
Transcribing with Annotation Graphs

Edouard Geoffrois1, Claude Barras2, Steven Bird3, and Zhibiao Wu3

1 DGA/CTA/GIP 2 Spoken Language Processing Group 3 LDC
16 bis av. Prieur de la Cˆote d’Or, LIMSI-CNRS, BP 133, 3615 Market Street, Suite 200,

94114 Arcueil cedex, France 91403 Orsay cedex, France Philadelphia, PA, 19104-2608, USA
Edouard.Geoffrois@etca.fr Claude.Barras@limsi.fr fsb,wzbg@unagi.cis.upenn.edu

Abstract
Transcriber is a tool for manual annotation of large speech files. It was originally designed for the broadcast news transcription task. The
annotation file format was derived from previous formats used for this task, and many related features were hard-coded. In this paper
we present a generalization of the tool based on the annotation graph formalism, and on a more modular design. This will allow us to
address new tasks, while retaining Transcriber’s simple, crisp user-interface which is critical for user acceptance.

1. Introduction
The development and refinement of speech recognition

systems requires a large amount of transcribed speech data.
Production of these corpora is a highly time-consuming
task and requires specialized software tools. In order to
support a project involving the automatic transcription and
indexing of multilingual broadcast news, DGA developed
“Transcriber”, a tool for manually segmenting, labeling and
transcribing speech signals having extended duration (up to
several hours). The first release of the tool was presented at
the LREC conference in 1998 (Barras et al., 1998). In or-
der to encourage the production of speech corpora and ease
their sharing, it was decided to distribute the tool as free
software1.

Since then, Transcriber has been extended and refined,
taking into account user feedback. New features were
added, and great care was taken to retain a user-friendly
interface and interactive management of long duration sig-
nals. Transcriber has been used for the production of over
100 hours of transcribed radio programs and television
soundtracks in several languages, and has thus proven suit-
able for large-scale production of transcribed corpora (Bar-
ras et al., 2000).

However, Transcriber was geared towards a single ap-
plication: the broadcast news transcription task. The in-
ternal data structure was derived from the format which
is most commonly used for broadcast news transcription
(.typ, UTF). This data format prevented the implementa-
tion of various minor yet desirable features. For example,
markers which are used to indicate the beginning and the
end of some annotations (e.g., to delimit a stretch of words
in another language) are not logically associated, and can-
not be manipulated as a single unit.

Furthermore, many features related to the format and
to the application were hard-coded. Even though gener-
ality was a concern, the Transcriber development effort has
concentrated on efficiency for broadcast news transcription,
and the interface was designed around this specific task. As
a result, if the data representation needs to be changed, code
has to be written again.

1http://www.etca.fr/CTA/gip/Projets/
Transcriber/

Nevertheless, there has been a demand for generaliz-
ing the tool so that it can display and edit a wider range of
annotation types. One example is the CHAT format used
within the CHILDES research group on language acqui-
sition (MacWhinney, 1995). Other extensions are needed
for annotating completely new kinds of data, like multi-
channel audio or video. Gracefully handling such a wider
variety of formats and functions requires a more general
data model.

This need for a broader coverage of annotation types is
not unique to Transcriber. Many other annotation projects
face the same issues. In response to this, a new general-
purpose data model for linguistic annotations, called the
“annotation graph” (AG), has been proposed (Bird and
Liberman, 1999). In contrast with some other models, an-
notation graphs are conceptually very simple, and have ex-
tremely broad applicability. Recently, DGA decided to mi-
grate Transcriber to the annotation graph model, and to col-
laborate with LDC on the design and implementation of a
new modular architecture. This paper reports these devel-
opments.

2. Transcriber features

Transcriber is described more extensively in other ar-
ticles (Barras et al., 1998; Barras et al., 2000) and in its
reference manual (available on the web site and in the tool
itself in the online help). This section provides a summary
of the main features, illustrating the starting point for our
migration to an AG-based Transcriber.

The user interface is shown in Figure 1. It consists
mainly in two windows, one for displaying and editing the
transcription, and one for the displaying the signal wave-
form and the segmentation. The annotations include vari-
ous information: orthographic transcription, speech turns,
topic sections, background conditions, and various events.
The data format is XML, and a DTD controls the validity of
the data. This format used for file input/output is also used
directly as the internal data structure. Therefore, no con-
version is needed for input/output. But the major drawback
is the strong dependency of the code on the file format, so
that modifications in the format need to be propagated in
the code.



Figure 1: Screenshot of Transcriber user-interface.

3. Using annotation graphs

The annotation graph model provides a general-purpose
abstraction layer between physical annotation formats and
graphical user interfaces. As a consequence, the connec-
tions between this logical model and various physical and
graphical representations can be fully modularized. New
annotation formats and new user-interfaces to an annotation
task can thus be implemented as pluggable components.

The annotation graph data model is composed of two
low-level structures – nodes and arcs – and two high-level
structures – graphs and subgraphs. A graph object is a col-
lection of zero or more arcs, each specifying an identifier,
a type, and some content consisting of domain-specific at-
tributes and values. An arc also references a start and end
node, and each node provides an optional temporal offset.
This temporal offset may be qualified with a “timeline”,
which is a symbolic name for a collection of signal files
which are temporally co-extensive and whose times can
be meaningfully compared. Node and arc identifiers may
also be qualified with a user-specific namespace, to avoid
collisions when multiple independent annotations are com-
bined.

A recent collaboration between NIST, LDC and MITRE
has produced an applications programming interface to an-
notation graphs, and implementations in Java and C++ are
in development. A prototype in Perl/tk has also been pro-
duced and is available online2. An even more general
model has been proposed recently3 (Bird et al., 2000b). A
query language is also being developed (Bird et al., 2000a).

2http://www.ldc.upenn.edu/annotation/AG/
prototype/

3http://www.nist.gov/speech/atlas/

3.1. Interpreting Transcriber features in terms of
annotation graphs

Transcriber can be generalized by incorporating anno-
tation graphs as the internal data model. Many aspects of
this process are quite natural and obvious. It is interesting
to note that the duality of the Transcriber interface closely
resembles the duality of the graph structure: the text pane
represents a node-based view where one can edit the con-
tent of the arcs, while its signal pane represents an arc-
based view where one can modify the time of the anchored
nodes. The display of the transcription in the text editor
and of the segmentation under the signal can be expressed
as general transformations of the annotation graphs. Note
that the constraint that all arcs of a given type (orthographic
transcription with markers, speaker turns or sections) are a
partition of the recording has to be imposed by the inter-
face, not by the data structure.

In order to prepare for the transition to AG, Transcriber
features were systematically enumerated and classified ac-
cording to how the transition to annotation graphs affects
them.

Some features are completely independent of the anno-
tation format. These incude signal management (scrolling
and zooming, selecting a portion of signal, moving the cur-
sor to a given position, continuous playback), interface dis-
play options (fonts, colors, toggling second signal view
or button bar display), and other general options (choice
of language, defaults, shortcuts). There are also features
which, though they interact with the AG structure, should
remain outside of it. This is the case of speaker and topic
databases, which were already clearly separated in the orig-
inal format.

Other features depend on the annotation format, and
must be re-implemented. Some have a natural imple-
mentation in the new representation. For example, mov-
ing a boundary naturally applies to a timed node; Events
are linked with the orthographic transcription using shared
nodes; Selecting a segment (or several) applies to the corre-
sponding arcs; The consistency between cursors in the text
editor and in the signal waveform can be easily checked,
since the bounding time interval is defined for any arc (Bird
et al., 2000a); Simultaneous speech from two speakers can
be represented in various ways, and the original implemen-
tation where words are labelled as associated to one of the
two speakers can be seen as a particular case of the equiv-
alence class mechanism of the AG; The information asso-
ciated to an episode (recording date and source, primary
language...), originally stored separately, can be associated
to an arc spanning the whole recording.

In some cases, this natural generalization requires cer-
tain types of arc to be distinguished. Indeed, some features
apply to text only (spell checking, glossary, finding a word),
some features apply to text and events (cut/copy/paste as
in the current implementation). some to segments corre-
sponding to text and event arcs (highlight segment, go to
next/previous segment, pause at segment boundary during
playback, insert/delete breakpoint), and some others to turn
or topic arcs (next/previous turn/topic, find speaker/topic).

For certain other features, the change of representation
leads to consider them under a new angle. This is the case



of the creation and editing of speech turns, events and com-
ments. For example, inserting a turn was originally viewed
as a change of boundary type, but can now be viewed as
splitting a speaker arc.

The interpretation of a transcription as an AG also opens
up new possibilities. Features associated to a particular type
of arc could be extended to other types (e.g., cut/copy/paste
on any type of arc, go to next acoustic backgroung change,
pause at all timed nodes during payback). It is also possible
to display only certain types of arcs, for example to see only
the speaker turns or the topical structure of the annotations.
To summarize, in many cases the AG model makes it easier
to improve existing features or implement new ones.

3.2. Implementation issues

Using AG as the internal data model should make the
code independent of the file format, and task-dependent
issues should be removed or located in separate, task-
configurable modules. However, these generalization steps
must not compromise the efficiency of the tool, as perceived
by the human annotator.

As was previously described, two views of the tran-
scription are available: a text editor for creating or modi-
fying the content of the transcription, and a temporal view
for controlling the synchronization between the signal and
the annotation, with several segmentation tiers. Modifica-
tions in the editor are immediately viewed in the segmenta-
tion. This is currently done with ad-hoc coding, and should
be implemented in a more generic fashion using AG, while
retaining a high degree of efficiency.

Incorporating AG in Transcriber involves fundamental
redesign of the tool. In this context, we should consider
other limitations of the tool and how they can be improved.
For example, we will address unlimited undo, incremental
save, and version control. These functions, much like seg-
mental display update, can take advantage of tracing modi-
fications of the annotations.

3.2.1. Tracing AG modifications
All operations on an AG split up into elementary opera-

tions of creating, modifying and destroying arcs and nodes.
Given the state of the graph at timet0, the elementary op-
erations applied betweent0 and t1 can be automatically
stored along with the graph in an additional data structure.
This allows efficient updates of the interface taking into ac-
count only the effective changes since a previous update.
It also makes it possible to return to thet0 state. Several
traces can be maintained for different purposes. Note that
the value given for the creation or modification of an arc
does not need to be stored in the traces, since they are al-
ready available in the (updated) graph itself. On the other
hand, the initial value of a modified attribute or the whole
content of a destroyed arc is necessary for the undo feature.

3.2.2. Incremental save
The first application we describe is incremental save.

Tracing makes it easy to dump any graph modifications that
occurred since a previous dump in a concise manner. Fig-
ure 2 gives an example of a possible incremental output (we
do not commit to this format for the final implementation).

<IncrementalGraph author="JB" date="04/01/00, 16:00">
<DestroyNode id="nd18"/>
<DestroyArc id="ar15"/>
<NewNode id="nd20" offset="10.3"/>
<NewArc id="ar17" start="nd19" end="nd20"/>
<ModifyNode id="nd19" offset="7.2"/>
<ModifyArc id="ar16" type="word" value="absolutely"/>
</IncrementalGraph>

Figure 2: Sample of an incremental file output.

For modified arcs and nodes, only the actually modified at-
tributes need to be dumped along with the arc or node iden-
tifier, which makes the output more compact. This scheme
also provides a very good tracing of the transcription his-
tory, since it makes it possible to know precisely by who
and when each attribute of the graph was modified. One
can, when reading the cumulative file of incremental saves,
stop reading at a given date, thus coming back to a previ-
ous version. One can also work on an original transcription
without modifying it and store any other modifications in
a separate file. If several persons work on the same tran-
scription and apply modifications to different arcs, merging
their results is trivial. Of course, these new possibilities
do not prevent us from providing import and export of the
complete annotations in other formats.

3.2.3. Unlimited undo
Allowing an unlimited level of undo, like in many mod-

ern office applications, is a desirable feature. This implies
to manage a stack of AG modifications: fromt0 to t1, from
t1 to t2, ..., and fromtn to current time. Given the fact that
user actions can involve several elementary modifications
of the graph, it is up to the application to choose the times
corresponding to the end of each undoable user action.

3.2.4. Update of segmental display
One or several segmentation tiers are shown under the

signal, each tier containing a specific kind of arc. Each seg-
ment of a tier consists of contiguous arcs, for which the out-
ermost nodes are anchored (cf. Figure 3). When modifying
the graph (e.g., changing the attribute of an arc, anchoring
a node, creating a new arc), the display of the segmentation
tiers needs to be updated. This should be done without pro-

1
13.5

2 3
14.2

5
14.8

4W/ he W/ said W/ %um W/ he

Speaker/ #1

 he said %um he

Andrew

A. Internal representation of arcs and nodes

B. Display of related segmentation tiers

Figure 3: Display of an annotation graph as segmentation
tiers.



cessing the whole graph, and untouched segments should
be kept. For this, the trace of the AG modifications since
the last segmental display update is used. For each created
arc, its membership of any existing tier must be checked;
in the most general case, a user-defined boolean callback
function performs the test. The character string displayed
in the segment box is often the concatenation of some at-
tribute value for the segment arcs. But in some cases the
string cannot be deduced trivially from the attribute values
(e.g., for displaying the name of a speaker instead of its
id) and a user-defined callback function, if defined, will be
used. Note that the display of the character string in the
segment may be truncated, depending on the width of the
segment on the screen at the current resolution. The seg-
ment color follows the same scheme, with a default color
for each tier and a user-defined function for the actual color
of the segment.

3.2.5. Management of the text editor
In the text editor, one should be able to see and modify

the content of the arcs. A strict ordering of the arcs needs
to be defined, so that each arc can sequentially displayed in
the text pane. The natural arc order is driven by node order,
but a hierarchy of arc types has to be given when several
arcs share the same node. Also, unanchored nodes require
decisions which may depend on the application.

It will be possible to display only a subset of the graph
(e.g., only sections and turns without the transcription, or
only the transcription for a specific speaker or a specific
channel). Display of the arc content is application spe-
cific; depending on the kind of arc, it may be icons, buttons,
text... Edition of the arc can be done directly in the text edi-
tor, or in a pop-up menu or window when clicking on some
part of the display. All this will be controlled in the stan-
dard Tk text widget by user-defined callbacks. When using
a generic XML editor instead (as discussed in 4.4.), the dis-
play will be rather controlled by stylesheets, as defined by
CSS and XSL standards.

Most often, the modifications in the text editor will be
simply propagated to the graph. The opposite case (update
of the text editor according to possibly external modifica-
tions of the graph) is more complex and will involve spe-
cific optimizations similar to the ones described in 3.2.4..

4. Modular design
Previous discussions about Transcriber and AG demon-

strated the need to have a modular, flexible design for Tran-
scriber. We propose a new modular architecture for Tran-
scriber. This architecture will allow us to separate Tran-
scriber into several independent components. It will then
be possible for developers to reuse those components or re-
place one of them without the need to change other compo-
nents.

4.1. Design goals

We have the following design goals in mind.

Object oriented design: The system needs to be struc-
tured into several components based on its major func-
tionalities. Each component should be self-sufficient

in fulfilling its functionality. In doing so, the compo-
nents will be maximally reusable.

Simple interfaces between components: The interface
among components should be simple and clear. The
interface should be abstract enough so that it won’t be
wedded to any specific annotation task.

Easy integration with external software modules:
Given that many annotation tools exist already, it is
important that our system is able to communicate
with them, so that not only the file formats can be
interchanged, but also the functional components can
be interchanged to a certain degree.

Using XML as the interchange bridge: In order to make
configuration easy, we will use XML as the bridge to
do the communication among components, as well as
file format interchange. We will also explore ways to
use XML to define a graphical interface so that the
GUI is configurable at run time.

4.2. Architecture overview
The system is designed based on the ”Component” con-

cept as used in Java Beans and Microsoft COM objects. A
component is an object which fulfills a certain task, and
provides interfaces so that other components can commu-
nicate with it or control its behavior. The data is passed
around different components through XML. The format of
the data has to conform with a DTD for inter-component
messages, which all components must agree on. Currently,
the system is divided into three highly abstracted compo-
nents. One is the Transcriber engine. This component will
take care of internal data representation, management of
other components, time alignment and coordinate commu-
nications among them. The second one is the Transcription
component. It will display and accept editing commands on
the transcription. The third component is the media com-
ponent. It will take care of media operations such as media
file open and close, play or stop playing, etc.

A complete running system will have one Transcriber
engine, but may have more than one instance of transcrip-
tion components and media components. In this way, a
video player and an audio player can be run at the same
time. Also the same transcription can be displayed in differ-
ent transcription component instances for the convenience
of editing and viewing.

4.3. The Transcriber Engine

The central piece of the system is the Transcriber En-
gine. This component will coordinate the other compo-
nents and pass events around. New instances of transcrip-
tion components or media components which support Tran-
scriber interfaces can register with the component engine.
As soon as an instance is registered, it can communicate
with the engine to report its current status and send annota-
tion request to the engine. In this way, the system permits
components to operate in a plug and play fashion. With a
suitable wrapper, existing systems (e.g., text editors, wave-
form display tools) can be easily incorporated into the sys-
tem. The engine will maintain a list of instances and man-
age the communication among them. For example, when



a region of signal is selected, the engine will calculate the
correct size and position for all transcription instances and
issue an alignment command to each of them.

4.4. The transcription component

This component presents the transcript to the user. The
annotation contents are defined with an XML DTD. Based
on this DTD, the transcription component should be able to
configure the GUI when the DTD is changed. When focus
is changed in another component, this component should
be able to change its focus too. As long as a component
supports the Transcriber interface, the transcription com-
ponent can actually be in quite different forms. The same
transcription can be displayed in different views depending
on the task, or the domain, or the user. Some components
can be a text editor, some can be a horizontal viewer, or
a generic XML editor. Transcriber developers can either
build a component from scratch or write wrappers around
existing editors such as Emacs or Tk Text Widget to support
Transcriber interface.

4.5. The media component

This component takes care of the media files. It will be
responsible for opening and closing files, displaying me-
dia, playing audio or video in a certain region or speed, and
changing resolution and other parameters. It will respond
to requests from the Transcriber engine to do certain tasks
such as align the display to the focus point, show the cur-
rent focus, play the current region, zoom in, zoom out the
display, etc.

5. Conclusion
We have presented the current developments around the

Transcriber speech annotation tool. They are based on the
annotation graph model and on a highly modular design.
The main challenge is to generalize the tool while keep-
ing backward compatibility and without degrading its effi-
ciency. Transcriber’s simple, crisp user-interface has been
a critical component of its success, and we are careful to
retain this property.

Using the annotation graph formalism allows many
hard-coded functions to be replaced by instances of a more
general, parameterized mechanism. The user-interface can
be more easily customized to handle new annotation tasks,
and the underlying generic data model simplifies the inter-
operability with other tools. The resulting annotation tool
will be extremely flexible and general, and will be openly
distributed to the community.

6. References
Claude Barras, Edouard Geoffrois, Zibiao Wu, and Mark

Liberman. 1998. Transcriber: a free tool for seg-
menting, labeling and transcribing speech. InInterna-
tional Conference on Language Resources and Evalua-
tion (LREC), pages 1373–1376.

Claude Barras, Edouard Geoffrois, Zibiao Wu, and Mark
Liberman. 2000. Transcriber: development and use of
a tool for assisting speech corpora production.Speech
Communication. to appear.

Steven Bird and Mark Liberman. 1999. A for-
mal framework for linguistic annotation. Techni-
cal Report MS-CIS-99-01, Department of Computer
and Information Science, University of Pennsylvania.
[xxx.lanl.gov/abs/cs.CL/9903003], expanded from ver-
sion presented at ICSLP-98, Sydney, revised version to
appear inSpeech Communication.

Steven Bird, Peter Buneman, and Wang-Chiew Tan. 2000a.
Towards a query language for annotation graphs. InPro-
ceedings of the Second International Conference on Lan-
guage Resources and Evaluation.

Steven Bird, David Day, John Garofolo, John Henderson,
Chris Laprun, and Mark Liberman. 2000b. Atlas: A
flexible and extensible architecture for linguistic anno-
tation. InProceedings of the Second International Con-
ference on Language Resources and Evaluation.

Brian MacWhinney. 1995.The CHILDES Project: Tools
for Analyzing Talk. Mahwah, NJ: Lawrence Erlbaum.,
second edition. [childes.psy.cmu.edu/].


