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Abstract 

Rumination is a cognitive-affective thinking style that plays a key role in the onset and 

maintenance of depression. Recently, it was shown that clinically depressed patients who 

received a neurocognitive training - involving two weeks of repetitive cognitive control exercises 

that necessitate prefrontal engagement – are more able to control over ruminative negative 

thoughts than patients who only received treatment as usual. Transcranial Direct Current 

Stimulation (tDCS) is a biological technique that can directly modulate prefrontal excitability via 

the manipulation of neural membrane potentials. In this randomized double-blind trial, we 

investigated whether bifrontal tDCS (anode over the left/cathode over the right dorsolateral 

prefrontal cortex (DLPFC)) would enhance the influence of a neurocognitive training on 

depressive brooding, the maladaptive form of rumination. Major depressed patients were trained 

using a procedure based on the Paced Auditory Serial Addition Task (PASAT), a task that relies 

heavily on working memory and is found to engage the DLPFC. One group (n=19) completed 

the PASAT training together with active tDCS and another group (n=14) completed the same 

training together with sham (placebo) tDCS. In both groups, depressive brooding was reduced 

following the PASAT training. Moreover, we observed that improvement in working memory 

over the course of the training was associated with a greater reduction in depressive brooding 

post versus pre intervention. However, tDCS did not moderate this association between changes 

in working memory and changes in depressive brooding. Possible explanations for this absent 

moderation of tDCS, as well as avenues for future research to influence ruminative thinking in 

depression, are discussed.  

Keywords: Neurocognitive training – PASAT - transcranial Direct Current Stimulation –Major 

Depression – working memory– Depressive brooding 
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1. Introduction 

Rumination, recurrent uncontrollable thoughts united by a common theme (Martin & 

Tesser, 1996) such as the possible causes, meanings and implications of negative mood states 

(Nolen-Hoeksema & Morrow, 1991), is a crucial cognitive-affective thought process in 

depression. This meta-cognitive thinking style makes individuals vulnerable to depression by 

maintaining and exacerbating depressive symptoms, and even by predicting the likelihood of 

recurrent depressive episodes (for a review, see Nolen-Hoeksema et al., 2008). Ruminative 

thoughts are associated with cognitive mechanisms such as impaired disengagement from 

negative representations and updating in working memory (e.g., De Lissnyder, Koster, & De 

Raedt, 2012), and also to a neural dysregulation in frontocingulate and limbic circuits (for 

reviews, see Koster et al., 2011; Pizzagalli, 2011). More specifically, emotional stimuli activate 

the limbic circuit (Zald, 2003) which signals to the frontocingulate circuit to adjust the 

distribution of cognitive resources and, in turn, reduce the limbic activity (Hoplinger, Buonocore, 

& Magnun, 2000). However, this interplay between the neural activity related to emotional 

reactivity and cognitive control seems to be impaired in patients with major depression (Holmes 

& Pizzagalli, 2008), and appears to result in a maladaptive regulation of emotions (Davidson, 

Pizzagalli, Nitschke, & Putnam, 2002) and rumination (Koster et al., 2010). In sum, working 

memory processes (e.g. disengagement and updating of information) and the specific 

neurobiological functions associated with these processes have been proposed to be the 

mechanisms underlying the occurrence of ruminative thoughts and depression (for a review, see 

De Raedt & Koster, 2010). 

In line with these process-oriented theoretical models in depression and rumination, non-

pharmacological neurocognitive training procedures have been developed, during which 
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depressed patients are repeatedly exposed to cognitive tasks linked to the engagement of 

prefrontal activity. Siegle and co-workers (Siegle, Ghinassi, & Thase, 2007; Siegle et al., 2014) 

developed a Cognitive Control Training (CCT) during which participants are trained on two 

neurocognitive tasks. One task of the CCT, a low-load version of sustained-attention training 

exercises are used in which patients are asked to focus their attention on external stimuli (e.g., 

bird sounds) (attention training: Papageorgiou & Wells, 2000; Wells, 2000). This latter task is 

meant to enhance selective attention to stay on the task when automatic ruminative thoughts 

could occur. In the other task of the CCT, the Paced Auditory Serial Addition Task (PASAT, 

Gronwall, 1977), working memory is trained and -as the demands on working memory are high- 

this is associated with more emotional reactions (e.g., frustration, negative thoughts, small 

amount of negative affect). As a result, working memory is trained in an emotional task context, 

which suggests that both the frontocingulate and limbic circuits are activated. Clinically 

depressed patients who received daily sessions (for two weeks) of this latter CCT showed a 

greater decrease in rumination than patients who had only received treatment as usual (Siegle et 

al., 2007; 2014). Moreover, using functional magnetic resonance imaging (fMRI), patients 

demonstrated enhanced prefrontal activity during a digit sorting task and decreased amygdala 

activity during a personal relevance rating task after (as compared to before) the CCT (Siegle et 

al., 2007). So, the CCT in depressed patients influenced activation in neural correlates of the 

frontocingulate-limbic circuit, but also resulted in reduced rumination and depressive symptoms. 

Interestingly, as observed by Siegle et al. (2014), the CCT seemed to be most effective to reduce 

rumination when patients engaged in the working memory task by exerting cognitive resources 

at the start of the training (this was measured by pupillary responses to index task-related 

resource allocation). Furthermore, in a recent review, De Raedt, Vanderhasselt, & Baeken (2014) 
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suggested that deficient prefrontal functioning in currently depressed patients might limit the 

effects of neurocognitive training. In other words, greater prefrontal engagement would augment 

the effects of neurocognitive training. 

To directly enhance prefrontal excitability, transcranial Direct Current Stimulation 

(tDCS) can be used. This biological technique induces small changes (<1mV) in the membrane 

potential (Datta et al., 2009), acting in the frequency of spike timing and modifying net cortical 

excitability (Purpura & McMurtry, 1965), which can increase cortical perfusion and functional 

activity (Keeser et al., 2011). Anodal stimulation is found to increase cortical excitability, 

whereas cathodal stimulation is found to decrease excitability. Anodal tDCS of the prefrontal 

cortex causally enhances cognitive processes such as working memory (e.g., Fregni et al., 2005; 

for a review see Brunoni & Vanderhasselt, 2014) and conflict monitoring (Vanderhasselt et al., 

2013a). Moreover, anodal tDCS of the prefrontal cortex has been found to reduce state 

rumination via a beneficial change in working memory processes (Vanderhasselt et al., 2013b) 

and also causally reduce other depressive symptoms (e.g., Brunoni et al., 2013a). Most 

important, tDCS doesn’t require anesthesia and is well tolerated, which makes it a technique 

suitable to be combined with cognitive training (De Raedt et al., 2014). It has also been 

demonstrated that concurrent neurocognitive training enhances the antidepressant outcome of 

anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (Segrave, Arnold, Hoy, & 

Fitzgerald, 2014). These findings strengthen the idea that the results of neuromodulation are 

better when anodal tDCS is delivered to a cortical region that is functionally active during a 

cognitive task. We recently reported that depressive symptoms are reduced after two weeks of 

training using the PASAT (see above): concomitant neurocognitive training and anodal tDCS of 

left DLPFC (cathodal over the right DLPFC) had beneficial effects in reducing depressive 
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symptoms in older patients and those who perform better on the PASAT throughout the training 

(Brunoni et al., 2014). However, the effects of two weeks of concomitant prefrontal 

neuromodulation and PASAT training on rumination – a core vulnerability process in depression 

- have not been reported so far.  

Hence, the present study was designed to train clinically depressed patients repeatedly on 

working memory processes that engage the prefrontal cortex while anodal tDCS or sham 

(placebo) neuromodulation of the left DLPFC was administered. The aim of this study was to 

investigate the specific effects on rumination. In the studies of Siegle and colleagues, as was 

described above, the PASAT training was combined with other attention training exercises 

(Papageorgiou & Wells, 2000). However, using two tasks makes it impossible to disentangle the 

specific contribution of each task. Given that the PASAT is specifically known to activate the 

left middle frontal gyrus (including the DLPFC) (Lazeron et al., 2003), we only used this latter 

computer-based program to train working memory. Importantly, ruminative thoughts are 

associated with impaired processes in working memory (e.g., De Lissnyder et al., 2012). We 

assessed rumination with the Ruminative Responses Scale (RRS; Treynor et al., 2003), which 

consists of two subscales. The depressive brooding subscale assesses the degree to which 

individuals passively focus on depressive symptoms, the reasons for their distress, and a passive 

comparison of one’s current situation with some unachieved standards. The reflective pondering 

subscale assesses neutrally valenced pondering and is considered to be a more adaptive form of 

rumination. Depressive brooding, the maladaptive self-critical component of rumination, 

(Treynor et al., 2003) has been found to be specifically related to cognitive control impairments 

in working memory (De Lissnyder et al., 2010), and the activation in the DLPFC and the 
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posterior parts of the dorsal anterior cingulate cortex during cognitive control operations 

(Vanderhasselt et al., 2011; 2013).  

Based in prior research (Siegle et al., 2007; 2014), our hypotheses were that:  

(1) working memory performance on the PASAT will be improved over the course and 

following of the training, with larger improvements in the tDCS condition (as compared to 

sham);  

(2) depressive brooding reports will be reduced following the PASAT training, with 

larger effects in the tDCS condition (as compared to sham);  

(3) the improvement in working memory will be related to the reduction in depressive 

brooding scores pre versus post training;  

(4) the association between changes in working memory and changes in depressive 

brooding will be stronger in the tDCS condition as compared to the sham condition.  

 

2. Methods 

The study was approved by the Local and National Ethics Committee and is registered in 

clinicaltrials.gov (NCT01434836). All patients provided written informed consent. The trial was 

conducted in the University Hospital, University of São Paulo, Brazil and in the Mackenzie 

Presbyterian University, also situated in São Paulo, Brazil from September 2011 to May 2013. 

Participants were recruited in the context of a larger project investigating the clinical outcome 

and the effects other neurocognitive markers of this non-pharmacological anti-depressant 
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intervention1. In the present study, our primary outcome variable is depressive brooding, with 

depressive symptoms being a secondary outcome variable that would change more slowly 

(Siegle et al., 2014). The results of the neurocognitive training using the PASAT combined with 

active or sham tDCS on clinical outcome measures (Hamilton Depression Rating Score and the 

Beck Depression Inventory), including follow up moments at 4 and 6 weeks, are discussed in 

another paper (Brunoni et al., 2014).  

2.1. Participants 

Major depressed ambulatory patients were recruited from a local psychiatric clinic or 

were solicited through advertisements posted within the community. Prior to inclusion, board-

certified psychiatrists (ARB and LV) administered the Portuguese-validated version of the Mini 

International Neuropsychiatric Inventory (MINI), a structured clinical interview to confirm an 

acute major depressive episode (Sheehan et al., 1998).
2
  

The inclusion criteria for MDD were (a) current major depressive disorder, as assessed by 

the MINI with low suicide risk, and (b) a score greater than 21 on the Hamilton Depression 

Rating Score (HAM-D, Hamilton, 1960) both on the screening day and on the day of the first 

treatment session, and (c) aged between 18 and 65 years. Exclusion criteria were 1) other 

psychiatric disorders than MDD, except for anxiety disorders as comorbidity; 2) the intake of 

anti-psychotics, tricyclic anti-depressants and/or high-dose benzodiazepines (> 20 mg/day); 3) a 

history of neurological disorder, including epilepsy, head injury and loss of consciousness; 4) 

previous treatment with electroconvulsive therapy; 5) alcohol abuse during the past year; 6) a 

                                                           
1 Indices of the sympathetic nervous system were also measured, such as pupil size, cortisol and heart rate. Neural functioning 

was also assessed using an electroencephalogram. Behavioral measures -the Internal Shift Task and questionnaires- were 

collected before and after the treatment. These data will potentially be presented in other manuscripts on this dataset. 
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past or present substance dependence; 7) past or present experience of psychotic episodes; 8) less 

than 8 years of schooling, difficulties in performing arithmetic operations and/or learning 

disorders; 9) personality disorders; and finally 10) specific contraindications to tDCS, such as 

metallic plates in the head. All MDD participants had a stable anti-depressant medication during 

the time of testing (stable drug regimens for > 6 weeks), i.e. either based on Selective Serotonin 

Reuptake Inhibitors (SSRI) or Selective Noradrenalin Reuptake Inhibitors (SNRI). 

Benzodiazepine drugs were tolerated but tapered to a maximum of 20mg/d diazepam (or 

equivalent) according to previous findings suggesting that benzodiazepines could interfere in 

tDCS antidepressant mechanisms (Brunoni et al., 2013b).  

The sample size was estimated based on previous findings from our group at the time of 

study design (Boggio et al., 2008), in which a 6-point difference in the HDRS scores between 

active vs. sham tDCS (SD=6) was observed. Therefore, with two-sided α=0.05 and β=0.2, we 

calculated that it would be necessary to enroll 32 patients to detect this 6-point difference 

between groups. Considering an attrition rate of 10-20%, we aimed to recruit 36 to 40 patients 

for this study. 

Thirty-seven right-handed individuals meeting the DSM-IV criteria for MDD were 

included in this study. Participants were randomized to (1) PASATtraining with sham tDCS 

(n=17) and (2) PASAT training with active tDCS (n=20). Pre and post rumination data could 

only be obtained from 33 patients, leaving 14 patients in the training/sham tDCS group and 19 in 

the training/real tDCS group. Major demographic and clinical assessments for the two groups are 

listed in Table 1.  
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2.2. Questionnaires 

To examine the severity of the current MDD episode, the HAM-D was administered. The 

HAM-D is a semi-structured interview, evaluating the severity of depression. The interview 

consists of 21 items and explores depressed mood, vegetative (e.g., insomnia, fatigue, anorexia) 

and cognitive symptoms and comorbid anxiety disturbances.  

Depressive symptoms were measured using the BDI-II (Beck et al., 1996). The BDI-II is 

a 21-question, multiple-choice, self-report inventory, examining the severity and the occurrence 

of cognitive, affective, somatic and vegetative symptoms of depression during the last two 

weeks. The BDI-II questionnaire has been found to have optimal internal reliability, with 

cronbach's alpha indexes of around .90 (Osman et al., 1997). Cronbach’s alpha of the current 

BDI dataset was .77, which reflects good internal reliability of the items. 

Rumination was assessed using the Ruminative Responses Scale (RRS; Treynor et al., 

2003), which consists of items that are focused on the self, symptoms, or consequences of a 

depressed mood. A factor analysis of the RRS has identified a depressive brooding subscale (5 

items). This subscale relates to a passive focus on one’s problems, negative mood and their 

consequences. An example of an item is “think about a recent situation, wishing it had gone 

better”. The RRS can also be used to assess a measure of reflective pondering (5 items), which 

is, compared to depressive brooding, a more adaptive form of rumination. The RRS is a reliable 

and valid measure of rumination with good psychometric properties (Cronbach alpha coefficient 

of .90 and the test-retest correlation around .67) (Treynor et al., 2003). The reliability score of 

the reflection (.72) and brooding (.77) subscale are somewhat lower, but given the fact that the 

subscales only consist of 5 items each, is acceptable (Treynor et al., 2003). Cronbach’s alpha of 

the current RRS dataset was .81, which reflects very good reliability. The cronbach’s alpha was 
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.74 and .51 for the subscales brooding and reflection, respectively. In this study, we focus on the 

brooding subscale, which shows to have good internal consistency among the subscale items.  

2.3. Neurocognitive training 

A variant of the Paced Auditory Serial Addition Task (PASAT, Gronwall, 1977) was 

employed for the neurocognitive training. For the present study, the numbers (1 to 9) were 

recorded in Portuguese and the software (developed by Greg Siegle’s lab) presented digits out 

load in a random order to the participants. Patients listened to these serially presented digits and 

were asked to add each new digit to the digit that preceded it (i.e., sum of the last 2 digits), in 

order to select the correct response on the screen with a mouse click. Patients performed the 

PASAT in a quiet room and were sitting in a comfortable chair about 60 cm in front of the 

computer screen. As they were doing the task individually, no headphones were provided.  

For this modified version of the PASAT, the speed of the presentation of the digits (and 

thus task difficulty) is adapted to participants’ individual performance. The inter-stimulus 

interval (ISI) starts at 3000 ms and speeds up by 100 ms when participants get four consecutive 

items correct. Due to this gradual increase in difficulty, the task taps heavily on control processes 

in working memory to stay on the task. Participants were instructed to concentrate on the task, to 

get as many items correct and to resume the task as quickly as possible when they made an error. 

However, when four consecutive errors are made, the ISI slows down by 100 ms. Although the 

PASAT is known to induce frustration and negative self-referential thoughts (Siegle et al., 2007; 

2014), the individually adapted speed keeps the task tolerable for depressed participants.  

Participants completed three 5-min blocks per session, 5 sessions per week, for two 

weeks. During the first session, some practice trials were presented to make sure the patient 

understood the task. Over the course of the task, the ISI is adapted to the individual’s 
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performance. For the PASAT, the median ISI for each patient/session is taken as the dependent 

variable of interest. In prior studies, the median ISI’s per participants was averaged over all 

participants (e.g., Siegle et al., 2014). However, it is important to take into account the sequential 

adaptation (e.g., stability and variability of the change) in performance over each day of the 

training. Hence, regression coefficient analysis (RCA; Lorch & Myers, 1990) was used to regress 

the dependent variable (median ISI per session day) on the independent variable (ten days of 

training) individually for each participant, in order to extract the values of the slope. This method 

assumes a linear relationship between predictor and dependent variable for each participant, and 

avoids methodological problems when different observations (i.e., daily assessment of the 

working memory task) are not independent from each other. 

2.4. Transcranial Direct Current Stimulation  

tDCS was delivered by a battery-driven stimulator (Chattanooga Ionto Device; 

Chattanoga group) with two rubber electrodes placed in 5 x 5 cm saline-soaked rubber sponges. 

Electrodes were positioned over the F3 (anodal) and F4 (cathodal) areas according to the 10/20 

EEG International System that corresponds to the regions over the left and right DLPFC, 

respectively. This montage simultaneously increases the left and decreases the right DLPFC 

activity (Ferrucci et al., 2009), which is an asymmetry that plays a crucial role in depression 

(Mayberg, 1997). For the real tDCS, a constant current of 2 mA intensity was applied for 30 

minutes, whereas for the sham condition the device was turned off after 45 seconds
3
 of real tDCS 

stimulation (with a 30-second ramp-in phase and 15-seconds ramp-out phase). This sham 

                                                           
3
 Although there is no consensus regarding the optimal ramp-up time period, this step is used to provide a slow increase to the 

desired current in order to avoid unpleasant skin sensations (for a review, see Nitsche et al., 2008). As we used a 2mA current, we 

therefore applied a longer ramp-up period than used by Gandiga et al. 2006 (who used approximately 10 seconds ramp up/down 

period with 1mA) to more or less maintain the same speed of current increase. 
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procedure proved to be reliable for blinding purposes, being as reliable, for instance, to the use of 

placebo pill in pharmacological trials (Brunoni et al., 2013c). The experiment number randomly 

assigned to the participant defined the stimulation procedure (tDCS or sham) for that specific 

participant, which was applied by trained nurses. The nurses adopted the same procedure for 

both sham and active stimulation, and were trained to turn off the device outside of the patient 

eyesight.  

2.5. Procedure 

This study used a double-blind between subjects design. After study eligibility was 

assessed, participants were invited to start their daily training/neuromodulation sessions (5 

sessions a week, for two weeks). In this study, an experimental group receiving PASAT training 

and anodal tDCS of the left DLPFC (cathodal right DLPFC) was compared to a control group 

receiving the same training and sham (placebo) stimulation. During each session, each patient 

received 30 minutes of active/sham tDCS. During the last 15 minutes of the stimulation, patients 

performed the PASAT. Participants were allowed 2 nonconsecutive missed visits; in such cases 

extra tDCS sessions were performed to complete the total number of sessions.  

2.6. Statistical analysis  

To investigate whether working memory was enhanced after as compared to before the 

PASAT training, with larger improvement in the tDCS condition (hypothesis #1), a mixed 

ANOVA with Time (first training session, last training session) as within subjects factor x 

Stimulation (tDCS, sham) as between subjects factor was performed, and the median ISI per 

session as dependent variables. Moreover, the slope of the improvement on working memory 

was compared between tDCS and sham neuromodulation conditions. To investigate the change 

in depressive brooding pre versus post treatment (hypothesis #2: depressive brooding will be 
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reduced following the training, with larger effects in the tDCS condition), a mixed ANOVA was 

performed with Time (pre, post) x, Stimulation (tDCS, sham), and the brooding scores as 

dependent variable.  

To answer hypothesis # 3 (improved working memory via the PASAT training is related 

to reduction in brooding scores pre versus post training) and hypothesis # 4 (the association 

between changes in working memory and changes in brooding will be stronger in the tDCS 

condition as compared to sham), we performed an ANCOVA with Stimulation (tDCS, sham) as 

between subjects factor, Slope
 
of the change in working memory during the training as a 

continuous factor, and the post minus pre brooding (delta) score as dependent variable. The 

interaction term between the covariate and the between subjects factor (slope*Stimulation) was 

inserted in the custom model (together with the two main effects of Slope and Stimulation). The 

more negative the value of the slope, the greater the improvement on the PASAT over the course 

of the training. The more negative the delta brooding score, the more brooding declined after the 

training. Significant effects of this ANCOVA were followed up by a Pearson correlation test.  

Across analyses, significant ANOVA effects were followed-up using t-tests. Cohen’s d-

values are reported for t-test effect sizes: estimates of 0.1 are considered small, 0.3 medium, and 

0.5 large (Cohen, 1988). Effect sizes for ANOVAs are reported in the form of partial eta squared 

(ηp
2
), where 0.05, 0.1, and 0.2 correspond to small, medium, and large effects, respectively 

(Cohen, 1988).
 
The significance level was set at an alpha level of 0.05. 

 

3. Results 

Patients in both groups (training/tDCS (n=19), training/sham (n=14)) did not differ 

significantly in gender, age, baseline depressive brooding, baseline depression scores, and 
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depression episode characteristics (all ps>.1). For the first hypothesis, an ANOVA with Time 

(pre, post) x Stimulation (tDCS, sham) yielded a main effect of Time, F(1, 27)=97.05, p< .0001. 

Post hoc analyses showed that the PASAT training enhanced working memory in both 

stimulation groups, as the median ISI during the first day was significantly higher as compared to 

the median ISI during the last day, ts>6.63, ps<.001. Cohen’s d of both within subjects 

comparisons was ≥ 1, signifying a big difference (≥1 SD) between both means (pre-post). No 

other main or the interaction effect reached significance, Fs<2.37, ps>.14, indicating that this 

change in working memory performance was not different for the two stimulation groups. 

Interestingly, the slope of the improvement in performance on the PASAT was trend 

significantly different between both stimulation groups, t(31)=2.00, p=.054, with the slope being 

more negative in the sham as compared to the tDCS group. We refer to Table 1 and 2 for the 

means and statistics of these between group comparisons.  

For the second hypothesis, the mixed ANOVA with Time x Stimulation yielded a 

significant effect of Time, F(1, 31)=16.55, p<.001, ηp
2 

=.34, demonstrating that brooding was 

significantly reduced post versus pre PASAT training (see table 2 for an overview of the 

brooding scores). No other main or interaction effects were observed, F’s<1.67, ps>.2, ηp
2
s<.05, 

indicating that this change in brooding was not different for the two stimulation groups.
4
 

For the third hypothesis, the mixed ANCOVA with Stimulation as between subjects 

factor, Slope of the performance as covariate, and the delta brooding score as dependent variable 

yielded a main effect of Slope, F(1, 32)=4.51, p<.05, ηp2=.15. The Pearson correlation between 

                                                           
4
 The same ANOVA analysis was performed for reflection scores, and yielded no main or interaction effects, 

Fs<.77,ps>.4.  



16 

 

slope and the delta score of brooding (post minus pre PASAT training) revealed a significant 

positive correlation, r=.40, p=.02, indicating that the greater the improvement in working 

memory over the course of the training, the larger the decrease in depressive brooding 

(hypothesis # 3, see Figure 1).  

However, in contrast to hypothesis # 4, the factor Stimulation was not implied in any 

main or interaction effect of the mixed ANCOVA, Fs<.05; ps>.83, ηp
2
s<.001,

 
indicating that 

neuromodulation did not influence the relation between the slope of the performance during the 

PASAT training and brooding reports (see table 2 for an overview of the brooding scores and the 

slopes). 

4. Discussion 

In this randomized, double-blind clinical trial, we investigated (1) the effects of 

neurocognitive training using the PASAT combined with tDCS or sham neuromodulation on 

working memory performance; (2) the effects of this PASAT training combined with tDCS or 

sham neuromodulation on depressive brooding; (3) how training induced changes in working 

memory are associated with changes in depressive brooding; and (4) whether active tDCS would 

moderate this latter association between working memory and depressive brooding.  

First, over all depressed patients, depressive brooding scores were reduced post as 

compared to before the PASAT training. This finding is in accordance with prior reports (Siegle 

et al. 2007; 2014) and confirms that an intensive training of working memory is associated with a 

reduction in maladaptive ruminative thoughts. As a theoretical mechanism to explain these 

results, it is proposed that training (e.g., enhancing) working memory by a task that elicits 

emotional reactions (e.g., due to the increasing task difficulty) increases the likelihood that 

depressed patients use this acquired cognitive ability to control recurrent negative thoughts (e.g., 
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rumination) in daily life. Importantly, the current results go beyond the results of Siegle et al. 

(2007; 2014) as they show that the sequential improvement in working memory was associated 

with a reduction in depressive brooding after the training: the more that patients improved their 

working memory over the 10 days of the neurocognitive training using the PASAT (considering 

the daily change -slope- in performance), the greater the reduction in depressive brooding post 

versus pre intervention. Research has shown that activity in the left middle frontal gyrus 

(including the DLPFC) was increased during the PASAT as compared to a control task (Lazeron 

et al., 2003). Possibly, the more the DLPFC is engaged during the PASAT training to improve 

working memory, the greater the reduction in depressive brooding following the training. In 

other words, by enhancing prefrontal activity in an emotional task context, patients are more able 

to control over negative thoughts in daily life by disengaging from negative representations in 

working memory (e.g., De Lissnyder et al., 2012).  

However, no evidence could be found for our hypothesis that neuromodulation of the 

DLPFC would have a supplementary effect on the reduction in rumination. In other words, 

concomitant neuromodulation did not reveal any added value on the effects of the PASAT 

training on depressive brooding, nor did it influence the relation between working memory and 

depressive brooding. This finding could be due to multiple reasons. In the current study, anodal 

stimulation of the left DLPFC was combined with cathodal stimulation of the right DLPFC, 

producing a respective left-sided increase and right-sided decrease in cortical excitability. This 

bifrontal electrode montage is frequently used in treatment of clinically depressed patients (see 

Brunoni et al., 2013a,b; 2014) aiming to augment (hypo)activity in the left hemisphere, as well 

as to restore the well known imbalance between both hemispheres in depression (Phillips et al., 

2003). In fact, anodal tDCS over the left DLPFC is ubiquitously used in depression trials, 
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whereas the cathode position varies between the right DLPFC, right supraorbital area and extra-

cephalic positions (as reviewed by Moffa, Valiengo, Shiozawa, & Brunoni, 2014). For cognitive 

functioning, a review of the literature showed that most tDCS studies with a focus on working 

memory have placed the anodal electrode over a frontal scalp location (mostly F3), and the 

cathode over the controlateral supraorbital cortex (for a meta-analysis, see Brunoni & 

Vanderhasselt, 2014). Nevertheless, prior studies in major depressed patients have shown 

beneficial changes in working memory using a bifrontal electrode montage applying 2 mA (e.g., 

Oliveira et al., 2014). Recently, an extracephalic reference electrode has also been used to 

influence cognitive processes in depression and healthy subjects (Wolkenstein & Plewnia, 2013; 

Clarke, Browning, Hammond, Notebaert & MacLeod, in press). However, this wider 

interelectrode distance has been found to reduce the intensity of the stimulation under the anodal 

electrode (Moliadze, Antal, & Paulus, 2010), and has also been associated with no clear 

differences between the effects of active and sham tDCS (Martin et al., 2013). All together, the 

research domain of combining neuromodulation with cognitive training is flourishing extremely 

fast, but more research is needed to explore and consider the impact of alternative and/or less 

investigated tDCS montages on cognition and behavior.  

Another possible explanation for why tDCS did not moderate the relation between 

working memory and rumination can be found at the level of negative self-referential thoughts. 

The neurocognitive training using the PASAT puts high continuous cognitive demands on 

working memory and is known to inherently induce reactive frustration and distracting 

(emotional) thoughts regarding one’s cognitive ability and the consequences of task performance 

(Siegle et al., 2007; 2014). A possible mechanism of the PASAT training is that it increases 

working memory despite distracting negative thoughts in which patients engage during the task 
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(Siegle et al., 2007; 2014), and which - in turn - trains and prepares MDD patients to control 

ruminative negative thoughts in daily life. Because tDCS is known to increase working memory 

performance via the causal enhancement of DLPFC neural excitability, distracting (emotional) 

thoughts regarding one’s cognitive ability might have been reduced, preventing patients to learn 

to deal with negative (ruminative) thoughts. This means that the extra benefit of tDCS above 

sham might have been reduced by this phenomenon. In other words, tDCS could have 

antagonized the effects of PASAT training as both interventions were administered 

concomitantly. Nevertheless, future research is warranted to replicate our findings in a larger 

population of severely depressed patients. Moreover, future research could use an offline 

stimulation protocol, by performing the PASAT training first followed by a neuromodulation 

session (with different electrode set-ups). This way, the PASAT training can still induce 

frustration and associated negative self-referential thoughts, which can, in turn, be reduced by 

increasing executive control using PASAT training and neuromodulation. Moreover, even 

though the current results are indicative for an important role of DLPFC activation underlying 

the change in depressive brooding, future research should examine the underlying change in 

neural functionality and connectivity by means of fMRI measurements. 

Along with suggestions for future research, a couple of limitations of this study should be 

discussed. First, because no placebo training of working memory was used, it is not clear 

whether the antidepressant effects of the neurocognitive intervention using the PASAT are 

specific for the training of working memory or whether the same effects might be obtained when 

patients are trained on another task. Second, even though the number of participants was based 

on power analysis, the sample size is rather small and groups were not well balanced. Third, 

because the PASAT training is an add-on intervention to the treatment as usual, the use of 
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specific psychotropic medication (low doses of benzodiazepines, SSRI and SNRI) was allowed. 

The possible influence of medication on the present results could not be eliminated, and further 

research is needed to explore this possible bias.  

In sum, the current study provides evidence for the role of neurocognitive training using 

the PASAT on depressive brooding, and adds to the literature by showing that the more cognitive 

resources are employed during the training, the more depressive brooding is reduced post 

treatment. However, concomitant tDCS during the training did not increase this association 

between working memory improvement and depressive brooding. Future research using 

alternative electrode montages and designs should be performed to investigate the role of 

neuromodulation on neural and cognitive mechanisms underlying working memory and 

depressive brooding. 
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Figure  

 

Figure 1: Scatterplot of the association between the slope of the improvement in working 

memory during the neurocognitive training using the PASAT (y-axis) and the change in 

depressive brooding (RRS delta score, post minus pre intervention) (x-axis). 
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Table 1. Demographical and clinical data. 

 

  
training /sham 

tDCS 

(n=14) 

training/active 

tDCS 

(n=19) 

Statistics 

 M SD M SD t p 

Age 41 11.54 46.26 10.67 1.35 .19 

% Female 79% 
 

68% 
 

0.63 .53 

Number of depressive episodes .79 1.42 .58 .90 1.64 .15 

Age of onset 

depression (in years) 
23,71 12.06 30.06 11.99 1.44 .16 

Duration present 

episode (in months) 
10 9.63 31.31 8.17 1.52 .14 
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Table 2. Mean and standard deviation (SD) of questionnaire data and performance on the 

PASAT for both treatment groups, before and after the neurocognitive training using the PASAT.  

 

 

training/sham 

tDCS 

(n=14) 

training/active 

tDCS 

(n=19) 

p 

HDRS 
   

pre 27,42 (6.09) 25,78 (5.92) .44 

post 19,23 (10.08) 19,63 (10.05) .91 

RRS-total score 
   

pre 66 (8.44) 59,89 (11.19) .1 

post 58,57 (13.25) 62,21 (14.00) .45 

RRS-Depressive 

brooding    

pre 16.71 (1.90) 15.32 (2.98) .14 

post 14.00 (3.35) 13.21 (3.19) .50 

RRS-Reflective 

pondering    

pre 11.93 (2.53) 11.37 (3.04) .57 

post 11.64 (2.06) 11.84 (3.37) .1 

BDI 
   

pre 35 (7.19) 30,83 (7.43) .14 

post 22,92 (13.79) 21,41 (11.74) .75 

PASAT 
   

pre 

(median ISI) 
4169 (713) 4028 (878) .64 

post 

(median ISI) 
2720 (798) 3094 (1003) .32 

Slope -112 (46) -76 (55) .05 
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Figure 1: Scatterplot of the association between the slope of the improvement in working 

memory during the neurocognitive training using the PASAT (y-axis) and the change in 

depressive brooding pre versus post intervention (RRS delta score) (x-axis). The Pearson 

correlation between slope and the delta score of brooding (post minus pre PASAT training) 

revealed a significant positive correlation, r=.40, p=.02, indicating that the greater the 

improvement in working memory over the course of the training, the larger the decrease in 

depressive brooding 

 

 

 

 

 

 
Note: the value of Cook’s distance (.054) is smaller than .12 (in this case, 4/33 = .12), 

suggesting no outliers. 




