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Abstract

Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation
(,0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and
enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta
oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial
direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during
NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint
with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory,
underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM
sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-
tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous
EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different
frequencies.
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Introduction

An increasing number of studies are investigating the impact of

applied oscillatory electric currents or fields, inducing or estimated

to induce subthreshold membrane potential oscillations, on the

activity of cortical networks and/or individual neurons as well as

their functional implications [1–8]. We have focused on the

functional implications of applied currents during sleep on sleep-

dependent memory consolidation [2,9] as well as on the state

dependence of these effects [5]. There is compelling evidence that

the distinct stages of sleep play an essential role in the long-term

consolidation of memories [10,11]. Specifically, slow-wave sleep

(SWS), which is hallmarked by slow oscillatory activity (,1 Hz) in

the human electro-encephalogram (EEG) and is most pronounced

during the first part of nocturnal sleep, has been implicated in the

consolidation of declarative memories. Weak electric currents

oscillating within the frequency range of the sleep slow oscillation

in humans (,0.75 Hz) and an anodal DC bias applied at the

transition into SWS enhanced EEG power of the slow oscillation

and sleep spindle activity as well as declarative memory

consolidation [2].

The consolidation of various procedural tasks appears to benefit

more from sleep during the later part of the night which is

dominated by prolonged periods of rapid eye movement (REM)

sleep, but also by lighter stage 2 NonREM sleep [12,13]. Results

on the effect of REM sleep and REM sleep specific EEG brain

rhythms on memory consolidation are inconsistent [11,14]. Theta

oscillations are a hallmark of the EEG during REM sleep in

rodents [15,16] and are also characteristic for REM sleep in

humans, though in a more transient form [17–19].

The aim of the present experiments both applying an anodal

current oscillating at theta frequency (theta-tDCS) during either

Non-REM or REM sleep is to determine firstly, the impact of

ongoing brain electric activity and brain state on the ability to

modulate EEG activity by weak electric currents, and secondly to

determine the functional implication on memory consolidation. We

find that effects of theta-tDCS on brain electric activity and memory

consolidation are strongly dependent upon ongoing brain state.

Materials and Methods

Subjects
Subjects were healthy students (medical or engineering) and

university employees of comparable education level. All were

native German speakers, nonsmoking, and medication-free at the

time of the experiments. The exclusion criteria were based on

presence or history of epilepsy, paroxysms, and cognitive

impairments, mental, hormonal, metabolic or circulatory disor-

ders. Subjects who reported sleep disturbances or an irregular

sleep-wake cycle were not included. Subjects were first adapted to

the experimental setup by spending one adaptation night in the

sleep laboratory, and subjects with an abnormal sleep pattern on
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this adaptation night were excluded. The experimental protocol

was approved by the ethics committee of the University of Lübeck,

and each subject had given informed written consent prior to

participating.

Experimental design and procedures
Two separate experiments were conducted in which theta-tDCS

(see below) and sham stimulation, respectively, were applied either

during the first stable portion of NonREM sleep (NonREM

Experiment) or stable REM sleep (REM Experiment). The

NonREM Experiment involved 25 participants (14 women) with

a mean age of 23.9 yr (age range 18–35 yr). Sixteen subjects (8

women) with a mean age of 24.3 yr (age range 21.3–30.6 yr)

participated in the REM Experiment.

In the NonREM Experiment stimulation was turned on after

the subjects had attained at least 4 min of stable NonREM sleep

for the first time after sleep onset, that is a time when sleep is

expected to progress into slow wave sleep (SWS). In the REM

Experiment stimulation began at least 4 min after subjects had

entered REM sleep after 3:00 am. Because in the latter experiment

it was difficult to predict the duration of the REM sleep periods,

stimulation often could not be readily applied during a single

REM sleep period but frequently took place in 2 consecutive REM

sleep periods upon their appearance. In the sham conditions,

procedures were identical to those in the theta-tDCS conditions

except that the stimulator remained off during sleep. The time

course of both experiments is schematized in Figure 1.

For both experiments subjects arrived at the laboratory at 19:00

h. Following preparation for stimulation, EEG and polysomno-

graphic recordings, subjects performed declarative and procedural

memory tasks (see below) between 21:00 and 22:30 h (Learning

period). The order of tasks was balanced across subjects. At 23:00

h subjects went to bed and recordings began. Awakening occurred

as of 06:30 h when subjects were in light NonREM sleep (stages 1

or 2). About 30 min after awakening (07:00 h), recall of memories

was examined (Retrieval period). Psychometric tests and control

tests of cognitive functions were given before learning in the

evening and/or before retrieval in the morning. Theta-tDCS and

sham stimulation conditions for an individual subject were

separated by an interval of at least 10 days and balanced in order

across subjects. Findings from a small subset of the present data for

the NonREM Experiment were described in Marshall et al. (2006).

Theta-tDCS - 5 Hz oscillating anodal transcranial direct
current stimulation

The current intensity of the sinusoidal stimulation fluctuated

between 0 and 260 mA. Anodal theta-tDCS was induced by a

battery driven constant current stimulator via stimulation

Figure 1. Time line of the two experiments. (A) Theta-tDCS during NonREM sleep (NonREM Experiment) and (B) during REM sleep (REM
Experiment). Respective upper panels show representative individual sleep profiles (W: wake, REM: REM sleep, S1–S4: NonREM sleep stages 1–4) and
periods of stimulation. Lower parts indicate Learning and Retrieval periods for memory testing on declarative and procedural tasks. The horizontal
gray bar indicates lights out.
doi:10.1371/journal.pone.0016905.g001
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electrodes (8 mm diameter/0.502 cm2) applied bilaterally at

fronto-lateral locations, i.e., F3 and F4 of the international 10–

20 system, with an ipsilateral reference electrodes placed at each

mastoid. The bilaterally synchronized constant current was

regulated independently for both circuits. At application electrode

resistance was always below 2 kOhm. The estimated maximal

current density at each of the two stimulating electrodes during the

current peak corresponded to 0.517 mA/cm2. Post-experimental

debriefing confirmed that stimulation was not felt by the subjects.

The stimulation period consisted of five 5-min epochs of

stimulation separated by 1-min stimulation-free intervals.

EEG recordings
Both experiments recorded EEG with Ag-AgCl electrodes at Fz,

C3, Cz, C4, P3, Pz, and P4, referenced to the nose, vertical and

horizontal EOG, and submental EMG. The ground electrode was

positioned on the forehead at Fpz. Electrode resistance was below

5 kOhm. Signals were recorded using Brain Vision Recorder

(Brain Products GmbH, Gilching, Germany). On-line digital high

and low pass filters were set at 0.08 and 45 Hz for the EEG and

electrococulogram (EOG) and at 0.08 and 90 Hz for the

electromyogram (EMG), with slopes of 24 dB/Oct for the high

pass filters and 12 dB/Oct for the low pass. Signals were sampled

at 200 Hz and amplified in a range of +/23.2768 mV at a

resolution of 0.1 mV. For the REM Experiment the high frequency

cut off for EEG signals was increased to 150 Hz (500 Hz sampling

rate) and the amplitude range increased to +/216.384 mV

(0.5 mV resolution). Thus, before spectral power analyses (see

below) data of the REM Experiment were preprocessed, i.e., low

pass filtered at 45 Hz with 12 dB/Oct and down sampled to

200 Hz by means of a spline interpolation method (Brain Vision

Analyzer, Version 1.05, Brain Products).

Analyses of sleep stages and EEG power
Two types of analyses were performed off-line. First, sleep

structure was determined visually based on standard polysomno-

graphic criteria [20], and second, the EEG power was calculated

by means of Fast Fourier Transformations (FFT).

For the total sleep period every 30-s epoch was scored as wake,

NonREM sleep stage 1, 2, 3, 4, REM sleep or movement time.

Slow wave sleep (SWS) was determined as the sum of time spent in

sleep stages 3 and 4. Latencies to SWS and REM sleep refer to

time from the sleep onset, defined by the first occurrence of sleep

sage 1 followed by sleep stage 2.

Intervals during acute stimulation were not scored due to the

excessive signal artifacts. In the sham stimulation sessions,

corresponding intervals (starting after the presence of eight

consecutive 30-s epochs of stage 2 or deeper NonREM sleep or

after the presence of 8 consecutive 30-s epochs of REM sleep,

respectively) were also not scored. Scoring for the 1-min

stimulation-free periods (between the 5-min blocks of acute

stimulation) was performed for succeeding 10-s epochs. Time

spent in the different sleep stages in the course of stimulation was

thus determined for the 1-min stimulation-free periods and the

corresponding 1-min period of the sham stimulation condition.

In addition, sleep stage classification based on 30-s epochs was

conducted for a 60-min interval following the end of the

stimulation period. For the REM Experiment sleep stage analyses

were additionally performed separately for the first and second

half of the night.

In a second, more fine-grained analysis, the immediate effect of

stimulation on EEG power was investigated. Analyses were

conducted using Brain Vision Analyzer (Version 1.05, Brain

Products). Six EEG intervals were selected for the analyses: a 1-

min period immediately before theta-tDCS (baseline) and the five

1-min stimulation-free periods immediately after each 5-min block

of stimulation (including the interval after the last stimulation).

Four to six non-overlapping blocks of artifact-free EEG with 2,048

data points each (<10.2 s) were used for every 1-min stimulation-

free interval and corresponding intervals of sham stimulation. On

every 2,048-point block of EEG data, a Hanning window (20%)

was applied before calculating the power spectra using FFT

(resolution<0.097 Hz). Individual mean power spectra across all

blocks of a stimulation-free interval were calculated and subjected

to a three-point moving average. Mean power was calculated for

the following frequency bands: slow oscillations (0.5–1 Hz), delta

(1–4 Hz), theta (4–8 Hz), slow spindle (8–12 Hz), fast spindle (12–

15 Hz), beta (15–25 Hz), and gamma (25–45 Hz).

In the sham conditions, FFT was conducted on EEG intervals

corresponding to the time periods used in the respective theta-

tDCS conditions. In order to investigate possible EMG contribu-

tions to the EEG power in the frequencies above 15 Hz, the

corresponding EMG signal was also subjected to FFT. For

statistical analyses, the individual mean power within the 1-min

baseline interval immediately preceding stimulation and sham-

stimulation onset was subtracted from the mean power during

stimulation-free intervals.

To characterize longer lasting after effects in the EEG after

cessation of theta-tDCS, in the NonREM Experiment mean EEG

and EMG power was calculated for two consecutive 30-min

intervals following the end of the 5th stimulation or sham-

stimulation, as described above. Epochs containing artifacts, sleep

stages different from stage 2 NonREM sleep or SWS were

excluded from the analyses. This resulted into 120–125 EEG

segments for each 30-min period. For stimulation during REM

sleep, long lasting after effects of stimulation were not explored

because of the variable temporal distribution of the REM sleep

periods used for stimulation and the quite heterogeneous

distribution of sleep stage following stimulation among the

subjects.

Memory tasks
One declarative (word paired-associates) and two procedural

memory tasks (finger sequence tapping, mirror-tracing) were used

in the two experiments. For all tasks, parallel versions (A, B) were

used in the subject’s two experimental sessions.

In the word paired-associate learning task a list of forty-six

semantically related pairs of German nouns (e.g., bird-claw) were

presented on a PC monitor at a rate of 1/5 s and an interstimulus

interval of 100 ms. Also, four dummy pairs of words shown in

sequence at the beginning and end of each list served to buffer

primacy and recency effects, respectively. At learning, before the

retention period, presentation of the list was immediately followed

by a cued recall, i.e., the subject was to respond by naming the

second word on presentation of the first (cue) word of each pair,

whereby the 46 stimulus words of the word list appeared on the

screen in a different order than during the foregoing presentation.

The subject had unlimited time to recall the appropriate response

word. If a minimum of 60% correct responses was not obtained on

a run, word-pairs were presented again in a newly randomized

order (to prevent serial learning) and the cued recall was repeated.

At retrieval testing in the morning cue words were again displayed

in a newly randomized order and the subject was required to recall

the appropriate response words. Overnight memory retention is

represented by the difference in the number of words recalled at

morning retrieval minus the number of words reproduced

correctly at evening immediate recall.

Brain Rhythm Interactions during Sleep
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In the finger sequence tapping task which was adopted from

Walker and colleagues [21] subjects were required to repeatedly

finger-tap with the non-dominant left hand a five-element

sequence presented on a computer monitor as fast and accurately

as possible on a key board. The two sequences used were ‘‘4-2-3-1-

4’’ and ‘‘4-1-3-2-4.’’ The training period before sleep consisted of

twelve 30-s trials with 30-s breaks between the trials. Retrieval

testing at morning consisted of a practice run followed by three 30-

s test trials. A working memory component of the task was

excluded by continuous presentation of the sequence on the

screen. No feedback was given on pressing keys. Each 30-s interval

was scored for the number of correctly completed sequences

(speed) and the number of errors made (error rate). Performance at

learning and retrieval testing, respectively, was defined by

averaged scores across the final three 30-s trials during the

learning period, and across the three test trials of the retrieval

period. Retention performance was defined by the difference

between performance at retrieval testing and at learning.

In the mirror tracing task [12] the subject had to trace as fast

and as accurately as possible line-drawn meaningless figures while

these figures (with 26 to 27 angles and curved corners) and the

subject’s hand movements were visible only through a mirror.

Subjects traced each figure with an electronic stylus starting and

ending at the same point. Drawing speed and error rate were

registered. An error consisted of moving the stylus off the line of

the figure. At learning, subjects first performed practice runs with a

star-like figure until draw time was ,1 min and number of errors

made ,12 (the learning criteria), and then continued with 6 runs

on the test figure. At retrieval testing, after one practice run,

performance on 6 runs on the test figure was examined. On each

occasion, the total time to trace the figure, and the number of

errors were measured and averaged across the 6 test runs.

Retention was defined by the difference in performance on the test

figure at retrieval testing minus performance during the learning

period.

Psychometric and cognitive control tests
Subjective mood, motivation and feelings of activation and

tiredness were assessed by the positive and negative affect scale

(PANAS) [22], an adjective checklist (EWL) [23] and the Stanford

Sleepiness Scale. In the morning, subsequent to recall testing a

word fluency task served to assess the capability to retrieve

information from long term memory [24]. Working memory

function was measured using the Digit Span test of the Wechsler

Adult Intelligence Scale [25].

Statistical analyses
Statistical analyses was performed with SPSS version 15, for

Windows and relied basically on analyses of variance (ANOVA)

with post-hoc pairwise testing to specify significant main and

interaction effects. Prior to ANOVA, normal distribution of the

data was assured using the Kolmogorov-Smirnov test. All

ANOVA included a repeated measures factor Stimulation (theta-

tDCS vs sham). For most behavioral measurements an additional

repeated measures factor Time was introduced with 2 levels

(evening, morning), and for analyses of EEG data across the 25-

min stimulation period levels were represented by the five

stimulation-free 1-min epochs subsequent to the 5-min periods

of actual stimulation. The factor Lead (Fz, C3, Cz, C4, P3, Pz, P4)

was also used. EEG power during the stimulation-free 1-min

epochs and during the 60-min period after stimulation was

analyzed. Statistical results on data conducted after individual

subtraction of the baseline value during the 1-min period before

stimulation onset did not differ essentially from those conducted

using baseline value as an additional level of the Time factor. EEG

power was subjected to ANOVA separately for the different

frequency bands of interest. To avoid Type I errors due to multiple

comparisons, for the main effect of Stimulation a Bonferroni

corrected P-value,0.007 was adopted.

Results

Theta-tDCS during NonREM sleep lightened sleep acutely
We first investigated immediate effects of theta-tDCS on

polysomnographically determined sleep. Since the acute period

of stimulation produces extreme disturbances in the EEG, analyses

of acute effects were conducted on the five 1-minute stimulation-

free epochs immediately subsequent to each 5-minute stimulation

period. Theta-tDCS strongly reduced the mean time spent in SWS

within the five stimulation-free periods (theta-tDCS 94.8069.90

vs. sham 166.80614.85 s, F1,24 = 13.08, P = 0.001) as well as the

typical increment in SWS over time (F4,96 = 3.31, P = 0.02, for

Stimulation6Time interaction). The lightening of sleep during this

time was also reflected by an increased amount of stage 2 sleep

(theta-tDCS 202.80610.22 vs. sham 132.00614.33 s, F1,24 =

12.64, P = 0.005), while stage 1 sleep was unaffected (see Table 1).

Table 1. Sleep during the five 1-min stimulation-free and the 60 min periods following theta-tDCS during NonREM sleep.

Stimulation period [s] First 30-min interval [%] Second 30-min interval [%]

Sham Theta-tDCS Sham Theta-tDCS Sham Theta-tDCS

Awake 0.0060.0 0.460.4 0.1360.92 0.1360.92 0.4060.24 0.4060.19

S1 1.2061.2 2.061.2 0.2060.14 0.1360.38 1.0660.09 0.6060.30

S2 132.0614.3 202.8610. 22 37.9361.47 29.362.031 54.5362.00 56.5362.60

S3 146.0612.6 80.468.62 46.8061.45 51.8661.811 26.4061.88 26.4662.33

S4 20.864.0 14.463.4 14.8660.60 18.4060.762 7.5361.64 7.5361.63

SWS 166.8614.9 94.869.92 61.6661.50 70.2662.051 33.9363.16 34.0063.26

REMS 0.060.0 0.060.0 0.0060.00 0.0060.00 9.5362.52 8.0062.81

Sleep stage scoring for the five 1-minute stimulation-free periods is based on 10-s with mean 6 SEM time in the different sleep stages given in seconds. Sleep stage
scoring for the 60 minutes following theta-tDCS is based on 30-s epochs with mean 6 SEM time in the different sleep stages given as percentage of 30 min. S1–S4,
sleep stages 1–4; SWS, Slow wave sleep; REMS, rapid eye movement sleep.
1P,0.001;
2P,0.01, for pairwise comparisons between the effects of theta-tDCS and sham stimulation.
doi:10.1371/journal.pone.0016905.t001
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Theta-tDCS also increased the latency to SWS onset on average

by 2.6661.28 min (F1,24 = 4.34, P,0.05; Table 2), reflecting thus

the increment in SWS over time.

Theta-tDCS lightened sleep only within the five stimulation-free

epochs. Analyses of the 1-hour interval following theta-tDCS, a

period analyzed to characterize prolonged after-effects of stimu-

lation, revealed a distinct rebound of SWS that was restricted to

the first 30-min period of this interval (tDCS 21.0860.62, sham

18.5060.45 min; P,0.001, F1,24 = 74.07, P,0.001, for Stimula-

tion6Time interaction; Table 1). Simultaneously, stage 2 Non-

REM sleep was reduced during this first 30-min interval after

stimulation (theta-tDCS 8.7860.61, sham 11.3860.44 min,

P,001, F1,24 = 68.23, P,0.001 for Stimulation6Time interac-

tion). Stimulation did not alter sleep architecture as assessed by

full-night polysomnography (Table 2).

Theta-tDCS during NonREM sleep acutely decreases slow
oscillation and spindle power

To better understand the actions of theta-tDCS on NonREM

sleep we analyzed rhythmic EEG activity in the frequency bands

of interest. In parallel with reduced SWS, we found a distinct

decrease in EEG power in the slow oscillation (0.5–1 Hz;

F1,24 = 33.08, P,0.001) and delta (1–4 Hz; F1,24 = 48.33,

P,0.001) frequency bands (Fig. 2A, B; changes in slow wave

activity defined by the joint 0.5–4 Hz range generally reflected

changes in the slow oscillation frequency band and are not

reported here separately). The theta-tDCS induced reduction in

slow oscillation power was particularly pronounced towards the

end of the stimulation period (F5,120.9.74, P,0.001, for

Stimulation6Time) and for the frontal and midline central and

parietal leads (F6,144.10.94, P,0.001; Stimulation6Lead). Im-

portantly, theta-tDCS also reduced EEG power in the 8–12 Hz

frequency band, but only at Fz (F6,144 = 8.93, P = 0.002; for

Stimulation6Lead interaction; F1,24 = 20.79, P,0.001 for the

effect of Stimulation at Fz, P.0.22, for all other leads; Fig. 2C, D)

with this frequency band covering the slow frontal spindle activity

(see Mölle and colleagues 2004 [26], Fig. 3 of SI for illustration of

the frontal peak in 8–12 spectral power characterizing slow spindle

activity during SWS). EEG spectral power in the fast spindle band

(12–15 Hz) was not affected by theta-tDCS (P.0.9).

Similar to SWS, slow oscillation power also revealed a strong

rebound during the first 30-min interval following cessation of

theta-tDCS (F1,24 = 15.96, P,0.001), with no measurable differ-

ence between conditions during the second 30-min interval

(P.0.8; F1,24 = 4.54, P = 0.04; for Stimulation6Time, Fig. 2B).

Slow spindle activity (8–12 Hz) at the frontal (Fz) location also

showed a rebound restricted to the first 30-min period after

stimulation (F1,24 = 48.65, P,0.001; F6,144 = 14.48, P,0.001, for

Stimulation6Time6Lead, Fig. 2D). No significant differences

between conditions in any other EEG frequency band during the

first or second 30-min intervals were found (P.0.13 for all

relevant comparisons).

Theta-tDCS during REM sleep increases EEG gamma
band activity

When applied during REM sleep, theta-tDCS did not change

late sleep architecture (Table 2) nor sleep within the five

stimulation-free periods. The latter contained almost entirely

REM sleep (Stimulation: 296.2561.54 s vs. Sham 295.6361.57 s,

P.0.8).

Power spectral analyses of the EEG signal during the stimulation-

free periods did not reveal any pronounced changes in the EEG

frequency bands below 15 Hz (P.0.34; for all relevant comparisons).

However, theta-tDCS strongly increased gamma (25–45 Hz) EEG

power (F1,15 = 19. 59, P,0.001) with this effect equally distributed

across all electrode locations (P.0.9 for Stimulation6Lead interac-

tion). The effect was most pronounced during the third and less

expressed during the fourth and the fifth stimulation-free periods

(F5,75 = 7.20, P,0.001 for Stimulation6Time; Fig. 3). Activity in the

neighboring beta frequency band also tended to be affected by theta-

tDCS in the third stimulation-free period (P = 0.053, for pair wise

contrast; F5,75 = 3.88, P,0.05, for Stimulation6Time). Because

submental electromygraphic (EMG) activity within the beta and

gamma frequency ranges during the stimulation-free periods showed

no difference between conditions (P.0.18), a contamination of

gamma band activity by muscle activity can be excluded.

Theta tDCS during NonREM sleep decreases memory
performance

We found that application of theta-tDCS during NonREM sleep

strongly impaired consolidation of the declarative word pairs.

Whereas in the sham-stimulation condition subjects recalled

5.1660.78 more word pairs after sleep than at the end of learning

prior to sleep, retention performance after theta-tDCS dropped to

2.8060.65 word pairs (F1,24 = 9.087, p = 0.006, Fig. 4). Neither

consolidation of procedural finger sequence tapping nor mirror-

tracing skills were affected by theta-tDCS (P.0.30 for the main effect

of Stimulation and Stimulation6Time interaction, Table 3, Fig. 4).

For theta-tDCS during both NonREM and REM Experiments

there were no differences in performance at learning before sleep

on either the declarative or procedural tasks (Table 3). In general

better task performance was observed at morning recall as

compared to evening learning (P,0.01), with the exception of

the number of errors on finger-sequence tapping and the recall of

word-pair associates which failed to significantly differ across sleep,

in the NonREM and REM Experiments, respectively (P.0.34).

Performance on psychometric and cognitive control tests
Results on psychometric and cognitive control tests are given in

Table 4. Significant effects were found only for REM sleep. Here

Table 2. Sleep during the whole night.

NonREM Experiment REM Experiment

Sham Theta-tDCS Sham Theta-tDCS

TST (min) 432.6863.19 432.9663.67 431.7565.00 432.9065.54

SO latency (min) 15.7261.37 15.7861.83 16.6564.48 16.7364.45

SWS latency (min) 17.2861.43 19.9461.00* 17.5962.10 17.1561.44

REM latency (min) 97.1862.90 96.8062.35 99.7568.44 98.0369.11

Wake (%) 1.3660.40 1.3260.32 1.7060.71 0.6160.21

Stage 1 (%) 3.8560.55 3.8960.71 4.6860.65 4.5561.00

Stage 2 (%) 56.8560.91 56.9761.04 55.8061.53 55.1561.57

Stage 3 (%) 8.8160.53 8.6460.54 9.0760.53 10.2160.43

Stage 4 (%) 3.9760.51 4.1560.53 5.1161.01 5.1661.13

SWS (%) 12.7860.89 12.7960.81 14.1361.17 15.3761.23

REM sleep (%) 18.4160.51 18.4660.54 17.2461.40 17.8061.42

Sleep stage scoring for both NonREM sleep and REM sleep experiments is based
on 30-s epochs and mean 6 SEM time in the different sleep stages is given as
percentage of total sleep time (TST). SO, Sleep onset; SWS, Slow wave sleep.
Latency (in min) of sleep onset is calculated with reference to lights off (23.00
h); latencies to SWS and REM sleep are calculated with reference to sleep onset.
*P,0.05 for longer SWS latency in the theta-tDCS than sham condition.
doi:10.1371/journal.pone.0016905.t002
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theta-tDCS was associated with a relative increase in the PANAS

negative score as compared to sham (P,0.02). Also, the lower

number or words produced by subjects in the morning after theta-

tDCS (P = 0.03), suggests an impairment in verbal word fluency at

this time (Table 4). The slight reduction in mean working memory

performance as indicated by the digit span task did not obtain

significance (P = 0.06). The absence on any further significant

differences between stimulation and sham on any other control

measure of the NonREM or REM Experiments excludes that the

reduced retention of word pairs observed for theta-tDCS during

NonREM sleep was confounded by any difference in stimulus

encoding, recall ability or other non-specific effects of arousal or

mood.

Discussion

Theta-tDCS during NonREM sleep acutely decreases SWS,
slow oscillation and spindle power

The finding in the present study of a conjoint suppression of

slow oscillations and slow frontal spindle activity during tDCS

oscillating at a 5-Hz theta frequency is remarkably complementary

to the finding that tDCS oscillating at ,0.75 Hz (slow oscillation-

tDCS) enhanced endogenous slow oscillation and slow frontal

spindle activity [2]. Together, with the finding of enhanced theta

activity by slow oscillation-tDCS during wakefulness [5] these data

support the idea that the effects of oscillatory-tDCS are strongly

dependent on stimulation frequency and brain state. Moreover,

the complementary actions of slow oscillation-tDCS enhancing

endogenous theta rhythm (during waking) and theta-tDCS

suppressing the endogenous slow oscillation rhythm (during sleep),

as reported here, strongly argue for a coupling mechanism

between the cortical networks underlying both theta and slow

oscillation EEG rhythms. Increased theta activity during extended

periods of wakefulness is indeed positively correlated with

pronounced slow oscillatory activity, particularly over frontocor-

tical areas [27,28].

It is well documented that SWS and associated slow oscillatory

activity are homeostatic in nature becoming enhanced subsequent

to total sleep deprivation or selective SWS deprivation [29–31].

Hence the finding that the suppression of slow oscillatory activity

as induced by the relatively short period of theta-tDCS

(25 minutes) was followed by a rebound in activity, indicating an

Figure 2. Topographical distribution and temporal pattern of EEG spectral power during NonREM sleep. (A and C) Topographical
distribution of EEG power (6 SEM) averaged across the 1-min stimulation-free intervals in the slow oscillation (0.4–1.2 Hz) (A), and slow spindle (8–
12 Hz) frequency bands (C) after the five 5-min intervals of theta-tDCS or sham stimulation. (B and D) Time course of EEG spectral power for the five
1-min stimulation-free periods (S1–S5) immediately succeeding stimulation and for 0–30 and 30–60 min after termination of stimulation in the slow
oscillation band (B), and slow spindle frequency band at Fz (D). ‘Ba’ refers to baseline activity prior to stimulation. **, P,0.01; *, P,0.05; for
comparisons between the theta-tDCS and sham stimulation conditions by t-test (n = 25).
doi:10.1371/journal.pone.0016905.g002
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impact on this homeostatic mechanism, is a further example of the

functional significance of transcranial electric stimulation. More-

over, since applied transcranial electric currents exert initial effects

presumably by an immediate modulation of electric fields on

cortical networks [3,4,6,7] the occurrence of a rebound already

within the first half hour following stimulation support the

existence of a fast-acting cortical mechanism underlying homeo-

static sleep regulation. Whether indeed sleep-regulatory substances

are released cortically by the polarizing effect of stimulation, or by

the stimulation-induced EEG rhythms in a fashion similar to the

activity-dependent release of sleep-regulatory substances, has yet

to be investigated [32,33].

Interestingly, the suppression of slow oscillation activity during

theta-tDCS and its subsequent rebound were accompanied by

parallel changes in slow frontal spindle activity whereas fast spindle

activity which shows a more widespread centro-parietal distribution

remained unaffected. Previous studies have likewise observed

rebound activity after periods of sleep deprivation for slow frontal

but not for fast centro-parietal spindles [29,31,34,35]. Both kinds of

spindles are grouped by the neocortical slow oscillation, however at

different phases, with the slow frontal spindles occurring preferen-

tially at the transition into the hyperpolarizing phase of the slow

oscillations and fast spindles occurring typically in the depolarizing

phase [36]; Mölle, unpublished results). Together these findings

corroborate the existence of two types of spindles with different

underlying generating mechanisms. Although there is still no

complete consensus on the sources in particular of slow spindle

activity (e.g., [37]), a high resolution EEG study concluded that slow

spindles result from cortico-cortical activation following spindle

initiation, whereas fast spindles reflect thalamo-cortical activation

Figure 3. Changes in EEG spectral power induced by theta-tDCS during REM sleep. Spectral power for theta-tDCS (black lines) and sham
stimulation (gray lines) averaged across all EEG locations (A) and for submental electromyographic (EMG) activity (B). Time course of gamma band
activity during the five 1-min stimulation-free periods immediately succeeding the stimulation intervals (S1–S5), averaged across all electrode sites for
theta-tDCS (black bars) and sham stimulation (empty bars) (C). ‘Ba’ refers to baseline activity prior to stimulation. **, P,0.01; *, P,0.05; for
comparisons between the theta-tDCS and sham stimulation conditions by t-test (n = 16).
doi:10.1371/journal.pone.0016905.g003
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[38]. A dominant frontal neocortical source could well explain the

susceptibility to theta-tDCS that we found here selectively for slow,

but not for fast spindle activity.

Theta-tDCS during REM sleep increases EEG gamma
band activity

Although in human REM sleep a pronounced spectral peak of

theta power within the surface EEG is typically absent, anterior

cortical theta generators and enhanced frontal theta activity have

been discerned [18,19,28]. The present enhancement of broadband

gamma EEG activity by theta-tDCS indicates that theta-tDCS was

indeed effective, apparently boosting a rhythm inherent to the

present state, but not maximally expressed at the time of

stimulation. Increased magnetoencephalographic, intracranial,

and also EEG gamma band activity have been detected in REM

sleep as compared to SWS [39–41], although not consistently [42].

Although gamma oscillations are thought to transiently link local

cell assemblies processing closely related information [43], the

widespread increase in cortical gamma band activity with theta-

tDCS supports a functional coupling between these rhythms, with

the theta rhythm presumably serving to synchronize gamma band

activity occurring at distant regions and/or increase its coherence.

Enhanced cross-frequency coupling between theta and gamma

oscillations in the human neocortex is found for memory formation

processes during waking [44–46]. Moreover, modulation of gamma

power by weak electric fields in a hippocampal slice exhibiting theta

oscillations was recently shown and modeled computationally based

on the induced effects on firing rate and spike timing [47].

Theta tDCS during NonREM sleep decreases memory
performance

Consolidation of the hippocampus-dependent word paired-

associate learning task, measured as the difference between

Figure 4. Theta-tDCS during NonREM sleep impairs declarative
memory consolidation. (A) Retention performance on the declara-
tive memory task (word paired-associates) across nocturnal sleep for
the sham control and theta-tDCS conditions. Performance is expressed
as difference between the number of correct words reported in a cued
recall test at retrieval testing after sleep and in the end of learning
before sleep. The list contained 46 word-pairs (**P,0.01). Performance
across the retention interval on (B) the procedural finger sequence
tapping task expressed as the difference in the number of correctly
tapped sequences per 30 s between retrieval testing and learning, and
on (C) the procedural mirror drawing task expressed as the
corresponding difference in drawing time. Data are the means 6
SEM. Times of performance testing within the experiments are depicted
in Fig. 1.
doi:10.1371/journal.pone.0016905.g004

Table 4. Performance on psychometric and cognitive control
tests.

NonREM Experiment REM Experiment

Sham Theta-tDCS Sham Theta-tDCS

PANAS, positive score (learning)

2.7060.10 2.8260.09 2.6760.12 2.7460.15

PANAS, positive score (retrieval)

3.0560.12 2.9760.12 3.0460.14 2.9660.17

PANAS, negative score (learning)

1.1060.03 1.1260.04 1.1360.05 1.1160.05

PANAS, negative score (retrieval)

1.2160.15 1.1460.07 1.0560.03 1.2060.10{

Word fluency (retrieval)

18.3860.71 17.7460.64 18.5060.66 17.0060.46*

Digit span (retrieval)

9.4260.32 8.7860.35 8.3461.33 8.1261.47

Mean 6 SEM values for the assessment of mood (by the PANAS), retrieval ability
from long-term memory (by the Word fluency test) and working memory (by
the Digit Span test in the NonREM Experiment and the REM Experiment. All
assessments were conducted at retrieval testing (in the morning after sleep).
The PANAS was given additionally at learning (in the evening before sleep).
*P,0.05 for pairwise comparisons between the effects of theta-tDCS and sham
stimulation.
{P,0.05 for the interaction Stimulation6Time (learning, retrieval).
doi:10.1371/journal.pone.0016905.t004

Table 3. Performance at learning and retention.

Learning Retention

Sham Theta-tDCS Sham Theta-tDCS

Word paired-associates (recalled words) – NonREM

35.3261.13 36.9660.99 5.1660.78 2.8060.65**

Tapping speed (total number of tapped sequences) – NonREM

19.0461.17 18.5461.11 2.5960.66 2.7960.38

Tapping accuracy (number of errors) – NonREM

1.4660.24 1.6060.46 20.1060.39 20.1560.40

Mirror-tracing speed (drawing time in sec) – NonREM

80.1364.32 80.3064.32 211.8762.44 210.2062.09

Mirror-tracing errors (number of errors) – NonREM

24.8262.49 25.5663.00 27.8561.73 210.9362.21

Word paired-associates (recalled word) – REM

38.7561.99 37.0061.19 0.5060.65 0.8160.87

Tapping speed (total number of sequences) – REM

19.4660.93 21.7161.41 2.2560.70 3.3360.65

Tapping accuracy (number of errors) – REM

1.6060.20 1.4360.28 20.3160.39 20.4360.58

Mirror-tracing speed (drawing time in sec) – REM

63.3564.54 63.5264.73 215.9063.55 211.6362.69

Mirror-tracing errors (number of errors) – REM

22.7561.80 22.7461.71 26.5361.23 26.2360.90

Mean 6 SEM values are given for performance at learning and retention
performance on the declarative word paired-associate task and the two
procedural tasks, i.e., finger sequence tapping and mirror tracing. Retention is
defined by the difference in performance at retrieval testing (morning after
sleep) minus performance at immediate recall at learning (evening before
sleep). No significant differences between the theta-tDCS and sham conditions
were found for performance at learning.
**P,0.01 for retention with sham vs. theta-tDCS.
doi:10.1371/journal.pone.0016905.t003
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performance at learning before sleep and at retrieval testing after

sleep, has consistently been shown to benefit from SWS and

associated slow oscillation activity dominant during early noctur-

nal sleep [2,10,11,26,47,48]. Memories for procedural skills such

as finger sequence tapping and mirror-tracing were often shown to

benefit more from REM sleep dominating late nocturnal sleep

[12,21,49–51], although there is also evidence that EEG theta

activity during REM sleep is increased following learning of

declarative word-pairs [52].

Previously, slow oscillation-tDCS (,0.75 Hz) led to a robust

enhancement in the consolidation of word-pair memories together

with an increase in endogenous slow oscillatory and frontal slow

spindle activity [2]. Here, theta-tDCS produced exactly the

opposite results, i.e., an impaired consolidation of word pair

memories in the presence of reduced slow oscillation activity and

frontal slow spindle activity. This strengthens previous findings in

which no effect on memory consolidation was found after theta-

tDCS with a small sample of 5 subjects [2]. In combination, these

observations further corroborate the concept of slow oscillations as

a mechanism for coordinating putative sleep-associated processes

of consolidation.

The sleep slow oscillation may provide a temporal frame for the

transfer of newly encoded memories from hippocampal to

neocortical sites by synchronizing thalamic spindle and hippo-

campal ripple activity, presumably involving also a coordination

between slow oscillatory rhythmic network activities of the

neocortex and hippocampus [11,53–55]. Notably, theta-tDCS

induced a decrease in retention performance in spite of the

observed rebound of both SWS and SWA as well as spindle

activity that occurred during the 30 min period following the

stimulation. Hence, suggesting that the mechanisms underpinning

consolidation of the hippocampus-dependent memory take place

mostly during the initial transition into nocturnal SWS.

The failure of theta-tDCS applied during REM sleep to affect

consolidation of either procedural skills or declarative paired-

associate words despite a global increase in gamma band activity

indicates that brain electric activity associated with theta and

gamma rhythms during REM sleep is less essential for memory

consolidation, and may be effective only in conjunction with

changes in memory representations induced during preceding

NonREM sleep [56–58]. Recent research indicated that pharma-

cological suppression of REM sleep by antidepressant drugs did

not impair consolidation of procedural or declarative memory

[14], thus adding to growing evidence that REM sleep exerts a

permissive rather than an immediate influence on memory

consolidation. Indications in the present study for an influence

of theta-tDCS during REM sleep on control tests are supportive of

processes during REM affecting cortical associations and emo-

tional tone of dreams and/or memories [59,60].

Notably, since theta-tDCS during REM and NonREM sleep

occurred during different times of night circadian influences, e.g.,

the circadian regulation of neuronal excitability, but also an effect

or interaction with homeostatic sleep mechanisms on the reported

EEG and/or cognitive effects may not be completely excluded

[30,61,62]. We have however no reason to assume that the present

results were biased by effects of circadian rhythm or sleep drive.

Conclusion
The present findings underline the strong dependence of

oscillatory-tDCS effects of comparable amplitude on ongoing

network activity and brain-state [5,51,63,64]. Furthermore, data

indicate the efficacy of oscillatory-tDCS to enhance or suppress the

expression of physiologically coupled EEG rhythms and associated

processes such as memory consolidation, which makes this kind of

stimulation a useful tool for systematic investigations of brain

electric rhythms. Finally, since theta-tDCS at the applied

amplitude is expected to induce fields similar in strength to those

which occur endogenously [65], results can be taken as further

support for the functional significance of endogenous electric fields

in cortical network activity [6,8].
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