magnetic stimulation [42], and unpredictable current flow

based on electrode placement, which might be alleviated by

computational models of current flow [43].

We were particularly careful to employ a double-blinded design

to eliminate any stimulation-dependent influence from the

experimenter on task performance. The task used here requires

relatively extensive involvement of the experimenter in the task

instructions. In a double-blinded design, then, these effects can be

most reliably attributed to the experimental manipulation of

interest rather than to unintended information biases [44]. We

note that no published work has manipulated the instruction of the

2-step task to examine its influence on model-based and model-

free performance.

In conclusion, we provide evidence that anodal stimulation of

the right dlPFC by tDCS does not alter model-based or model-free

control in our paradigm. This observation was made in the context

of extensive and causal evidence for a role of right dlPFC in

model-based control in humans. As such, our results should not be

interpreted as providing evidence that the right dlPFC is not

involved in model-based control; rather, our main finding is that

anodal stimulation does not necessarily enhance this function. An

open question is whether tDCS might improve performance on

tasks that are more taxing on the model-based system (e.g. [45]).
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