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Abstract—This paper presents a general probabilistic model for
transcribing single-channel music recordings containing multiple
polyphonic instrument sources. The system requires no prior
knowledge of the instruments present in the mixture (other
than the number), although it can benefit from information
about instrument type if available. In contrast to many existing
polyphonic transcription systems, our approach explicitly models
the individual instruments and is thereby able to assign detected
notes to their respective sources. We use training instruments to
learn a set of linear manifolds in model parameter space which
are then used during transcription to constrain the properties
of models fit to the target mixture. This leads to a hierarchical
mixture-of-subspaces design which makes it possible to supply the
system with prior knowledge at different levels of abstraction.

The proposed technique is evaluated on both recorded and
synthesized mixtures containing two, three, four, and five instru-
ments each. We compare our approach in terms of transcription
with (i.e. detected pitches must be associated with the correct
instrument) and without source-assignment to another multi-
instrument transcription system as well as a baseline NMF
algorithm. For two-instrument mixtures evaluated with source-
assignment, we obtain average frame-level F-measures of up to
0.52 in the completely blind transcription setting (i.e. no prior
knowledge of the instruments in the mixture) and up to 0.67

if we assume knowledge of the basic instrument types. For
transcription without source assignment, these numbers rise to
0.76 and 0.83, respectively.

Index Terms—Music, polyphonic transcription, NMF, sub-
space, eigeninstruments

I. INTRODUCTION

MUSIC transcription is one of the oldest and most well-

studied problems in the field of music information

retrieval (MIR). To some extent, the term “transcription” is

not well-defined, as different researchers have focused on

extracting different sets of musical information. Due to the

difficulty in producing all the information required for a com-

plete musical score, most systems have focused only on those

properties necessary to generate a pianoroll representation that

includes pitch, note onset time, and note offset time. This is

the definition of transcription that we will use in this paper,

although we will consider the additional property of instrument

source.

In many respects music transcription resembles speech

recognition: in both cases we are tasked with the problem
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of decoding an acoustic signal into its underlying symbolic

form. However, despite this apparent similarity, music poses

a unique set of challenges which make the transcription

problem particularly difficult. For example, even in a multi-

talker speech recognition setting, we can generally assume that

when several talkers are simultaneously active, there is little

overlap between them both in time and frequency. However,

for a piece of music with multiple instruments present, the

sources (instruments) are often highly correlated in time (due

to the underlying rhythm and meter) as well as frequency

(because notes are often harmonically related). Thus, many

useful assumptions made in speech recognition regarding

the spectro-temporal sparsity of sources may not hold for

music transcription. Instead, techniques which address source

superposition by explicitly modeling the mixing process are

more appropriate.

A. NMF-based Transcription

Non-negative matrix factorization (NMF) [1], [2] is a gen-

eral technique for decomposing a matrix V containing only

non-negative entries into a product of matrices W and H, each

of which also contains only non-negative entries. In its most

basic form, NMF is a fully unsupervised algorithm, requiring

only an input matrix V and a target rank K for the output

matrices W and H. An iterative update scheme based on the

generalized EM [3] algorithm is typically used to solve for the

decomposition:

V ≈ WH (1)

NMF has become popular over the last decade in part

because of its wide applicability, fast multiplicative update

equations [4], and ease of extension. Much of the recent work

on NMF and related techniques comes from the recognition

that for many problems, the basic decomposition is under-

constrained. Many different extensions have been proposed to

alleviate this problem, including the addition of penalty terms

for sparsity [5], [6], [7] and temporal continuity [8], [9], [10].

In addition to other problems such as source separation [11],

[12], NMF and extensions thereof have been shown to be

effective for single-channel music transcription [13], [14],

[15], [16]. In this situation the algorithm is typically applied to

the magnitude spectrogram of the target mixture, V, and the

resulting factorization is interpreted such that W corresponds

to a set of spectral basis vectors and H to a set of activations

of those basis vectors over time. If V contains only a single

instrument source, we can view W as a set of spectral tem-



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, MONTH 20XX 2

  

fr
e
q
u
e
n
c
y

fr
e
q
u
e
n
c
y

time pitch

p
it
c
h

time

pitch

p
it
c
h

Fig. 1. Illustration of the basic NMF transcription framework. In this example
two instrument sources each with five pitches are considered. This results in
sub-models W1 and W2 as well as transcriptions H1 and H2.

plates, one per pitch.1 Thus, H gives the degree to which each

pitch is active in each time frame and represents most of the

information needed for transcription. This basic formulation

can be extended to handle a mixture of S instrument sources

V ≈

S
∑

s=1

W
s
H

s (2)

by simply interpreting the basis and weight matrices as having

block forms. This concept is illustrated in Figure 1 for a

mixture of synthetic piano and flute notes.

The NMF decomposition can be used for transcription in

both supervised (W is known a priori and therefore held fixed)

and unsupervised (W and H are solved for simultaneously)

settings. However, difficulties arise with both formulations. For

unsupervised transcription it is unclear how to determine the

number of basis vectors required, although this is an area of

active research [17]. If we use too few, a single basis vector

may be forced to represent multiple notes, while if we use too

many some basis vectors may have unclear interpretations.

Even if we manage to choose the correct number of bases, we

still face the problem of determining the mapping between

bases and pitches as the basis ordering is typically arbitrary.

Furthermore, while this framework is capable of separating

notes from distinct instruments as individual columns of W

(and corresponding rows of H), there is no simple solution to

the task of organizing these individual columns into coherent

blocks corresponding to particular instruments. Recent work

on the problem of assigning bases to instrument sources

has included the use of classifiers, such as support vector

machines [18], and clustering algorithms [19].

In the supervised context, we already know W and therefore

the number of basis vectors along with their ordering, making

it trivial to partition H by source. The main problem with

this approach is that it assumes that we already have good

models for the instrument sources in the target mixture.

However, in most realistic use cases we do not have access to

this information, making some kind of additional knowledge

necessary in order for the system to achieve good performance.

One approach, which has been explored in several recent

papers, is to impose constraints on the solution of W or

its equivalent, converting the problem to a semi-supervised

form. Virtanen and Klapuri use a source-filter model which

1In an unsupervised context, the algorithm cannot be expected to disam-
biguate individual pitches if they never occur in isolation; if two notes always
occur together then the algorithm will assign a single basis vector to their
combination.

constrains the basis vectors to be formed as the product of

excitation and filter coefficients [20]. This factorization can

result in a decomposition requiring fewer parameters than an

equivalent NMF decomposition and has been used for tasks

such as instrument recognition [21]. Vincent et al. impose

harmonicity constraints on the basis vectors by modeling them

as combinations of deterministic narrow-band spectra [14],

[22]. More recently, this model was extended by Bertin et

al. to include further constraints that encourage temporal

smoothness in the basis activations [23].

B. Multi-instrument Transcription

Although there has been substantial work on the mono-

phonic [24] and polyphonic [25], [26], [27], [28], [23] tran-

scription problems, many of these efforts have ignored the

important task of assigning notes to their instrument sources.

Exceptions include work by: Kashino et al. on hypothesis-

driven musical scene analysis [29]; Vincent and Rodet on

multi-instrument separation and transcription using indepen-

dent subspace analysis and factorial hidden Markov mod-

els [30]; Leveau et al. on sparse dictionary-based methods

that, although tested primarily on instrument recognition tasks,

could be adapted to the transcription problem [31]; Kameoka

et al. on harmonic temporal clustering (HTC) [32] which

defines a probabilistic model that accounts for timbre and can

label notes by instrument; a system for detecting and track-

ing multiple note streams using higher-order hidden Markov

models proposed by Chang et al. [33]; and the multi-pitch

tracking work of Duan et al. [34], [35]. Duan et al. take a

multi-stage approach which consists of multi-pitch estimation

followed by segmentation and grouping into instrument tracks.

The track formation stage, which they motivate using psycho-

acoustic principles of perceptual grouping, is accomplished

using a constrained clustering algorithm. It is important to

note that this system makes the simplifying assumption that

each instrument source is monophonic. Thus, it cannot be used

for recordings containing chords and multi-stops.

In previous work, we introduced a semi-supervised NMF

variant called subspace NMF [15]. This algorithm consists of

two parts: a training stage and a constrained decomposition

stage. In the first stage, the algorithm uses NMF or another

non-negative subspace learning technique to form a model

parameter subspace, Θ, from training examples. In the second

stage of the algorithm, we solve for the basis and activation

matrices, W and H, in a fashion similar to regular NMF,

except we impose the constraint that W must lie in the

subspace defined by Θ. This approach is useful for multi-

instrument transcription as the instrument model subspace not

only solves the ordering problem of the basis vectors in the

instrument models, but also drastically reduces the number

of free parameters. Despite not meeting the strict definition

of eigenvectors, we refer to these elements of the model as

“eigeninstruments” to reinforce the notion that they represent

a basis for the model parameter space.

Recently, it has been shown [36] that NMF is very closely

related to probabilistic latent semantic analysis (PLSA) [37]

as well as a generalization to higher-order data distributions
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called probabilistic latent component analysis (PLCA) [7].

Although in many respects these classes of algorithms are

equivalent (at least up to a scaling factor), the probabilistic

varieties are often easier to interpret and extend. In more recent

work, we introduced a probabilistic extension of the subspace

NMF transcription system called probabilistic eigeninstrument

transcription (PET) [16]. In this paper, we present a hierar-

chical extension of the PET system which allows us to more

accurately represent non-linearities in the instrument model

space and to include prior knowledge at different levels of

abstraction.

II. METHOD

Our system is based on the assumption that a suitably-

normalized magnitude spectrogram, V, can be modeled as

a joint distribution over time and frequency, P (f, t). This

quantity can be factored into a frame probability P (t), which

can be computed directly from the observed data, and a

conditional distribution over frequency bins P (f |t); spectro-

gram frames are treated as repeated draws from an underlying

random process characterized by P (f |t). We can model this

distribution with a mixture of latent factors as follows:

P (f, t) = P (t)P (f |t)

= P (t)
∑

z

P (f |z)P (z|t) (3)

Note that when there is only a single latent variable z this

is the same as the PLSA model and is effectively identical

to NMF. The latent variable framework, however, has the

advantage of a clear probabilistic interpretation which makes

it easier to introduce additional parameters and constraints.

It is worth emphasizing that the distributions in (3) are all

multinomials. This can be somewhat confusing as it may not

be immediately apparent that they represent the probabilities

of time and frequency bins rather than specific values; it is as if

the spectrogram were formed by distributing a pile of energy

quanta according to the combined multinomial distribution,

then seeing at the end how much energy accumulates in each

time-frequency bin. This subtle yet important distinction is at

the heart of how and why these factorization-based algorithms

work.

Suppose now that we wish to model a mixture of S

instrument sources, where each source has P possible pitches,

and each pitch is represented by a set of Z components. We

can extend the model described by (3) to accommodate these

parameters as follows:

P (f |t) =
∑

s,p,z

P (f |p, z, s)P (z|s, p, t)P (s|p, t)P (p|t) (4)

A. Instrument Models

1) Eigeninstruments: P (f |p, z, s) represents the instrument

models that we are trying to fit to the data. However, as

discussed in Section I, we usually don’t have access to the

exact models that produced the mixture and a blind parameter

search is highly under-constrained. The solution proposed

in our earlier work [15], [16], which we extend here, is
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Fig. 2. Formation of the jth instrument model subspace using the
eigeninstrument technique. First a set of training models (shown with Z = 1)
are reshaped to form model parameter matrix Θj . Next, NMF or a similar
subspace algorithm is used to decompose Θj into Ωj and Cj . Finally,
Ωj is reshaped to yield the probabilistic eigeninstruments for subspace j,
Pj(f |p, z, k).

to model the instruments as mixtures of basis models or

“eigeninstruments”. This approach is similar in spirit to the

eigenvoice technique used in speech recognition [38], [39].

Suppose that we have a set of instrument models M for

use in training. Each of these models Mi ∈ M contains the

Z separate F -dimensional spectral vectors for each of the P

possible pitches as rendered by instrument i at a fixed velocity

(loudness). Therefore Mi has FPZ parameters in total which

we concatenate into a super-vector, mi. These super-vectors

are then stacked together into a matrix, Θ, and NMF with

some rank K is used to find Θ ≈ ΩC.2 The set of coefficient

vectors, C, is typically discarded at this point, although it

can be used to initialize the full transcription system as well

(see Section III-E). The K basis vectors in Ω represent

the eigeninstruments. Each of these vectors is reshaped to

the F -by-P -by-Z model size to form the eigeninstrument

distribution, P (f |p, z, k). Mixtures of this distribution can

now be used to model new instruments as follows:

P (f |p, z, s) =
∑

k

P (f |p, z, k)P (k|s) (5)

where P (k|s) represents a source-specific distribution over

eigeninstruments. This model reduces the size of the parameter

space for each source instrument in the mixture from FPZ,

which is typically tens of thousands, to K which is typically

between 10 and 100. Of course the quality of this parametriza-

tion depends on how well the eigeninstrument basis spans

the true instrument parameter space, but assuming a sufficient

2Some care has to be taken to ensure that the bases in Ω are properly
normalized so that each section of F entries sums to 1, but so long as this
requirement is met, any decomposition that yields non-negative basis vectors
can be used.
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Fig. 3. Caricature of the mixture-of-subspaces model. The global instrument
parameter space has several subspaces embedded in it. Each subspace cor-
responds to a different instrument type or family and has its own rank and
set of basis vectors. Note that in practice the subspaces are conical regions
extending from the global origin, but are shown here with offsets for visual
clarity.

variety of training instruments are used, we can expect good

coverage. An overview of the eigeninstrument construction

process is shown in Figure 2.

2) Hierarchical Eigeninstruments: Although we can expect

that by training on a broad range of instrument types, the

eigeninstrument space will be sufficiently expressive to repre-

sent new instruments, it is conceivable that the model may

not be restrictive enough. Implicit in the model described

in (5) is the assumption that the subspace defined by the

training instruments can be accurately represented as a linear

manifold. However, given the heterogeneity of the instruments

involved, it is possible that they may actually lie on a nonlinear

manifold, making (5) an insufficient model. The concern here

is that the eigeninstrument bases could end up modeling

regions of parameter space that are different enough from the

true instrument subspace that they allow for models with poor

discriminative properties.

One way to better model a non-linear subspace is to use a

mixture of linear subspaces. This locally linear approximation

is analogous to the mixture of principal component analysers

model described by Hinton et al. [40], although we continue to

enforce the non-negativity requirement in our model. Figure 3

illustrates the idea of locally linear subspaces embedded in a

global space. The figure shows the positive orthant of a space

corresponding to our global parameter space. In this example,

we have four subspaces embedded in this parameter space,

each defined by a different family of instruments. The dashed

lines represent basis vectors that might have been found by the

regular (non-hierarchical) eigeninstrument model. We can see

that these bases define a conical region of space that includes

far more than just the training points.

The extension from the PET instrument model to the

mixture-of-instrument subspaces model is straightforward and

we refer to the result as hierarchical eigeninstruments. Similar

to before we use NMF to solve for the eigeninstruments,
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Fig. 4. Illustration of the hierarchical probabilistic eigeninstrument tran-

scription (HPET) system. First, a set of training instruments is used to
derive the set of eigeninstrument subspaces. A weighted combination of
these subspaces are then used by the HPET model to learn the probability
distribution P (p, t|s), which is post-processed into source-specific binary
transcriptions, T1, T2, . . . , TS .

except now we have J training subsets with Ij instruments

each. For each model Mj
i ∈ Mj , we reshape the parameters

into a super-vector and then form the parameter matrix,

Θ
j . Next, NMF with rank Kj is performed on the matrix,

yielding Θ
j ≈ Ω

j
C

j . Finally, each Θ
j is reshaped into

an eigeninstrument distribution, Pj(f |p, z, k). To form new

instruments, we now need to take a weighted combination of

eigeninstruments for each subspace j as well as a weighted

combination of the subspaces themselves:

P (f |p, z, s) =
∑

j

P (j|s)
∑

k

Pj(k|s)Pj(f |p, z, k) (6)

In addition to an increase in modeling power as compared to

the basic eigeninstrument model, the hierarchical model has

the advantage of being able to incorporate prior knowledge

in a targeted fashion by initializing or fixing the coefficients

of a specific subspace, Pj(k|s), or even the global subspace

mixture coefficients, P (j|s). This can be useful if, for exam-

ple, each subspace corresponds to a particular instrument type

(violin, piano, etc.) and we know the instrument types present

in the target mixture. A more coarse-grained modeling choice

might associate instrument families (brass, woodwind, etc.)

with individual subspaces, in which case we would only have

to know the family of each source in the mixture. In either

case, the hierarchical eigeninstrument model affords us the

ability to use the system with a priori information which is

more likely to be available in real-world use cases than specific

instrument models.

B. Transcription Model

We are now ready to present the full transcription model

proposed in this paper, which we refer to as hierarchical

probabilistic eigeninstrument transcription (HPET) and is

illustrated in Figure 4. Combining the probabilistic model in

(4) and the eigeninstrument model in (6), we arrive at the
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Fig. 5. Pianoroll of the complete 5-instrument mixture used in our
experiments.

following:

P (f |t) =
∑

s,p,z,k,j

P (j|s)Pj(f |p, z, k)Pj(k|s)P (z|s, p, t)P (s|p, t)P (p|t)

(7)

Once we have solved for the model parameters, we calculate

the joint distribution over pitch and time conditional on source:

P (p, t|s) =
P (s|p, t)P (p|t)P (t)

∑

p,t P (s|p, t)P (p|t)P (t)
(8)

This distribution effectively represents the transcription of

source s, but still needs to be post-processed to a binary pi-

anoroll representation so that it can be compared with ground-

truth data. Currently, this is done using a simple threshold γ

(see Section III-D). We refer to the final pianoroll transcription

of source s as Ts.

We solve for the parameters in (7) using the expectation-

maximization (EM) algorithm [3]. This involves iterating

between two update steps until convergence (we find that

50 − 100 iterations is almost always sufficient). In the first

(expectation) step, we calculate the posterior distribution over

the hidden variables s, p, z, and k, for each time-frequency

point given the current estimates of the model parameters:

P (s, p, z, k, j|f, t) =

P (j|s)Pj(f |p, z, k)Pj(k|s)P (z|s, p, t)P (s|p, t)P (p|t)

P (f |t)
(9)

In the second (maximization) step, we use this posterior to

increase the expected log-likelihood of the model given the

data:

L ∝
∑

f,t

Vf,t log (P (t)P (f |t)) (10)

where Vf,t are values from our original magnitude spectro-

gram, V. This results in the following update equations:

P (j|s) =

∑

f,t,p,z,k P (s, p, z, k, j|f, t)Vf,t
∑

f,t,p,z,k,j P (s, p, z, k, j|f, t)Vf,t

(11)

Pj(k|s) =

∑

f,t,p,z P (s, p, z, k, j|f, t)Vf,t
∑

f,t,p,z,k P (s, p, z, k, j|f, t)Vf,t

(12)

P (z|s, p, t) =

∑

f,k,j P (s, p, z, k, j|f, t)Vf,t
∑

f,k,j,z P (s, p, z, k, j|f, t)Vf,t

(13)

P (s|p, t) =

∑

f,z,k,j P (s, p, z, k, j|f, t)Vf,t
∑

f,z,k,j,s P (s, p, z, k, j|f, t)Vf,t

(14)

P (p|t) =

∑

f,s,z,k,j P (s, p, z, k, j|f, t)Vf,t
∑

f,s,z,k,j,p P (s, p, z, k, j|f, t)Vf,t

(15)

III. EVALUATION

A. Data

The data set used in our experiments was formed from part

of the development woodwind data set used in the MIREX

Multiple Fundamental Frequency Estimation and Tracking

evaluation task.3 The first 22 seconds from the bassoon,

clarinet, oboe, flute, and horn tracks were manually tran-

scribed.4 These instrument tracks were then combined (by

simply adding the individual tracks) to produce all possible

2-instrument, 3-instrument, 4-instrument, and 5-instrument

mixtures and then down-sampled to 8kHz.

In addition to the data set of recorded performances, we

also produced a set of synthesized versions of the mixtures

described above. To produce the synthetic tracks, the MIDI

versions were rendered at an 8kHz sampling rate using timidity
5 and the SGM V2.016 soundfont. Reverberation and other

effects were not used.

For both the real and synthesized mixtures, the audio was

transformed into a magnitude spectrogram. This was done by

taking a 1024-point short-time Fourier transform (STFT) with

96ms (Hamming) window and 24ms hop and retaining only

the magnitude information. The specific properties of the data

set are given in Table I. Note that these numbers summarize

the recorded and synthesized data sets separately and therefore

are effectively doubled when both sets are considered.

TABLE I
SUMMARY OF THE PROPERTIES OF OUR DATA SET.

# Mixtures # Notes # Frames

2-instrument 10 4044 22470
3-instrument 10 6066 22470
4-instrument 5 4044 11235
5-instrument 1 1011 2247

It is also important to emphasize that this data is taken from

the MIREX development set and that the primary test data

is not publicly available. In addition, most authors of other

transcription systems do not report results on the development

data, making comparisons difficult. We do, however, include

a comparison to the multi-instrument transcription system

proposed by Duan et al. [34] in our experiments.

3http://www.music-ir.org/mirex/2009/index.php/Multiple Fundamental
Frequency Estimation & Tracking

4These transcriptions are available from the corresponding author.
5http://timidity.sourceforge.net
6http://www.geocities.jp/shansoundfont/
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TABLE II
INSTRUMENTS USED TO BUILD THE (HIERARCHICAL)
EIGENINSTRUMENTS MODEL IN OUR EXPERIMENTS.

Group (J) Rank (Kj ) Instruments

Keyboard 10 (5) Pianos
Guitar 12 (6) Guitars
Bass 8 (4) Basses
Viol 8 Violin, Viola, Cello, Contrabass
Brass 18 Trumpet, Trombone, Tuba,

(2) Horns, (4) Saxophones
Reed 6 Oboe, Bassoon, Clarinet
Pipe 6 Piccolo, Flute, Recorder

B. Instrument Models

We used a set of thirty-four instruments of varying types to

derive our instrument model. The instruments were divided up

into seven roughly equal-sized groups (i.e. J = 7) of related

instruments which formed the upper layer in the hierarchical

eigeninstruments model. The group names and breakdown of

specific instruments are given in Table II.

The instrument models were generated with timidity, but

in order to keep the tests with synthesized audio as fair

as possible, two different soundfonts (Papelmedia Final SF2

XXL 7 and Fluid R3 8) were used. We generated separate

instances of each instrument type using each of the soundfonts

at three different velocities (40, 80, and 100), which yielded

204 instrument models in total.

Each instrument model Mj
i consisted of P = 58 pitches

(C2-A6#) which were built as follows: for each pitch p, a

note of duration 1s was synthesized at an 8kHz sampling rate.

An STFT using a 1024-point (Hamming) window was taken

and the magnitude spectra were kept. These spectra were then

normalized so that the frequency components summed to 1
(i.e. each spectrogram column sums to 1). Next, NMF with

rank Z (the desired number of components per pitch) was run

on the normalized magnitude spectrogram and the resulting

basis vectors were used as the components for pitch p of model

Mj
i . Note that because unsupervised NMF yields arbitrarily

ordered basis vectors, this method does not guarantee that the

Z components of each pitch will correspond temporally across

models. We have found that initializing the activation matrix

used in each of these per-pitch NMFs to a consistent form

(such as one with a heavy main diagonal structure) helps to

remedy this problem.

Another potential issue has to do with the differences in

the natural playing ranges of the instruments. For example,

a violin generally cannot play below G3, although the model

described thus far would include notes below this. Therefore,

we masked out (i.e. set to 0) all FZ parameters of each note

outside the playing range of each instrument used in training.

There are other possibilities for handling these ill-defined pitch

values as well. We could, for example, simply leave them

in place or we could set each vector of F frequency bins

to an uninformative uniform distribution. A fourth possibility

is to treat the entries as missing data and modify our EM

7http://www.papelmedia.de/english/index.htm
8http://soundfonts.homemusician.net/collections soundfonts/fluid release

3.html

algorithm to impute their maximum likelihood values at each

iteration, similar to what others have done for NMF [41].

We experimented with all of these techniques, but found that

simply setting the parameters of the out-of-range pitch values

to 0 worked best.

Next, as described in Section II-A, the instrument models

were stacked into super-vector form and NMF was used to

find the instrument bases which were then reshaped into the

eigeninstruments. For the HPET system, we used different

ranks (values of Kj) for each group of instruments because

of the different sizes of the groups. The specific values used

for the ranks are given in Table II, although it is worth

noting that preliminary experiments did not show a substantial

difference in performance for larger values of Kj . The NMF

stage resulted in a set of instrument bases, Ω
j for each

group j which were then reshaped into the eigeninstrument

distribution for group j, Pj(f |p, z, k). For the non-hierarchical

PET system, we simply combined all instruments into a single

group and used a rank equal to the sum of the ranks above

(K = 68). Similar to before, the resulting instrument bases

were then converted to an eigeninstrument distribution.

Note that in preliminary experiments, we did not find a

significant advantage to values of Z > 1 and so the full set

of experiments presented below was carried out with only a

single component per pitch.

C. Algorithms

We evaluated several variations of our algorithm so as to

explore the hierarchical eigeninstruments model as well as

the effects of parameter initialization. In all cases where

parameters were initialized randomly, their values were drawn

from a uniform distribution.

1) HPET: totally random parameter initialization

2) HPETgroup: P (j|s) initialized to the correct value

3) HPETmodel: P (j|s) and Pj(k|s) initialized to an instru-

ment of the same type from the training set

The first variant corresponds to totally blind transcription

where the system is given no prior knowledge about the target

mixture other than the number of sources. The second variant

corresponds to providing the system with the group member-

ship of the sources in the mixture (i.e. setting P (j|s) = 1
when s belongs to instrument group j and 0 otherwise). The

third variant is akin to furnishing the system with knowledge

of the correct groups as well as an approximate setting for

the eigeninstrument distribution in that group (i.e. setting

Pj(k|s) = 1 when s is of instrument type k in group j

and setting Pj(k|s) = 0 otherwise). It is important to note

that in this third case we determine these eigeninstrument

settings using an instrument of the correct type, but whose

parameters come from the training set, M. This case is meant

to correspond to knowledge of the specific instrument type, not

the exact instrument model used to produce the test mixture.

Both of the informed variants of the HPET system are only

initialized with the settings that they receive. Intuitively, we

are trying to start the models in the correct “neighborhood”

of parameter space in the hope that they can further optimize

these settings. We have experimented with other variations
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where the parameters are fixed to these values, but the results

are not significantly different. Figure 6 shows an example

of the raw output distribution, P (p, t, |s), as generated by

HPETmodel. Ground truth values for the synthesized bassoon-

clarinet mixture are shown as well. Although the hierarchical

extension to the PET system has the advantage of providing

a means by which to include prior knowledge, we were also

interested in testing whether the increased subspace modeling

power would have a beneficial effect. To this end, we include

the original (non-hierarchical) PET algorithm in our experi-

ments as well.

As mentioned earlier, the paucity of transcription systems

capable of instrument-specific note assignment makes external

comparisons difficult. We are grateful to Duan et al. for

providing us with the source code for their multi-pitch tracking

system [34] which we refer to as MPT. We used the parameter

settings recommended by the authors. As with the HPET

systems, we provide the MPT algorithm with the number of

instrument sources in each mixture and with the minimum

and maximum pitch values to consider. As part of the multi-

pitch estimation front-end in MPT, the algorithm needs to

know the maximum polyphony to consider in each frame. It

is difficult to set this parameter fairly since our approach has

no such parameter (technically it is P , the cardinality of the

entire pitch range). Following the setting used for the MIREX

evaluation, we set this parameter to 6 which is the upper-bound

of the maximum polyphony that occurs in the data set. The

output of the MPT algorithm consists of the F0 values for each

instrument source in each frame. We rounded these values to

the nearest semitone.

Finally, as a baseline comparison, we include a generic

NMF-based transcription (with generalized KL divergence as

a cost function) system. This extremely simple system had all

of its instrument models (sub-matrices of W) initialized with

a generic instrument model which we defined as the average

of the instrument models in the training set.

D. Metrics

We evaluated our method using a number of metrics on both

the frame and note levels. In the interest of clarity, we distilled

these numbers down to F-measure [42] (the harmonic mean

of precision and recall) on both the frame and note levels as

well as the mean overlap ratio (MOR). When computing the

note-level metrics, we consider a note onset to be correct if it

falls within +/- 48ms of the ground truth onset. This is only

slightly more restrictive than the standard tolerance (+/- 50ms)

used by the MIREX community. Because of the difficulty in

generating an accurate ground-truth for note offsets (many

notes decay and therefore have ambiguous end times), we

opted to evaluate this aspect of system performance via the

MOR which is defined as follows. For each correctly detected

note onset, we compute the overlap ratio as defined in [43]:

overlap ratio =
min{toff

a , toff
t } − max{ton

a , ton
t }

max{toff
a , toff

t } − min{ton
a , ton

t }
(16)

where, for each note under consideration, ton
a is the onset

time according to the algorithm, ton
t is the ground-truth onset

Time

P
it
c
h

(a) Clarinet (HPET)

Time

P
it
c
h

(b) Clarinet (ground-truth)

Time

P
it
c
h

(c) Bassoon (HPET)

Time

P
it
c
h

(d) Bassoon (ground-truth)

Fig. 6. Example HPET (with model initialization) output distribution
P (p, t|s) and ground-truth data for the synthesized bassoon-clarinet mixture.

time, and toff
a , toff

t are the offset times from algorithm and

ground-truth, respectively. The overlap ratio is computed for

all correctly detected notes and the mean is taken to give the

MOR.

Note that, because the order of the sources in P (p, t|s)
is arbitrary, we compute sets of metrics for all possible

permutations and report the set with the best frame-level F-

measure.

Recall that the output of our system is a joint distribution

over pitch and time (conditioned on source) and therefore must
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Fig. 7. Comparison of the sensitivity of the HPET algorithm at a range of
threshold values for γ. Results are averaged over mixtures consisting of the
same number of instruments.

be discretized before the evaluation metrics can be computed.

This is done by comparing each entry of P (p, t|s) to a

threshold parameter, γ, resulting in a binary pianoroll Ts:

Ts =

{

1 if P (p, t|s) > γ

0 otherwise
(17)

The threshold γ used to convert P (p, t|s) to a binary pi-

anoroll was determined empirically for each algorithm variant

and each mixture. This was done by computing the threshold

that maximized the area under the receiver operating char-

acteristic (ROC) [44] curve for that mixture, taking source

assignment into account (i.e. pitch, time, and source must

match in order to be counted as a true positive). Although

this method of parameter determination is somewhat post-hoc,

the algorithm is fairly robust to the choice of γ as shown in

Figure 7.

As with many latent variable models, our system can be

sensitive to initial parameter values. In order to ameliorate the

effects of random initialization, we run each algorithm three

times on each test mixture. Evaluation metrics are computed

for each algorithm, mixture, and repetition and then averaged

over mixtures and repetitions to get the final scores reported

in Tables III-VI.

E. Experiments

We conducted two primary experiments in this work. The

first, and most important, was the comparison of the six

algorithms (three HPET variants, PET, MPT, and NMF) for

multi-instrument transcription. In this experimental setting we

are interested in evaluating not only an algorithm’s ability

to detect notes correctly, but also to assign these notes to

their source instruments. Therefore a pitch is only considered

correct if it occurs at the correct time and is assigned to the

proper instrument source. We refer to this as the transcription

with source assignment task.

It is, however, also interesting to also consider the efficacy

of each algorithm for the simpler source-agnostic transcription

task as this problem has been the focus of most transcription

research in recent years. We refer to this task as transcription

without source assignment. For concision, only the average

frame-level F-measures for this case are included.

The results of our experiments are summarized in Tables III-

VI. As we would expect, the baseline NMF system performs

the worst in all test cases – not surprising given the limited

information and lack of constraints. Also unsurprising is the

general downward trend in performance in all categories as

the number of instruments in the mixture increases.

In terms of the frame-level results for the case with source

assignment (Table III), we can see that the HPET algorithm

benefited substantially from good initializations. With the

exception of the outlier in the case of the real 5-instrument

mixture, HPET with full model initialization performed sub-

stantially better than other systems. HPET with initialization

by group performs slightly worse, although in some cases the

results are very close. Interestingly, we also find that HPET

does not always outperform PET, although again, the numbers

are often very close. This suggests that the true instrument

space may be relatively well approximated by a linear sub-

space. The comparison between HPET, PET, and MPT is

also interesting, as these systems all make use of roughly

the same amount of prior knowledge. For mixtures containing

fewer source instruments, the eigeninstrument-based systems

slightly out-perform MPT, although performance is essentially

the same for 4-instrument mixtures and MPT does better on

synthesized 5-instrument mixtures.

Turning to the note-level onset-detection metric (Table V),

we find a similar trend as at the frame-level. The initialized

models typically outperform all other systems by a reasonable

margin, with full model initialization leading to slightly better

performance than group-only initialization. The numbers for

all systems were generally down for this task as compared to

the frame-level analysis. MPT in particular did not perform

nearly as well as it had on frame-level detection. However,

the MPT numbers appear to be roughly consistent with the

MIREX 2010 note-level results which suggests that MPT had

difficulty with the characteristics of the woodwind data set.
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TABLE III
AVERAGE FRAME-LEVEL F-MEASURES (WITH SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.50 0.44 0.36 0.27 0.52 0.43 0.37 0.40

HPETgroup 0.65 0.51 0.42 0.38 0.62 0.48 0.42 0.35
HPETmodel 0.67 0.54 0.47 0.42 0.63 0.50 0.43 0.33
PET [16] 0.53 0.40 0.33 0.28 0.53 0.42 0.36 0.35
MPT [34] 0.49 0.40 0.36 0.35 0.49 0.40 0.36 0.35
NMF 0.34 0.28 0.23 0.19 0.28 0.24 0.20 0.18

TABLE IV
AVERAGE FRAME-LEVEL F-MEASURES (WITHOUT SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.76 0.73 0.71 0.69 0.62 0.67 0.65 0.65
HPETgroup 0.83 0.79 0.75 0.73 0.77 0.72 0.70 0.67

HPETmodel 0.83 0.80 0.77 0.73 0.78 0.73 0.70 0.67

PET [16] 0.76 0.71 0.68 0.65 0.70 0.67 0.67 0.66
MPT [34] 0.64 0.64 0.62 0.60 0.64 0.63 0.62 0.60
NMF 0.59 0.62 0.62 0.60 0.48 0.52 0.52 0.53

MPT did, however, do best in terms of MOR (Table VI) in

almost all categories, although results for the fully initialized

HPET variant were slightly better for the real 5-instrument

case.

Next, we consider transcription without source assignment

(Table IV) which corresponds to the polyphonic transcription

task that has been most thoroughly explored in the literature.

Again, the initialized models perform substantially better than

the others. Here we see the greatest disparity between synthe-

sized and recorded mixtures (at least for the eigeninstrument-

based systems) in all of the experiments. An examination of

the test data suggests that this may be largely due to a tuning

mismatch between the recorded audio and synthesized training

data.

Finally, we discuss the differences in performance between

the HPET variants based on the instruments in the mixture.

Figure 8 shows this breakdown. For each algorithm and

instrument, the figure shows the F-measure averaged over only

the mixtures containing that instrument. We can see that, in

almost all cases, the flute appears to have been the easiest

instrument to transcribe, and the oboe the most difficult. This

trend seems to have held for both synthetic as well as real

mixtures, although the blind HPET variant had more trouble

with real mixtures containing flute. Referring to Figure 5, we

see that the flute part occupies a largely isolated pitch range.

Given the limited number of harmonics present in notes at

this range, it seems likely that pitch was the primary source

of discriminative information for the flute part. The oboe part,

however, occurs not only roughly in the middle of the modeled

pitch range, but also almost entirely mirrors the clarinet part.

It is therefore not surprising that mixtures containing oboe are

difficult. The same line of reasoning, however, would lead us to

expect that the mixtures containing clarinet would be equally

TABLE V
AVERAGE NOTE-LEVEL F-MEASURES (WITH SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.47 0.37 0.28 0.21 0.45 0.37 0.31 0.36

HPETgroup 0.61 0.46 0.35 0.31 0.60 0.44 0.37 0.31
HPETmodel 0.49 0.54 0.39 0.37 0.62 0.47 0.39 0.22
PET [16] 0.45 0.32 0.26 0.22 0.45 0.36 0.30 0.26
MPT [34] 0.21 0.14 0.10 0.10 0.19 0.14 0.10 0.10
NMF 0.27 0.22 0.17 0.11 0.23 0.19 0.15 0.11

TABLE VI
AVERAGE MEAN OVERLAP RATIOS (WITH SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.49 0.47 0.45 0.43 0.49 0.47 0.43 0.43
HPETgroup 0.54 0.46 0.46 0.42 0.52 0.49 0.48 0.47
HPETmodel 0.54 0.51 0.49 0.47 0.52 0.48 0.48 0.53

PET [16] 0.51 0.46 0.43 0.37 0.47 0.45 0.42 0.40
MPT [34] 0.58 0.54 0.55 0.51 0.59 0.54 0.55 0.51
NMF 0.38 0.38 0.35 0.35 0.38 0.37 0.37 0.35

difficult given the similarities between the two instrument

parts. Interestingly, this does not appear to be the case as

performance for mixtures containing clarinet are reasonably

good overall. One possible explanation is that the clarinet

model is relatively dissimilar to others in eigeninstrument

space and therefore easy to pick out. This makes sense

considering that the harmonic structure of the clarinet’s timbre

contains almost exclusively odd harmonics (for the relevant

pitch range).

IV. CONCLUSIONS

We have presented a hierarchical probabilistic model for the

challenging problem of multi-instrument polyphonic transcrip-

tion. Our approach makes use of two sources of information

available from a set of training instruments. First, the spectral

characteristics of the training instruments are used to form

what we call “eigeninstruments”. These distributions over

frequency represent basis vectors that define instrument pa-

rameter subspaces specific to particular groups of instruments.

Second, the natural organization of instruments into families

or groups is exploited to partition the parameter space into

a set of separate subspaces. Together, these two distributions

constrain the solutions of new models which are fit directly to

the target mixture.

We have shown that this approach can perform well in the

blind transcription setting where no knowledge other than the

number of instruments is assumed. For many of the metrics

and mixture complexities considered, our approach performs

as well or better than other multi-instrument transcription ap-

proaches. We have also shown that by assuming fairly general

prior knowledge about the sources in the target mixture, we

can significantly increase the performance of our approach.

There are several areas in which the current system could be

improved and extended. First, the thresholding technique that
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Fig. 8. Per-instrument average frame-level F-measures (with source assign-
ment) by algorithm and number of sources for (a) synthesized data and (b)
real data.

we have used is extremely simple and results could probably

be improved substantially through the use of pitch dependent

thresholding or more sophisticated classification. Second, and

perhaps most importantly, although early experiments did

not show a benefit to using multiple components for each

pitch, it seems likely that the pitch models could be enriched

substantially. Many instruments have complex time-varying

structures within each note that would seem to be important

for recognition. We are currently exploring ways to incorporate

this type of information into our system.
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