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Abstract

This article discusses our research on polyphonic music transcription using non-negative matrix factorisation (NMF).

The application of NMF in polyphonic transcription offers an alternative approach in which observed frequency

spectra from polyphonic audio could be seen as an aggregation of spectra from monophonic components.

However, it is not easy to find accurate aggregations using a standard NMF procedure since there are many ways

to satisfy the factoring of V ≈ WH. Three limitations associated with the application of standard NMF to factor

frequency spectra are (i) the permutation of transcription output; (ii) the unknown factoring r; and (iii) the factoring W

and H that have a tendency to be trapped in a sub-optimal solution. This work explores the uses of the heuristics

that exploit the harmonic information of each pitch to tackle these limitations. In our implementation, this

harmonic information is learned from the training data consisting of the pitches from a desired instrument, while

the unknown effective r is approximated from the correlation between the input signal and the training data. This

approach offers an effective exploitation of the domain knowledge. The empirical results show that the proposed

approach could significantly improve the accuracy of the transcription output as compared to the standard NMF

approach.

Keywords: polyphonic music transcription, non-negative matrix factorisation, tone-models, transcribing Bach

chorales

1 Introduction
Automatic music transcription concerns the translation

of music sounds into written manuscripts in standard

music notations. Important components for automated

transcription are pitch identification, onset-offset time

identification and dynamics identification. Research

activities in this area have been reported in [1-19]. Up

to now, it is still not possible to accurately transcribe

polyphonic notes from an orchestra, a popular band or

even a solo instrument. The mixture of sounds from dif-

ferent pitches pose difficulties for the existing techni-

ques. To date, the transcription of a single melody line

(monophonic) is quite accurate but transcribing poly-

phonic audio is still an open research area.

Commonly employed features in audio analysis could

be derived from time domain and frequency domain

components of the input sound wave. Transcribing a

single melody line (i.e., monophonic case) involves

tracking only a single note at any given time. The fun-

damental frequency, F0, can usually be reliably estimated

using autocorrelation in the time domain or by tracking

the F0 in the frequency domain. In the polyphonic case,

multiple F0 tracking has been attempted using both

time domain and frequency domain approaches [20].

However, harmonic interference from simultaneous

notes complicate the multiple F0 tracking process. Stan-

dard techniques relying on either time domain or fre-

quency domain approaches do not seem to be powerful

enough to address the issue of harmonic interference.

This challenge has been approached from different per-

spectives, one of which is the blackboard architecture

that incorporates various knowledge sources in the sys-

tem [21]. These knowledge sources provide information

regarding notes, intervals, chords, etc., which could be

used in the transcription process. Explicitly encoded

knowledge in this style is usually effective but requires a

laborious knowledge engineering effort. Soft computing

techniques such as the Bayesian approach [4,8,11,19,22]

graphical modeling [23]; artificial neural networks [24];
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and factoring techniques (e.g., ICA, NMF) [16,25] have

emerged as other popular alternatives since knowledge

elicitation and maintenance could be performed from the

training data.

This article investigates the application of NMF for an

automatic transcription task. Although this is not the

first time for NMF to be applied in polyphonic tran-

scription, this study is different because it addresses

three limitations of the conventional automatic tran-

scription using NMF (see [16]): (i) the permutation of

transcribed notes; (ii) the determination of the factor r

which plays a major role in the accuracy of the tran-

scribed output; and (iii) the factorisation process via

alternating projected gradient method that may get

trapped in local optima.

These three issues will be addressed by the use of heur-

istics. In brief, polyphonic audio is transformed into its

frequency domain counterpart as a matrix Vm×n, where

each column corresponds to the frequency m at time n.

NMF factors the matrix V to two components Vm×n
≈

Wm×rHr×n. In our approach, the columns of the matrix W

contain r Tone-models that represent the frequency

spectra of notes. Each row of matrix H is the weight cor-

responding to the activation of note r (i.e., the tran-

scribed notes).

The scope of this article is limited to the discussion of

polyphonic transcription of Bach chorales using NMF.

The materials in this article are organised as follows: in

Section 2, related studies are reviewed; in Section 3, the

concepts behind our approach are discussed; in Section 4.

The experimental results are presented and critically dis-

cussed; and finally Section 5 contains the conclusion of

this study.

2 Related works
The transcription of polyphonic audio has a long history.

Moorer [14] was among the pioneers who investigated

automatic transcriptions from polyphonic audio. In his

Ph.D thesis in 1975, he demonstrated the transcriptions

of a two-part guitar duet as well as a synthesised violin

duet (both examples have at most two notes being played

simultaneously at any time). Moorer approached this

problem by devising a comb filter for each musical note.

Each comb filter had many narrow bandpass centered at

all the harmonics of the note. The transcribed notes were

inferred from the output of these comb filters.

There have been many variations to the research

activities in transcribing polyphonic audio in the past

few decades. Attempts to solve the polyphonic transcrip-

tion problem could be viewed along a spectrum in

which at one end is a knowledge-based approach and at

the other end, a soft computing approach. Examples of

a knowledge-based approach are the organised proces-

sing toward intelligence music scene analysis (OPTIMA)

[11]; and the blackboard architecture [2,21]. A knowl-

edge-based approach exploits relevant knowledge in

terms of rules to assist decision-making process. For

example, the blackboard architecture [21] houses thir-

teen knowledge sources which hierarchically deal with

notes, intervals, chords, etc. Exploiting expert knowledge

in problem solving is usually effective since specialised

knowledge is explicitly coded for the task. However,

there are well known bottlenecks in knowledge acquisi-

tion and knowledge exploitation in a conventional

knowledge-based system, especially if the knowledge is

encoded in terms of production rules. The bigger the

knowledge-based system, the longer the decision process

takes. A soft computing approach is more flexible in

terms of knowledge acquisition and knowledge exploita-

tion since knowledge can be learned from examples.

Once the system has learned that piece of knowledge,

the exploitation is very effective since the decision pro-

cess does not involve traditional searches as in conven-

tional knowledge-based systems.

Marolt [24] experimented with various types of neural

networks (e.g., time-delay neural network, Elman’s neural

network, multilayer perceptrons, etc.) in note classifica-

tion tasks. Seventy-six neural network modules were

used to recognise 76 notes from A1 to C8. Each neural

network was trained to recognise one piano note with

the frequency spectral features from approximately

30,000 samples where one-third of them were positive

examples. Soft computing approaches such as connec-

tionism, support vector machine, hidden Markov model

[23,24,26], etc., usually require complete training data as

the performance of the model highly depends on the

decision boundary constructed using the information

from the training examples. Sometimes, this is an unde-

sirable requirement. The Bayesian approach is one of the

most popular techniques for polyphonic transcription

tasks. This may be because it provides a middle ground

between the effectiveness of encoding prior knowledge in

the model (as in knowledge-based approaches) and the

ability to cope with uncertainties (found in soft comput-

ing approaches). Bayesian harmonic models have been

used in pitch tracking in [8,19]. A Bayesian model

exploits the prior knowledge of fundamental frequency

and the harmonic characteristics of notes produced by an

instrument.

More recently, the non-negative factoring technique

has received a lot of attention [16,27,28]. NMF factors a

positive matrix V into two other positive matrices WH

where W and H could bear the interpretation of additive

parts of V. NMF has been used in many domains as a

technique for part-based representation such as image

recognition [28]. Smaragdis and Brown [16] were among

the pioneers who exploited NMF in music transcription

problems. They showed that NMF could be used to
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separate notes from polyphonic audio. In a recent study

by [29], a nearest subspace search technique is employed

to find the weight factor (contribution) of different

sources in a dictionary.

In [1], the dictionary of atomic spectra was learned

from audio examples. The learned dictionary comprised

atomic spectra, which could be mapped back to pitches.

This learned dictionary represents the basis vector, which

could be used to factor out the transcribed notes. It

should be noted that the learned atomic spectra often

could not successfully represent the spectral characteris-

tic of each pitch. From the learning process, a note may

be represented by more than one atomic spectra.

Furthermore, the mapping process between the pitches

and the atomic spectra must still be done manually. In

our approach, the matrix W of basis vectors is learned

from each pitch from a desired instrument. This ensures

that the basis vector (a.k.a. dictionary, Tone-model)

represents the harmonic structure of each pitch at the

expense of the basis vector matrix being applicable for

that particular instrument only (e.g., the Tone-model

learned from a piano will not work well with, for exam-

ple, a violin). Many applications such as a performance

analysis module in a guitar tutoring system, could benefit

from this.

3 Exploring NMF for polyphonic transcription
We investigate the application of NMF to extract poly-

phonic notes from a given polyphonic audio. Our

research problem can be summarised and illustrated

using Figure 1. Let S be unobserved MIDI note-on/off

signals that produce audio signal y(t). The source fre-

quency spectra V derived from polyphonic audio could

be seen as an aggregation of the components from the

basis vector matrix W and their activation pattern H.

Intuitively, H should approximate the activation of

note events if W could successfully learn the harmonic

structure of those notes events. Although learning W

from the data is flexible and adaptive, there is no

known means to control or to guide the learning of W.

If the basis vectors wr in the matrix W do not success-

fully represent the basis of each note event, then this

would result in an erroneous note transcription in the

matrix H.

Conventionally, the initial values of W and H are ran-

domly initialised and the NMF algorithms use alternat-

ing minimisation of a cost function to find the optimal

values of H and W. In one step, W is fixed and H is

updated, while in the next step, H is fixed and W is

updated. This method often results in an erroneous

transcribed matrix, H, since there are many plausible

solutions that could satisfy V ≈ WH. As pointed out in

[30], it is impossible to separate polyphonic notes from

a single polyphonic sound channel without employing

some kind of constraints to the signal.

Here, we propose a novel strategy by constructing a

basis vector matrix W using a Tone-model of the

desired instrument (instead of randomly initialising W

as in the standard NMF). Constraining W using Tone-

models has many positive side effects. It resolves the

issue of the permutation of transcribed output notes

since the output notes would be in the same order as

the employed Tone-models. Furthermore, we propose to

employ heuristics to switch off the components corre-

sponding to the inactive Tone-models (see Section 3.3).

This should help improve the quality of the obtained

solution, since the search is started with a more or less

correct value of W.

3.1 Non-negative matrix factorisation

NMF decomposes the input matrix V into its basis vec-

tor matrix W and its activation matrix H as follows:

V ≈ WH (1)

where W ∈ Rm×r , H ∈ Rr×n , and all the elements in

V, W and H are constrained to real positive numbers

V ≥ 0, W ≥ 0, H ≥ 0. We also assume that r ≤ m < n.

Lee and Seung [28,31], suggested two styles of cost

function. One is to minimise the squared Frobenius

norm DF(V || WH) and the other is to minimise the

generalised Kullback-Leibler (KL) divergence DKL(V ||

WH) (see Equations 2 and 3). They also proposed multi-

plicative update rules, which compromised between

speed and ease of implementation (of conjugate gradient

Figure 1 Problem statement: Determining notes from polyphonic audio could be seen as solving for the unobserved MIDI signal S

from observable audio signal y(t). If W characterises Tone-model components, then the unobserved MIDI could be estimated from V and W.
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and gradient descent). Note that Vmn denotes an entry

at row m and column n of the matrix V.

DF(V||WH) = ||V − WH||2 =
∑

mn

(Vmn − (WH)mn)2
(2)

DKL(V||WH) =
∑

mn

(Vmn log
Vmn

(WH)mn

− Vmn + (WH)mn) (3)

3.2 Knowledge representation

Let x be a vector representing a sequence xn, where x1 is

sample number one, sampled from analog audio signal

with a sampling rate fs. The sequence of discrete input

samples xn could be transformed from its time domain

representation to its frequency domain counterpart

using Fourier transform. A discrete Fourier coefficient

Xk is defined as follows:

Xk =

N−1
∑

n=0

hnxne−j
2knπ

N (4)

where N is the number of samples in a single win-

dow; hn is the hamming window defined as

0.54 − 0.46 cos(2π
n
N

) ; xn are the time domain sam-

ples; k is the coefficient index and Xk is the corre-

sponding frequency domain component. Each Xk

coefficient is a complex number; its corresponding

magnitude and phase represent the corresponding

magnitude and phase of frequency at k fs
N

Hz, where

k = 0, . . . , N
2
.

3.2.1 Piano roll representation

It is decided that the input to NMF be abstracted at the

activation level of each pitch in the standard equal tem-

pered scale [32]. This abstraction reduces the size of the

input vector significantly (as compared to using the

magnitude of STFT coefficients). Smaller input size also

reduces the computation effort required for the same

task. In our representation, the input matrix V and the

matrix W are represented as piano rolls, where the cen-

ter frequency of each pitch i in the piano roll is calcu-

lated using the following equation:

fc(i) = 440 × 2(i−69)/12 (5)

where i is the MIDI note number, i.e., 60 denotes

middle ĉ , C4 (note that C3 is pitch ĉ that is an octave

below C4 and C5 is pitch ĉ that is an octave above C4).

The magnitude of the pitch i is the average of the mag-

nitude of FT coefficients in the range of 0.99fc(i) to

1.01fc(i). For example, according to Equation 5, the

pitch C4 has the center frequency of 261.63 Hz and has

the lower and upper boundaries of 259.0 Hz and 264.2

Hz, respectively. With a sample rate fs = 44, 100 Hz and

window size N = 8192, these correspond to k Î {48, 49,

50}.a Hence, the activation magnitude of the pitch i can

be calculated using the equation below:

pitch(i) =
1

ku − kl + 1

ku
∑

k=kl

||Xk|| (6)

where kl and ku is the lowermost and the uppermost k

index for the pitch i. The sequence of values of pitch(i)

form a column of a piano roll.

3.2.2 Representing input V

At each time step, a short time fourier transform

(STFT) is employed to transform the input sound wave

into its frequency counterpart. Here, the STFT window

is set to 8192 samples. The frequency resolution

between each fourier transform (FT) coefficient is 5.38

Hz. These FT coefficients are binned according to the

pitch on a piano (see Equation 6). For example, the

input vn of a monophonic note C4 would show the

overtone series of pitch C4. The input V is presented in

a piano roll representation by concatenating the column

vectors vn to form the matrix V = [v1 . . . vn].

3.2.3 Representing the tone-model

In our implementation, the basis vector matrix (Tone-

model), Wtm, is also represented in a piano roll repre-

sentation. The matrix Wtm is called the Tone-model,

since it describes the harmonic structure of the pitches

of an instrument. The matrix Wtm is calculated from a

set of training examples which are monophonic pitches

from C2 to B6. The magnitude of FT coefficients

obtained from each training pitch are averaged across

time frames and then binned to each pitch on the piano

roll using Equation 6. Hence, each column of Wtm

represents the Tone-model of each pitch. The matrix

Wtm is constructed by concatenating the column vectors

wr together to form Wtm = [wc2 . . . wb6].

3.3 Proposed transcription strategy

The overall concepts are outlined and summarised

below. According to Figure 2, the Tone-models Wtm are

learned in a separate offline process. At run time, poly-

phonic audio is transformed into the input matrix V. At

each time frame, the correlation between V and each

component in Wtm is computed and this information is

employed as a heuristic to guess which wr components

in the Tone-models should be switched-off. The NMF

process initialises the matrix H with random values uni-

formly distributed on the closed interval 0[1]. NMF

updates H and W until WH successfully approximate V,

i.e., V - WH ≤ acceptable error. The switching-off heur-

istics and the NMF procedure implemented in this work

will be discussed next.
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3.3.1 Switching off inactive pitches

Probable active pitches are guessed by comparing input

V with the Tone-model Wtm. This is based on the fact

that since Wtm is a matrix representing Tone-model

vectors, each column wr represents the Tone-model of

each pitch from C2 to B6. For a given time frame n, if

there is no sounding note, then entries of vn are

expected to be less than the entries of the Tone-model

vectors wr. On the other hand, entries of vn are

expected to share common harmonic structures with wr

if the note r is sounding. Hence, an overlap in an over-

tone series between the input vn and the Tone-model

wr is defined as a vector OLr:

OLr = max(wr − vn, 0) (7)

The ratio ||OLr||/||wr|| has its value lie in the closed

interval 0[1]. OLr is 1 when there is no overlap and OLr
is 0 when wr is completely overlapped by vn. The note r

is considered not sounding if the ratio ||OLr||/||wr|| is

more than a threshold value and considered sounding if

it is otherwise. The threshold value is empirically

determined.

This heuristic is used to guess whether the pitch r is

active by comparing the input spectrum at a time frame

n to all the wr and flagging the active pitch r. For each

time frame n, a vector Ln = [l1, . . . , lr]
T estimates

whether the pitch r is active or inactive. After running

through all the time frames of the input signal, the

active pitches are determined as a disjunction of all the

active pitch flags L = L1 ν L2 ν . . . ν Ln. The pseudo

code below summarises this process.

function probablePitch(Wtm, V) return Lr×1 an active

pitch vector

for each vn associated with time frame n

L n = [ ]

for each wr of each Tone-model r = 1, 2 , . . . ,

60

if ||OLr||/||wr|| >threshold

then lr = 1 else lr = 0

end

Ln ¬ append(lr,Ln)

end

end

L ¬ L1 ν L2 ν . . . ν Ln
return L

end

The switch L estimated from the input V is used to

switch off irrelevant basis vectors wr , i.e., the

Figure 2 An overview of our approach: (i) Off-line Tone-model learning, (ii) Fourier transform and piano roll conversion, (iii) Switch-off

inactive pitches and (iv) NMF process.
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constrained W = Wdiag(L), where diag(L) returns a

diagonal matrix.

3.3.2 Transcribing polyphonic notes using NMF

Multiplicative update rules that minimise the cost func-

tions (see Equations 2 and 3) proposed by Lee and Seung

[31] are considered to be the standard NMF algorithms

[33]. They are guaranteed to find at least locally optimum

solutions [31]. The update rules in (Equations 8 and 9)

corresponding to DKL(V || WH) are reproduced here for

readers’ convenience.

Hrn ← Hrn

∑

m WmrVmn/(WH)mn
∑

m′ Wm′r
(8)

Wmr ← Wmr

∑

n HrnVmn/(WH)mn
∑

n′ Hrn′

(9)

Factoring the matrix V to two components W and H can

be viewed as a search process. The update rules guide the

search to a solution using the gradient of the cost functions.

There are many plausible solutions that could satisfy this

factoring. Sometimes, the search will get stuck in sub-opti-

mum solutions. Most search techniques could benefit from

extra knowledge introduced in terms of constraints.

Depending on applications, extra information introduced

to guide the search can be in different forms. In our

application, initialising the basis vector matrix W with

Tone-models and switching off inactive r components help

initialise the search near optimum solutions and better

solutions are usually obtained if the search starts near good

solutions in the search space. In our implementation, the

cost function updated is closely related to expectation max-

imisation maximum likelihood (EMML) which has been

studied in image processing [34]. In EMML, H is iteratively

updated while W is assumed to be known and fixed. In our

experiment, H is updated using (following [28]):

Hrn ← Hrn

∑

m

Wmr
Vmn

(WH)mn
(10)

In our experiment, two experimental designs have been

carried out: (i) Tone-model NMF (TM-NMF) where the

matrix W is initialised using the Tone-model Wtm and r

constraint and its values are fixed throughout the run; and

(ii) initialised constrained Tone-model (ICTM-NMF),

where W is initialised in the same fashion as in TM-NMF

but W is updated as below:

Wmr ← Wmr

∑

n Hrn

maxr

(
∑

n Hrn

) (11)

Wmr ←
Wmr

∑

m Wmr
(12)

A column of V is formed from columns of W weighted

by value given in H. In other words, a column of H is a

new representation of a column of V based on the basis

of W. Hence, each wr is updated by scaling it to the pre-

dicted activation of maxr(Σn Hrn) (Equation 11), each wr

is then normalised (Equation 12). The pseudo code

below summarises the two NMF processes (TM-NMF

and ICTM-NMF) employed in our experiments.

function transcribeBach(Wtm, V) return Pitch activa-

tion H

L ¬ probablePitch(Wtm, V)

Initialise H randomly s.t. Hrn Î {h|0 ≤ h ≤ 1}

Initialise W using Tone-models and heuristics; W ¬

Wtmdiag(L)

/* Stopping criteria:

(i) Exceed max-iteration-set at 3000 iterations, or

(ii) The matrix H converges, their values become

stable, or

(iii) V - WH ≤ acceptable error */

while some stopping criteria is not satisfied

update H using Equation 10

if TM-NMF then W ¬ Wtmdiag(L)

if ICTM-NMF then update W using Equations

11, 12

end

return H

end

The output H is then converted to a binary (note on/

off) by applying a threshold to it. To evaluate H, the

note on/off information of each original chorale is

extracted from the MIDI file. This forms a ground truth

for each chorale. In this process, the MIDI time is

retimed to linearly map with the number of frames in H.

4 Experimental results
In this experiment, the input wave files were generated

by playing back MIDI files using a standard PC sound

card. Recording was done with 16 bit mono and with a

sampling rate of 44100 Hz. The recorded wave file was

transformed to the frequency domain using STFT. The

STFT window size was set at 8192 samples. The Ham-

ming window function was applied to the signal before

converting it to the frequency domain. The experimental

results of Bach chorales are summarised in Table 1.

Two variations of the Tone-model usage were carried

out (i) TM-NMF, and (ii) ICTM-NMF.

4.1 Evaluation measures

The literature uses a variety of ways to define the cor-

rect transcription of notes. Should a note be classified as

correctly transcribed or incorrectly transcribed if the

note is accurately transcribed in terms of pitch but the
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duration is not exact? In [35], note detections were cal-

culated on each frame. The transcription output was

converted to a binary note on/off and was compared to

MIDI note on/off on a frame by frame basis. This was a

good approach since it took the note duration into

account. This work evaluated the transcribed output

using the same approach in [35]. The results were evalu-

ated based on the standard precision and recall mea-

sures where, in each frame, true positive tp is the

number of correctly transcribed note events, false posi-

tive fp is the number of spurious note events and false

negative fn is the number of note events that are

undetected.

The true positive was calculated based on the matched

pixels between the original piano roll and the tran-

scribed piano roll H (i.e., Original and Transcribed in

Equations 13, 14 and 15). False positive and false nega-

tive were calculated from the unmatched pixels.

tp = max((Original + Transcribed) − 1, 0) (13)

fp = max(Transcribed − Original, 0) and (14)

fn = max(Original − Transcribed, 0) (15)

where max(a, b) returned the a if a >= b otherwise

returned b. The Original and Transcribed were r × n

binary matrices (note on = 1 and note off = 0). The

Transcribed matrix was obtained by thresholding the

output H (see Section 3.3.2). The Original matrix was

obtained by time-scaling the note on/off matrix to

match the number of time frames in H. In this study,

the note on/off matrix was obtained from the note on/

off events extracted from the MIDI files and this pro-

vided the ground truth reference.

We resort to the precision, recall and f measures to

judge the performance of the system. Precision provides

measurement on the percentage of the correct tran-

scribed note-on events from all the transcribed note-on

events. Recall provides measurement on the percentage

of the correct transcribed note-on events from all actual

note-on events (i.e., reference ground truth).

In the transcription task, the precision and recall mea-

sures are equally important since it is undesirable to

have a system with high precision but poor recall (or

vise versa). Hence, the f-measure is computed since it

provides an evenly weighted result of both precision and

recall measures. These measures are defined as:

precision =
tp

tp + fp
(16)

recall =
tp

tp + fn
(17)

f =
2 × precision × recall

precision + recall
(18)

4.2 Transcribing Bach chorales using ICTM-NMF

Figure 3 illustrates the effectiveness of our approach in

tackling the weakness of applying standard NMF; the

top pane shows the piano roll from the original chorale;

the bottom left pane shows the output from a standard

NMF where W and H are randomly initialised and r set

at 60. Noise is observed in many places. This is a com-

mon problem with standard NMF algorithms used for

transcribing pitches. This problem was mitigated with

our proposed NMF with a constrained Tone-model. A

great improvement in the output quality was observed

in Figure 3 (bottom right pane). Although the tran-

scribed output did not show an exact match to the

input piano roll, a great improvement was observed in

the bottom right pane.

Figure 4 shows the piano roll output from the tran-

scription of chorale Aus tiefer Not schrei ich zu dir

using ICTM-NMF. The first row is a piano roll repre-

sentation of an original chorale. The second row shows

Table 1 Summary of performance of TM-NMF, and ICTM-

NMF in transcribing Bach chorales.

ID TM-NMF ICTM-NMF

Prec Recall F Prec Recall F

10 Aus tiefer Not schrei ich
zu dir

0.54 0.55 0.55 0.63 0.63 0.63

26 O Ewigkeit, du
Donnerwort

0.65 0.62 0.63 0.67 0.78 0.72

28 Nun komm, der Heiden
Heiland

0.64 0.59 0.61 0.66 0.70 0.68

48 Ach wie nichtig, ach wie
flüchtig

0.74 0.57 0.64 0.60 0.78 0.67

100 Herr Christ, der ein’ge
Gott’s-Sohn

0.54 0.55 0.54 0.62 0.64 0.63

102 Ermuntre dich, mein
schwacher Geist

0.63 0.62 0.62 0.69 0.70 0.70

156 Ach Gott, wie manches
Herzeleid

0.72 0.54 0.62 0.65 0.76 0.70

182 Wär’ Gott nicht mit uns
diese Zeit

0.59 0.56 0.57 0.66 0.69 0.67

266 Herr Jesu Christ, du
höchstes Gut

0.56 0.61 0.58 0.65 0.69 0.67

279 Ach Gott und Herr 0.66 0.59 0.62 0.67 0.68 0.68

290 Es ist das Heil uns
kommen her

0.70 0.58 0.63 0.67 0.71 0.69

305 Wie schön leuehtet der
Morgenstern

0.61 0.59 0.59 0.66 0.71 0.68

321 Wir Christenleut’ 0.69 0.54 0.60 0.60 0.81 0.69

355 Nun ruhen alle Wälder 0.62 0.59 0.60 0.55 0.70 0.62
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the transcribed output. The fourth and the fifth rows are

fp and fn, respectively. From the Figure, fp and fn were

calculated from the differences between the original

chorales and the transcribed chorales.

Table 1 summarises the transcription results of Bach

chorales. A total of fourteen chorales were arbitrarily

chosen (chorales ID follows Riemenschneider. 371 har-

monized chorales and 69 chorale melodies with figured

bass). The input wave files of all the Bach Chorales used

here were obtained by playing back the Bach chorale

MIDI files downloaded from http://www.jsbchorales.net/

bwv.shtml.

The output from ICTM-NMF shows a great

improvement over the output from TM-NMF (around

7.5% improvement in f values). ICTM-NMF differed

from TM-NMF in the following points: the Tone-mod-

els (i.e., the matrix W) was fixed in the TM-NMF but

not fixed in ICTM-NMF. The W was allowed to be

varied in ICTM-NMF, subjected to the constraint
∑

m Wmn = 1 . As a consequence from the above point,

all active basis vector (columns of W) remained active

in TM-NMF. However, it was possible for active basis

vectors in ICTM-NMF to be inactive during the W

update process.

4.3 Performance comparison with related works

4.3.1 Beethoven’s Bagatelle Opus 33, No. 1 in E

In this report, two transcriptions of the pieces demon-

strated in previous studies were carried out using our

proposed method. The first one was the transcription

output from Beethoven’s Bagatelle using NMF presented

in [35]. The input sound wave, in [35], was recorded

from a MIDI controlled acoustic piano.

The plot between recall and specificityb is reproduced

in Figure 5 along with the output from our approach.

Varying the threshold values that control the binary note

on/off conversion of the output H produces the perfor-

mance curve plot shown in Figure 5. The plot can be

used to visually compare the performance of our system

to the NMF output in [35]. The optimal f values for both

NMF runs in the previous work were about 0.54 and 0.60

while our system obtained the optimal f value of 0.72

(recall 73.29% and precision 70.56%).

4.3.2 Mozart’s piano Sonata No. 1 (KV279)

There are three movements in this sonata: Allegro,

Andante and Allegro. Polyphonic transcription of the

first two minutes of the first movement from KV279 was

attempted using non-negative matrix division in [15].

Here, it was decided that, the whole first movement

Figure 3 Effectiveness of ICTM-NMF as compared to standard NMF. Top pane: original piano roll of chorale Aus tiefer Not schrei ich zu dir;

Bottom left pane: the transcription output from a standard NMF. Bottom right pane: the transcription output of the same chorale with ICTM-

NMF. The y-axes represent the pitches from C2 (MIDI note number 36) to C7 (MIDI note number 96) while the x-axes represent time.
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would be used in our experiment. The main difference in

our work is that in [15], the update of W step (see 3.1)

was omitted. The input sound wave was recorded from a

MIDI controlled synthesised piano in our experiment

while the input sound wave was recorded from a

computer controlled Bösendorfer SE290 grand piano in

[15]. It was reported that the recall rate was 99.1%, the

precision rate was 21.8% and the f value was 0.35. The

issue of poor f value was tackled in [15] by further post-

processing the output from NMF using classifiers (rule

Figure 4 Experimental results (ICTM-NMF): from top to bottom (i) input piano roll of chorale Aus tiefer Not schrei ich zu dir (ii) transcribed

output, (iii) true positives-tp, (iv) false positives-fp, and (v) false negative-fn.

Figure 5 The plots between Recall and Specificity (i.e., 1-Precision) for the transcription of Beethoven’s Bagatelle. The optimal f value

in our work is 0.72 while the optimal f were about 0.54 and 0.60 in the previous work.
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based, instance based and frame based). This improved

the f value significantly. Unfortunately, due to the limited

length of [15], information given about the process was

incomplete. There was no transcription output from [15],

so a visual inspection of the output generated by both

systems was not possible. For this piece, our approach

yielded the optimal f value of 0.63 (recall 63.0% and pre-

cision 63.9%).

The performance statistics reported in our experi-

ments were calculated using the precision and recall

measures based on the graphical representation of a

piano roll (as discussed in Section 4). It should also be

pointed out that the counting of true-positive in [15]

was based on correctly found notes,c which is unlike our

true-positive which was based on frame by frame count-

ing. The evaluations of the transcription of Beethoven’s

Bagatelle in [35] and our study have been based on

similar assumptions.

4.4 Transcribing polyphonic sound from acoustic

instruments

Sounds produced from real acoustic instruments possess a

much more complex harmonic structure. The manner of

note executions, the physical characteristic of the string,

the soundboard, etc., all work together to determine the

harmonic structures. The dictionary approach, such as the

proposed Tone-model, represents complex harmonic

structure of a note using a static Tone-model prototype. A

static dictionary might not be effective in such a circum-

stance. Thus it is important to test the performance of the

proposed approach on real acoustic musical instruments.

For this purpose, the chorale numbers 10, 26 and 28 were

played on a classical acoustic guitar (model Yamaha CG 40)

and on an upright acoustic piano (model Atlas). The sound

was recorded directly via a single micropone with 16 bit

bit-depth, and a sample rate of 44,100 Hz. The microphone

had the following specifications: frequency response: 20 Hz

- 16 KHz, sensitivity: -58 ± 3 dB, S/N ratio: 40 dB.

The transcription accuracy of polyphonic pieces per-

formed by acoustic and synthesised instruments is

displayed in Table 2. It was observed that the transcrip-

tion accuracy obtained from acoustic sources was gener-

ally poorer than those from synthesised sources. Figure 6

shows the transcription output from the synthesised gui-

tar sound and the acoustic guitar sound. The transcrip-

tion output from synthesised sound (first row) shows

better recall than the output from the acoustic sound

(third row). It was observed from the experiment that

transcription output from acoustic instruments tended to

give inaccurate duration even though the pitch was cor-

rectly transcribed. This was common at a high pitch

range region. The synthesised instruments did not suffer

from this behaviour.

The overlays of the true positive output on the origi-

nal chorale (the second and the fourth rows of Figure 6)

shows that the degradation in performance in the acous-

tic case is mainly from the inaccuracy in transcribed

duration. This could be caused by the harmonic com-

plexity of real acoustic instruments and, from our obser-

vation, the faster decay rate of acoustic sound as

compared to the synthesised sound (especially at the

high pitch range).

We would also like to highlight that the degrading

performance from the discrepancies in the duration did

highlight the potential of our proposed approach. It

implies that fine tuning in duration using information

from the onset-offset time would greatly improve the

quality of the transcriptions.

5 Conclusions
In this article, we proposed a new strategy to tackle the

three limitations of standard NMF in the polyphonic

transcription task. By constructing a basis vector matrix

W using a Tone-model of the desired instrument and

relying on heuristics to switch off the components corre-

sponding to the inactive pitches, the experimental results

showed an improvement in the transcription perfor-

mance. This strategy worked because of the importance

of the learned basis vector matrix and the ability of the

NMF to switch off inactive basis vectors.

Table 2 Summary of performance of ICTM-NMF in transcribing Bach chorales from acoustic sound and synthesised

acoustic sound

Acoustic sound Synthesised sound

Prec Recall F Prec Recall F

Instrument: Guitar

10 Aus tiefer Not schrei ich zu dir 0.46 0.54 0.50 0.75 0.78 0.76

26 O Ewigkeit, du Donnerwort 0.39 0.57 0.46 0.72 0.74 0.73

28 Nun komm, der Heiden Heiland
Instrument:Piano

0.37 0.55 0.45 0.71 0.75 0.73

10 Aus tiefer Not schrei ich zu dir 0.58 0.53 0.56 0.63 0.63 0.63

26 O Ewigkeit, du Donnerwort 0.46 0.47 0.47 0.67 0.78 0.72

28 Nun komm, der Heiden Heiland 0.51 0.48 0.50 0.66 0.70 0.68
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The number of r played a crucial role in extracting note

events. If the number of r was set higher than the actual

active pitches, noise would appear as transcribed notes. On

the contrary, if the number of r was set too low, events

from different pitches would be transcribed as coming

from the same pitch. To find the exact number of r is

therefore a big challenge for polyphonic transcription using

NMF [16]. In recent works by [6,15], NMF with a fixed W

that learned from a desired instrument was proposed. In

these works, the dictionary matrix, the pitch templates and

the Tone-models acted as the basis vector matrix. This

work extended the same concept to handle common lim-

itations of NMF in polyphonic transcribing application.

Initialising the basis vector matrix using FFT spectra

as a Tone-model is a powerful heuristic. However, this

alone would not be enough to produce good output.

From our study, the following heuristics should be

included.

1. The Tone-model must characterise the input

instrument;

2. the estimated r should be equal to or more than the

actual r; and

Figure 6 Plots of true positive obtained from syntheised guitar sound (first row) and from acoustic guitar sound (third row). The true

positive values are overlaid on top of the original chorale: overlay of synthesised guitar sound (second row), overlay of acoustic guitar sound

(fourth row). Note that in the overlaid tp on the original chorale, the colour code of the correct transcription (tp) is presented in white colour

and the missing transcription (fn) is presented in gray colour.
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3. the fixed Tone-model might not work well if r is

not accurate.

To elaborate on the above heuristics, let us compare the

NMF to a search process. If the NMF factoring process is

seen as a search, the act of initialising W with a Tone-

model is analogous to starting the search near the global

optimum. When the search begins, fixing W biases the

search to a certain direction. If the basis vector matrix W

characterises the Tone-model of the input instrument and

the value of active pitches r are determined correctly,

then, it is likely that the obtained solution would be of

good quality. If the value of r is wrongly determined, then

the search might be guided to any non-optimal solution.

Allowing the W to vary should lower the magnitude of

inactive wr and it is possible to compensate for an overes-

timated number of r. The experiment showed that the

best results were obtained when the W was initialised

using Tone-model and W was also allowed to be adjusted.

In future work, we hope to further explore the extension

of the Tone-model concept to handle sound produced

from acoustic instruments.

Endnotes
aThe index k might need to be rounded up/down since

the boundary frequency of each pitch would not fall

exactly on the desired value. bSpecificity = 1-Precision.
cAs reported in [15]: “A note event is counted as correct

if the transcribed and the real note do overlap”.
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