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Abstract

The intersection of genome-wide association analyses with physiological and functional

data indicates that variants regulating islet gene transcription influence type 2 diabetes

(T2D) predisposition and glucose homeostasis. However, the specific genes through which

these regulatory variants act remain poorly characterized. We generated expression quanti-

tative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-

density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped

active islet chromatin signatures and were coincident with established T2D and/or glycemic

trait associations. At some, these data provide an experimental link between GWAS signals

and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate

genes with no prior connection to islet biology, includingWARS and ZMIZ1. At the ZMIZ1

locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influ-

ences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the mainte-

nance of glucose homeostasis. Together, these findings provide a significant advance in

the mechanistic insights of T2D and glycemic trait association loci.
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Author Summary

Genetic studies have uncovered many different parts of the genome playing a role in the

risk of developing diabetes, or affecting blood sugar levels in the normal population. How-

ever, it has so far been difficult to tie these parts of the genome to genes that are responsi-

ble for the observed changes in risk and/or blood sugar levels (“effector transcripts”). It is

clear from the genetic data that one of the key tissues in these phenotypes is the human

pancreatic islet of Langerhans, but the limited availability of this tissue has been a major

hurdle in translating the genetics into biology. Here, we present a study linking genetic

variation to gene expression changes in 118 islet preparations. Using these cis-eQTLs, we

provide candidate effector transcripts at 14 regions of the genome previously associated

with glucose phenotypes. Many of the genes implicated through this approach have no

known role in the islet. By experimentally changing the expression levels of one of these

novel genes, ZMIZ1, in human islets and beta-cells, we uncovered a novel role for ZMIZ1

in exocytosis and insulin secretion. These findings therefore significantly improve the dis-

covery of biology underlying type 2 diabetes and glucose trait association.

Introduction

Genome-wide association studies (GWAS) have identified approximately 80 loci robustly asso-

ciated with predisposition to type 2 diabetes (T2D) [1–3] and a further 70 influencing a range

of continuous glycemic traits [4–10] in non-diabetic subjects. There is substantial, though far

from complete, overlap between these two sets of loci. Physiological studies in non-diabetic

individuals indicate that most of these loci primarily influence insulin secretion rather than

insulin sensitivity, highlighting a key role for the pancreatic islets of Langerhans in the mecha-

nistic underpinnings of these association signals [11,12]. These findings have motivated efforts

to catalogue the epigenomic and transcriptional landscape of human islets and to apply these

findings to deliver biological insights into disease pathogenesis. Recently, it has been shown,

for example, that GWAS signals for T2D and fasting glucose show significant co-localization

with islet enhancers [13,14].

The identification of variant associations mapping to islet regulatory elements raises the

question of which downstream (or “effector”) transcripts are responsible for mediating those

regulatory effects. Relatively few of the T2D GWAS regions feature compelling biological can-

didates. The identification of cis-eQTL (expression quantitative trait locus) signals, especially

in disease-relevant conditions and tissues, has, in other contexts, proven a powerful approach

for connecting regulatory association signals to their effector transcripts [15–17]. Another

major advantage of cis-eQTL data is that, by providing a direction of effect at the transcript

level, they can help clarify whether genetic associations affect their phenotype through gain or

loss of function–crucial information for translating the genetic findings into therapeutic

options. Until now, difficulties in amassing adequate numbers of purified human islet samples

have been a barrier to applying this approach at scale in this key tissue. Human islet material is

not, for example, available through resources such as the Genotype-Tissue Expression (GTEx)

project [18]. In this study, we set out to generate eQTL data from human islet samples, and to

establish the extent to which this allowed us to identify candidate effector transcripts at GWAS

loci for T2D and glycemic traits.
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Results

Characteristics of cis-exon-eQTLs in human islets

We performed eQTL mapping in islet preparations from 118 human cadaveric donors of

Northern European descent (isolated in Oxford, UK [n = 40], and Edmonton, Canada

[n = 78]) to elucidate molecular mechanisms underlying both physiological and pathological

variation in glucose homeostasis. Expression levels were profiled using RNA sequencing with

100 nucleotide paired-end reads on the Illumina HiSeq2000 platform. This generated an aver-

age of 72 million reads per sample uniquely mapping to exons (range 29–165 million). These

were aligned to the GENCODE [19] v18 transcriptome reference. Genotypes were obtained

using the Illumina HumanOmni2.5-Exome array (2,567,513 genotyped SNPs) with imputation

from the 1000 Genomes Phase 1v3 cosmopolitan panel [20] providing data on up to

38,089,605 autosomal variants.

The islet consists of multiple cell types of which the insulin-secreting beta-cells are the most

abundant. In line with this, the beta-cell secreted hormone insulin (INS) had, on average,

5-fold higher expression across all samples (an average RPKM [reads per kilobase of transcript

per million reads mapped] of 58846) than the next most abundantly expressed protein-coding

gene (S1 Fig). There was also high RNA expression of other canonical islet cell hormones

including glucagon (GCG; average RPKM 4030), somatostatin (SST; average RPKM 1708) and

pancreatic polypeptide (PPY; average RPKM 1452) (S1 Fig).

Islet eQTL analysis was performed using an additive linear model implemented in the R

package MatrixEQTL [21]. For known common T2D and glycemic trait association loci, these

data were integrated with genetic information (that is, patterns of association seen in large

GWAS meta-analysis for T2D and continuous glycemic traits) and islet regulatory state maps

[13,14]. We chose to focus on eQTL analyses at the level of the exon (as opposed to overall

gene-level eQTLs), given that the former additionally captures variants that influence exon

splicing. To account for variance attributable to factors such as donor characteristics, islet isola-

tion center, purity, and storage (e.g. 55% of the samples had been cryopreserved for an

extended period [22], see Methods), exon counts were normalized using gender and 15 PEER

[23] factors derived from the normalized expression profile (these capture hidden covariates

present in the data using Bayesian factor analysis methods). This normalization procedure suc-

cessfully eliminated much of the structure observed in the raw data, most of which we attribute

to experimental and technical factors

For each transcript, all variants within 1Mb flanking regions of the transcriptional start site

(TSS) were tested for association. To correct for multiple testing (i.e. the many different cis-var-

iants considered for each exon expression value), an empirical p-value was calculated from the

most significant eQTL p-value per exon by permuting expression values between 1,000 and

10,000 times, while retaining the relation between expression value and covariates (see Meth-

ods). From this empirical p-value distribution, we calculated a false discovery rate (q-value) for

each exon using the Storey method [24], imposing a study-wide false-discovery rate threshold

of q<0.05. Across the 27,772 protein-coding and long non-coding (lncRNA) transcripts

expressed in the human islet samples (expression was taken to be non-zero exon counts in at

least 10% of individuals), we identified 2,341 genes that included at least one exon meeting this

criterion (S1 Table).

The majority (90%) of significant islet exon-eQTLs was located within 250kb of the tran-

scriptional start site, in line with observations in other tissues [17]. Even considering only the

index variant for each of the significant islet exon-eQTLs, there is clear consistency with pub-

lished islet chromatin maps: 735/2,341 (31%) variants overlapped enhancer or promoter signa-

tures in at least one of the datasets [13,14] (S1 Table). When we discarded variants that had no
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chromatin annotation in either published map [13,14], the overlap with enhancers and pro-

moters was even greater (59%; 735/1,252). The overlap of the 2,341 significant islet exon-eQTL

variants with active islet chromatin signatures is significantly higher than that observed with

10,000 random samplings of 2,341 variants with no significant eQTL (2-fold enrichment, Fish-

er’s p = 1.7x10-23 with all variants; 1.7-fold enrichment, Fisher’s p = 5.7x10-9 when excluding

non-overlapping variants).

We could also compare islet expression with RNA-Seq data for nine additional tissues ana-

lyzed, in approximately the same numbers of samples, as part of the GTEx project pilot study

[18]. Since GTEx eQTLs are generated at the gene level, we reprocessed the data to generate

exon-eQTLs. There was substantial sharing of islet exon-eQTLs across the full range of GTEx

p-values with a mean estimated replication rate (π1[25]) of 70% (ranging from 66% [heart–left

ventricle] to 73% [tibial artery]). There were, however, a total of 309 exons with an islet exon-

eQTL that were expressed in at least one of the GTEx tissues (out of 1,659 such exons; 19%),

but showed no association (p> = 0.05) in the GTEx data. These are likely to represent islet-spe-

cific regulatory regions.

Identifying putative effector transcripts at GWAS loci likely to act through
islets

Next, we focused on further analysis of the subset of cis-exon-eQTLs that mapped to the 82

known common variant T2D loci [1–3] and 49 loci for glycemic traits for which altered

beta-cell function has been shown to be the main driver [4–10]. The latter included fasting glu-

cose, fasting proinsulin, 2-hour glucose, HOMA-B, insulinogenic index, disposition index, cor-

rected insulin response (insulin response to glucose after the first 30 minutes) and AUCInsulin/

AUCGlucose [4–10]. Seventeen of the glycemic trait loci overlap with T2D signals, whereas the

other thirty-two are independent. To identify putative cis-effector transcripts for lead regula-

tory variants in these regions, we considered, for each of the regions, all genes with transcrip-

tional start sites within 1Mb of any reported genome-wide significant lead variant (n = 218

variants). We adapted the genome-wide eQTL detection strategy describe above to identify, for

each cis-region of interest, the single exon with the strongest cis-eQTL association. To mini-

mize the possibility that co-localizing cis-eQTL and GWAS variants were tagging different

functional variants (incidental overlaps are frequent given the abundance of cis-eQTLs in the

genome), we required that the exon-eQTL index variant was in strong LD (1000 Genomes

project CEU r2>0.8) with the lead T2D or glycemic trait variant. We further verified the co-

incidence of eQTL and GWAS variants by performing conditional analyses: specifically, we

confirmed whether regressing out the variance explained by the T2D or glycemic trait lead

GWAS variant eliminated, or at least, seriously depleted the cis-eQTL association signal.

Within the GWAS regions, there were a total of 232 transcripts that met the study-wide signifi-

cance criteria (i.e. q<0.05). Over 90% of the exon-eQTLs for these genes were statistically inde-

pendent of the GWAS signal, but nine (marked by eleven GWAS index variants) met the LD

criterion of r2>0.8 and evidence for co-localization from the conditional analysis (S2 Table).

Since GWAS regions have a higher biological prior expectation of harboring an islet regula-

tory eQTL [13,14], we also considered an additional ten cis-eQTLs at which the statistical evi-

dence did not reach study-wide significance, but which nonetheless displayed nominal

significance (permuted p<0.05, corresponding to q<0.44; S2 Table) as well as meeting the

other criteria related to GWAS signal overlap and conditional analysis. The combined set of

twenty one variants was distributed over sixteen loci. With the exception of AP3S2, all showed

a consistent direction of effect across the other exons of the implicated transcript (S2 Table).

At two loci (ABO and ZFAND6), none of the variants in the set in strong LD (r2>0.8) with the
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PLOS Genetics | DOI:10.1371/journal.pgen.1005694 December 1, 2015 4 / 21



GWAS and exon-eQTL lead variants overlapped an islet-active regulatory state annotation in

published datasets [13,14]. Whilst this does not necessarily exclude an effect on islet gene

expression or relevance to the maintenance of glucose homeostasis, we did not consider these

loci further.

We compared the islet eQTL data generated by the present study to that from a recent anal-

ysis of an entirely independent set of 89 human islets by colleagues in Sweden [26]. Though

there were substantial experimental and processing differences between the two analyses, the

present study replicated overlap of islet eQTL and GWAS signals at 80% (4/5) of the GWAS-

related islet eQTLs reported in that study (ABO, AP3S2, ERAP2, andMTNR1B). Only two of

these make it into our final list: at ABO there was no overlap with active islet chromatin, whilst

at ERAP2 conditional analysis could not confirm co-localization of eQTL and GWAS signal.

There is also substantial replication of the genome-wide set of 616 eQTL signals described by

Fadista et al. Of these 616, 503 had gene identifiers that could be mapped to the data described

in this manuscript, with 43% (216/503) also having a significant (q<0.05) islet exon-eQTL (S3

Table). The observed gene-level replication rate is substantially higher than, for example, the

32% reported in a recent study [27] comparing two independent cis-eQTL mapping experi-

ments in blood. The data reported by Fadista and colleagues uses gene-level rather than exon-

level analyses. Nonetheless, we found that, amongst the 216 genes that had a cis-eQTL in both

datasets, the same variant was associated in the majority of instances (56%—S3 Table).The

vast majority (94%) of the 122 shared cis-eQTL signals are directionally consistent (S3 Table).

This overlap provides reassurance that, despite technical and other challenges, and modest

sample size, a high proportion of the cis-eQTL signals detected in these studies are robust.

The various filters described above left us with a set of nineteen variants, at fourteen loci,

where multiple lines of evidence supported the candidacy of the exon-eQTL transcript as the

effector for the relevant GWAS signal (Table 1; S2 Table). At four of these loci, the islet exon-

eQTL overlapped GWAS variants that are genome-wide significant for both T2D and glycemic

trait variation (ADCY5, ARAP1, DGKB,MTNR1B). At four others (AP3S2, CDC123/CAMK1D,

TMEM163, ZMIZ1) the GWAS signal was for T2D alone. For the remaining six (AMT, ANK1,

FADS1,MADD, PCSK1,WARS), the co-incident GWAS data implicated a range of continuous

glycemic phenotypes (Table 1; S2 Table).

Support for positional biological candidates

At three of the loci (ADCY5, DGKB, FADS1), the exon-eQTL data provide an independent

empirical link between the GWAS signals and transcripts that already have strong biological

candidacy with respect to glucose homeostasis. At ADCY5, where the GWAS variant influences

T2D [3,4], fasting glucose [4], 2-hour glucose [10], HOMA-B [4] and birth weight [28], the

rs11708067 A T2D-risk allele was associated with lower transcript expression levels (exon per-

muted p = 8.4x10-3, q = 0.183, ß = -0.44). This is consistent with a previous report, from a small

candidate gene study [29], of a negative correlation between risk allele count and ADCY5

expression levels. In human islets, ADCY5, a member of the adenylate cyclase family, is

thought to couple glucose stimulation to insulin secretion, and this coupling is disrupted upon

gene knockdown [29].

There are two independent T2D GWAS signals at the DGKB locus (lead variants rs2191349

and rs17168486) [3,4], separated by about 160 kilobases. At both, the T2D-risk allele is also

associated with raised fasting glucose and reduced HOMA-B in non-diabetic individuals [3,4].

In the exon-eQTL data, both T2D-risk alleles independently drove higher expression levels of

DGKB (rs2191349 signal, exon permuted p = 1.0x10-3, q = 0.040, ß = 0.41; rs17168486 signal,

exon permuted p = 9.3x10-3, q = 0.194, ß = 0.52). Variant sets for both the 5’ of DGKB

Human Islet eQTLs Uncover Biology at T2D/Glycemic Trait GWAS loci
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(rs17168486) and the more distal signal at rs2191349 overlapped islet chromatin signatures

denoting either active promoters or enhancers [13,14]. DGKB is a subunit of diacylglycerol

kinase, a regulator of the glucose-responsive secondary messenger diacylglycerol [30].

At FADS1, the GWAS allele associated with raised fasting glucose (in non-diabetic individu-

als) was implicated in increased islet expression of FADS1 (exon permuted p = 1.6x10-2, q =

0.262, ß = 0.31). FADS1 encodes the delta-5 fatty acid desaturase, which plays a role in the bio-

synthesis of highly unsaturated fatty acids. Variants in the same LD block as the fasting glucose

GWAS variant are associated with altered blood levels of the substrate/product pair for the

Table 1. Fourteen loci with co-localizing islet exon-eQTL and GWAS signals at loci for T2D and glycemic traits. Information on each of the fourteen
loci for type 2 diabetes and/or glycemic traits where islet eQTL data provided putative effector transcripts. *Effect on gene expression is given for the allele
associated with the trait effect directions in the column “Associated trait effects of eQTL allele”.

Locus Associated trait
effects of eQTL

allele

Implicated
gene(s)

Full gene name(s) Exon
q-

value

effect on cis-
eQTL gene

expression of
risk allele

Directional
consistency
across exons

Study-wide
significant
findings

ANK1 Reduced corrected
insulin response

NKX6-3 NK6 homeobox 3 4.03E-
02

# 3/3

AP3S2 Increased T2D risk AP3S2 Adaptor-related protein
complex 3, sigma 2 subunit

5.73E-
03

# 3/7

ARAP1 Increased T2D risk
and fasting glucose,

reduced fasting
proinsulin

STARD10 StAR-related lipid transfer
(START) domain containing 10

1.92E-
02

# 8/9

CDC123/

CAMK1D

Increased T2D risk CAMK1D Calcium/calmodulin-dependent
protein kinase ID

1.06E-
02

" 11/11

DGKB/

TMEM195

Increased T2D risk
and fasting glucose,
reduced HOMA-B

DGKB Diacylglycerol kinase, beta
90kDa

4.0E-
02

" 28/28

MADD Increased fasting
glucose and fasting

proinsulin

MADD;

ACP2

MAP-kinase activating death
domain; Acid phosphatase 2,

lysosomal

5.73E-
03

"; " 39/39; 8/9

WARS Increased fasting
glucose

WARS Tryptophanyl-tRNA synthetase 5.73E-
03

# 17/19

Additional
findings with
permuted
p<0.05

ADCY5 Increased T2D risk,
fasting glucose and
2-hour glucose,

reduced HOMA-B

ADCY5 Adenylate cyclase 5 1.83E-
01

# 26/26

AMT Increased fasting
glucose

RBM6 RNA binding motif protein 6 1.47E-
01

# 23/24

FADS1 Increased fasting
glucose, reduced

HOMA-B

FADS1 Fatty acid desaturase 1 2.62E-
01

" 13/14

MTNR1B Increased T2D risk
and fasting glucose,
reduced HOMA-B and

corrected insulin
response

MTNR1B Melatonin receptor 1B 2.52E-
01

" 4/4

PCSK1 Increased fasting
glucose

CTD-

2260A17.2
- 3.31E-

01
" 5/5

TMEM163 Increased T2D risk MGAT5 Mannosyl (alpha-1,6-
)-glycoprotein beta-1,6-N-

acetyl-glucosaminyltransferase

3.20E-
01

" 18/18

ZMIZ1 Increased T2D risk ZMIZ1 Zinc finger, MIZ-type
containing 1

3.92E-
01

" 23/24

doi:10.1371/journal.pgen.1005694.t001
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enzyme [31]. The lipid-related function of FADS1might appear, at first thought, to connect

this locus to insulin sensitivity: however, the fasting glucose-raising allele [4] at this locus has

also been associated with a lower HOMA-B [4] and insulinogenic index [12], consistent with

an islet-mediated effect. The hypothesis that FADS1 might modulate insulin secretion through

altered insulin sensitivity in the islet itself is supported by studies demonstrating the effects of

fatty acid composition on insulin secretion both in vitro [32] and in vivo [33].

At two further cis-eQTL loci, our findings replicate previous studies. At theMTNR1B locus,

the T2D-risk allele [1,3] also has a substantial impact on continuous glycemic traits (higher

fasting glucose [4], lower HOMA-B [4] and corrected insulin response [8]). In the present

study, as in two previous analyses of human islet expression [26,34], the same allele was associ-

ated with increased expression of the melatonin receptor 1B (exon permuted p = 1.5x10-2, q =

0.252, ß = 0.40). At the T2D-associated CDC123/CAMK1D locus [1,3], the islet cis-eQTL for

CAMK1D (calcium/calmodulin-dependent protein kinase ID; exon permuted p = 2.0x10-4, q =

0.011, ß = 0.61) endorsed the designation of CAMK1D as the likely effector emanating from

previous studies conducted in other tissues [18,35]. Recent work has demonstrated that the

T2D-risk allele is associated with increased transcriptional activity in a luciferase reporter sys-

tem [36], again consistent with the islet eQTL data.

Multiple putative effector transcripts implicated

Whilst a single effector transcript was involved in the examples above, at certain other loci, the

expression data are less conclusive. At the ARAP1 locus, the islet exon-eQTL data link the

T2D-risk allele [3] (also fasting glucose-raising [5,9], and fasting proinsulin-reducing [6]) to

lower expression of STARD10 (exon permuted p = 4.0x10-4, q = 0.019, ß = -0.39). This exon-

eQTL is one of the 309 potentially islet-specific eQTLs based on comparison with data from

nine GTEx tissues (see above). STARD10, which encodes StAR-related lipid transfer (START)

domain containing 10, is thought to be involved in the regulation of bile acid metabolism [37],

and has no reported role in the islets. At this locus, there have been reports, from human islet

studies, of allele-specific expression of an alternative regional gene, ARAP1, encoding Arf-GAP

with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 [38]. The variants

found to exhibit allele-specific expression were shown to affect promoter activity of the ARAP1

P1 promoter in a dual luciferase system [38].

However, the published data on allelic imbalance in ARAP1 are inconsistent [38,39], and we

found no evidence of allelic imbalance for the relevant variant (rs11603334; Wilcoxon signed

rank test p>0.1; S2A Fig) in our data. Neither was there any significant islet cis-eQTL signal

for ARAP1. Therefore the data from this much larger islet cohort suggest STARD10 rather than

ARAP1 as the likely effector transcript. Additional studies (e.g. conformational capture,

CRISPR–Cas9 genome editing) will be instrumental in definitively assigning this locus to its

effector transcript.

At the AP3S2 locus, the T2D GWAS signal[3] coincided with an islet eQTL for AP3S2,

encoding adaptor-related protein complex 3, sigma 2 subunit (exon permuted p = 1.0x10-4, q =

0.006, ß = -0.55). The identical signal was also detected in the recent report from an indepen-

dent islet eQTL analysis [26]. However, in non-islet tissues, variants in strong LD with the T2D

index variant have been reported as significant eQTLs for both AP3S2 and ANPEP, a second

regional gene which encodes alanyl (membrane) aminopeptidase [35,40]. Variants in ANPEP,

although not in strong LD with the T2D signal, also showed allelic imbalance in human islets

in both our data (S2B and S2C Fig) and a previous study by Locke et al [39]. Islet expression

data for this locus, therefore, implicates both genes.
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Variants at theMADD locus are associated with fasting glucose [4] and insulin processing

defects [6]. At this locus, the islet exon-eQTL data implicated two regional transcripts:MADD,

encoding MAP-kinase activating death domain (exon permuted p = 1.0x10-4, q = 0.006, ß =

0.25); and ACP2, encoding lysosomal acid phosphatase 2 (exon permuted p = 1.0x10-4, q =

0.006, ß = 0.31). Analysis of a beta-cell specific knockout mouse recently demonstrated that

Madd plays a key role in glucose-stimulated insulin secretion, but the marked abnormalities of

insulin processing that characterize the human GWAS signal were not observed [41], indicat-

ing thatMADDmight not mediate all the phenotypes associated with this signal. ACP2 is a

lysosomal enzyme: disruption of the homolog in mice impacts lysosome function and causes

cerebellar and skin abnormalities [42]. The known role of lysosomes in the degradation of

aging insulin granules [43] provides a potential link between this gene and altered composition

of the insulin secretory pool, which might explain the observed effects of the human association

signal on fasting glucose and proinsulin levels.

These examples act as reminders of the importance of the independent validation of expres-

sion findings. They also highlight the potential for non-coding variants of interest to influence

multiple transcripts, although this does not necessarily mean that all affected transcripts are

involved in T2D pathogenesis.

Identification of effector transcripts without a known role in islet biology

The mechanisms through which the other six implicated transcripts (CTD-2260A17.2,

MGAT5, NKX6-3, RBM6,WARS and ZMIZ1 at the PCSK1, TMEM163, ANK1, AMT,WARS

and ZMIZ1 loci, respectively) influence islet physiology are less clear.

The fasting glucose-raising allele at the PCSK1 locus [5,9] was associated with increased

expression of the uncharacterized protein CTD-2260A17.2 (exon permuted p = 2.6x10-2, q =

0.331, ß = 0.58). However, at this locus there is strong biological candidacy of PCSK1 [44], with

coding variants in this gene thought to be causal for the association signal [9,45]. Loci where

the underlying molecular mechanism affects protein function rather than regulation of tran-

script levels (also for example SLC30A8) are unlikely to be detected in eQTL studies. Therefore

this raises doubts about the biological relevance of the association with CTD-2260A17.2 expres-

sion at the PCSK1 locus.

The gene implicated at the TMEM163 locus wasMGAT5, for which the T2D risk-increasing

allele was associated with higher islet expression of the gene (exon permuted p = 2.4x10-2, q =

0.320, ß = 0.26).MGAT5 encodes the protein N-glycosylation enzyme mannosyl (alpha-1,6-)-

glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase. The properties of cell surface recep-

tors and transporters can be modulated through N-glycosylation; in beta-cells expression of the

glucose transporter GLUT2 [46] and the incretin receptors [47] at the cell surface is, for exam-

ple, altered by this process. Whole-bodyMgat5 knockout mice had improved insulin sensitivity

and decreased gluconeogenesis [48], although effects on the beta-cell have not been studied.

This direction of effect would be consistent with higher expression levels ofMGAT5 increasing

risk of developing T2D.

At the AMT fasting glucose locus [5], the islet exon-eQTL implicated RBM6 (exon per-

muted p = 5.9x10-3, q = 0.147, ß = -0.23). RBM6 encodes RNA Binding Motif Protein 6, but

neither the gene nor the protein has any defined phenotypic links. NKX6-3, which encodes

NK6 homeobox 3, was implicated as the effector transcript for the ANK1 locus variants influ-

encing insulin secretion [8] (exon permuted p = 1.0x10-3, q = 0.040, ß = -0.36). The same region

is also associated with T2D [3]. However, the T2D-risk variants are in comparatively low LD

(r2 = 0.14) with the corrected insulin secretion association signal, and no exon-eQTL signal

was observed for these. NKX6.3 has a known role in the development of the gastrin-producing
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(G) and somatostatin producing (D) cells of the gastric endocrine system [49]. It is also active

in the developing central nervous system [50]. There is no literature on the role of NKX6.3 in

the islet, but, given the key role of other NKX6 transcription factors in the development of the

endocrine pancreas [51], further follow-up of the islet consequences of altered NKX6.3 expres-

sion is clearly warranted. The fasting glucose-raising allele [5] at theWARS locus was associ-

ated with markedly reducedWARS expression in human islets (exon permuted p = 1.0x10-4,

q = 0.006, ß = -1.58).WARS encodes a tryptophanyl-tRNA synthetase involved in protein syn-

thesis, regulated by cytokines and involved in cellular growth pathways such as angiogenesis

[52]. It has, until now, not been allocated a role in the regulation of pancreatic islet function.

The final gene implicated by our data was ZMIZ1, encoding zinc finger, MIZ-type contain-

ing 1. ZMIZ1maps to a locus implicated in T2D-risk [3]. The ZMIZ1 islet eQTL (exon per-

muted p = 3.8x10-2, q = 0.392, ß = 0.13) showed a consistent direction of effect across 23/24

ZMIZ1 exons. The same cis-eQTL had a directionally consistent, although not significant, sig-

nal in the recently published independent islet expression [26]. It has not been detected in any

other available cis-eQTL dataset, suggesting an islet-specific effect. To establish whether the

putative effector transcripts identified by the exon-eQTL data provide novel biological infer-

ence, functional validation is essential. We used ZMIZ1 as our exemplar for this purpose.

The role of ZMIZ1 in insulin secretion from human islets

At the ZMIZ1 locus, the exon-eQTL index variant was in near complete linkage disequilibrium

(r2 = 0.98) with the T2D GWAS variant rs12571751, and overlapped an extended region of

active islet enhancer chromatin (Fig 1A). Stretch enhancers such as this have been linked to

cell-specific gene regulation [13] and, in human islets, to T2D [14]. Current understanding of

ZMIZ1 function is limited, but it has been shown to act as a transcriptional co-regulator, play-

ing a regulatory role in the p53 [53], Notch [54] and Smad [55] signaling cascades, and as a

PIAS-like E3 SUMO-ligase [56]. Several variants in the wider region, independent of the T2D

and islet eQTL signal (r2<0.04), have been associated with a variety of autoimmune and

inflammatory disorders (including inflammatory bowel disease and multiple sclerosis) [57,58],

in addition to ZMIZ1 expression in immune-relevant monocytes [15]. Our exon-eQTL

approach has therefore highlighted a previously-unsuspected role for ZMIZ1 in pancreatic islet

function, independent of the regional association to immune phenotypes.

Within human pancreas sections, ZMIZ1 was preferentially expressed in the islet and co-

localized with both insulin and glucagon (n = 4 individuals; Fig 1B). Since ZMIZ1 expression

is higher in carriers of the T2D-associated rs12571751 A allele, we first determined the effects

of ZMIZ1 over-expression in dispersed human islet cells. We infected dispersed human beta-

cells (n = 5 donors, 8 replicates for each condition in each donor) with a control adenovirus

(Ad-GFP) or adenovirus expressing ZMIZ1 (Ad-ZMIZ1). Increasing ZMIZ1 (to 4520% of con-

trol expression levels, as confirmed by qPCR) impaired both glucose- and KCl-induced insulin

secretion (20.5% and 25.8% reduction in stimulation index, p<0.01 and<0.001, respectively;

Fig 1C). Knockdown of ZMIZ1 in dispersed human islet cells (to 39.6% of control, confirmed

by qPCR) had no significant effect on glucose-stimulated insulin secretion (also n = 5 donors, 8

replicates for each condition in each donor; Fig 1D), although KCl-induced insulin secretion

was, paradoxically, reduced (p<0.05; Fig 1D).

To further explore the potential impact of ZMIZ1 up-regulation, we measured exocytosis in

human beta-cells directly. Upon membrane depolarization, fusion of insulin granule-contain-

ing secretory vesicles with the plasma membrane results in an increase in membrane surface

area that can be detected by whole cell patch clamp as an increase in membrane capacitance.

Over-expression of ZMIZ1 reduced insulin exocytosis in individual human beta-cells to 29% of
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that in GFP-transfected controls (41–44 beta-cells from 6 individuals, p<0.001; Fig 1E and

1F). This represents a true impairment in exocytosis, rather than a reduction in the Ca2+ influx

Fig 1. Islet eQTL data identifies ZMIZ1 as a novel gene involved in maintenance of glucose homeostasis in the human islet. (a) Regional plot
showing the T2D-associated variant rs12571751 is in strong LD with the lead eQTL variant for ZMIZ1, and overlaps a long stretch of islet enhancer chromatin
(denoted as red and blue in the tracks underneath the plot). (b) Immunofluorescence shows ZMIZ1 localizes to the islet within human pancreas sections, with
staining in both alpha- and beta-cells. Effect of ZMIZ1 over-expression (c) and knockdown (d) on insulin secretion in human islets, showing significant
(p<0.05) reduction in glucose- and KCl-stimulated insulin secretion during over-expression, and KCl-stimulated insulin secretion only during knockdown. (e)
Western blot analysis confirms higher levels of ZMIZ1 after ZMIZ1 over-expression (left). Exocytosis was measured from single human beta-cells,
expressing GFP alone or together with ZMIZ1, as increases in membrane capacitance during a train of membrane depolarizations. Representative traces
(right) and (f) averaged data from 6 human donors (41–44 beta-cells) are show the significant (p<0.05) reduction in exocytosis in ZMIZ1-transfected beta-
cells compared to GFP-controls. (g) Voltage-dependent Ca2+ currents were measured from human beta-cells expressing GFP alone or together with ZMIZ1.
The average total Ca2+ charge entry during the depolarization (24–27 beta-cells from 3 individuals) was unchanged by ZMIZ1 over-expression.

doi:10.1371/journal.pgen.1005694.g001
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needed to trigger exocytosis, since voltage-dependent Ca2+ channel activity was unchanged by

ZMIZ1 over-expression (24–27 beta-cells from 3 individuals; Fig 1G). Together these data

indicate a novel role for ZMIZ1 in the regulation of insulin secretion in human islets.

Discussion

One of the key challenges faced in the biological interpretation of common variant GWAS sig-

nals lies in establishing the functional connections between causal variants within regulatory

sequence and the downstream (or “effector”) genes through which they mediate their pheno-

typic effects. This is an essential step if we are to be effective in using human genetics to define

pathways and networks central to the pathogenesis of common complex disease, and in identi-

fying targets that may lead to novel preventative and therapeutic strategies. A range of comple-

mentary, bioinformatic and experimental, approaches are available to address this challenge.

These include mapping the correlations between assays of chromatin state and cis-promoter

activity [59], direct interrogation of local DNA interactions [60], and the search for coding var-

iants in regional genes that recapitulate the disease phenotype [61].

In the present study, we demonstrate, through integration of human genetic disease associa-

tion signals with information on patterns of exon-eQTLs and chromatin state in human islets,

the potential for studies of human islet mRNA expression to implicate genes that play a previ-

ously unsuspected role in the maintenance of normal glucose homeostasis and the develop-

ment of T2D. The focus on human islets was motivated by compelling evidence, from a variety

of sources [1,11,13,14], which places islet dysfunction center-stage with respect to T2D patho-

genesis. Despite this, and for understandable reasons to do with tissue accessibility and purity,

human islets are largely absent from major eQTL and transcriptome cataloguing efforts such

as GTEx [18], necessitating parallel efforts to define the interplay between DNA sequence vari-

ation and transcript expression in this key tissue.

As expected [17,62], the cis-exon-eQTL signals we detected in islets were a mixture of those

shared across multiple tissues, and those that are islet specific. For example, 20% of the islet

exon-eQTLs were not significant in any of the tissues studied in the GTEx pilot (though this

may change as the GTEx sample size increases). Of the cis-eQTLs identified at GWAS loci for

T2D and/or glycemic traits, only those involving AP3S2 and CAMK1D had been identified as

significant eQTLs in other tissues [18,35,40]. The STARD10 islet exon-eQTL, for example, was

not even nominally significant in any of nine GTEx tissues. These data emphasize the impor-

tance of extending such expression studies to the tissues most directly implicated in disease

pathogenesis.

The identification of candidate effector transcripts through this and other routes motivates

efforts to characterize the functional role of these genes in relevant cellular and animal systems.

In the present study, we focused on one such gene, ZMIZ1, on the basis that the strength of the

evidence for the cis-exon-eQTL was intermediate (it did not attain study-wide significance),

and because it had no previous documented relationship to islet biology, other than localization

within a T2D GWAS signal. We were able to show that ZMIZ1 expression is localized to the

endocrine pancreas (ruling out the possibility that the eQTL signal emanated from contaminat-

ing exocrine tissue), and that perturbation of ZMIZ1 within the islet has a marked effect on

exocytosis and insulin secretion, data that are clearly consistent with the designation of this

gene as the likely mediator of the T2D association signal at this locus. Having said that, further

work is required to fully enumerate the role of ZMIZ1 in the islet, to explain, for example, the

apparently paradoxical reduction in KCl-stimulated insulin secretion observed in the knock-

down experiment. This observation may be a consequence of the exaggerated attenuation of
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ZMIZ1 expression in these experiments, when compared to the more subtle perturbation asso-

ciated with the cis-eQTL.

As well as providing insights into transcript candidacy, these human eQTL studies are also

informative with respect to the question of the directional impact of T2D-risk alleles on those

genes. Recent studies of protein-truncating variants in SLC30A8 [63] have demonstrated how

crucial such information can be for guiding the design of potential pharmacological agents.

Two examples are worth highlighting.

The islet exon-eQTL data presented here indicates that the T2D-risk allele at the ADCY5

locus is associated with reduced expression of ADCY5 and that reduced ADCY5 activity con-

tributes to T2D pathogenesis. However, rare coding variants in ADCY5 have been shown to be

causal for a Mendelian disease phenotype characterized by neuromuscular features [64]. These

rare Mendelian alleles act through gain of ADCY5 function, and this is presumably why the

phenotype of this condition (familial dyskinesia with facial myokymia) does not feature diabe-

tes. This pattern of directional effects also diminishes the attraction of ADCY5 as a potential

drug target for T2D.

In contrast, atMTNR1B the islet eQTL data presented here, along with several previous

studies [26,34], tie the T2D-risk allele to increased expression of the cognate transcript. This

replicated observation runs counter to a combined genetic and functional analysis of rare cod-

ing variants inMTNR1B, which reported that T2D risk was conveyed by alleles that reduced

MTNR1B function [65]. Though increased MTNR1B transcript levels and reduced MTNR1B

function could both be implicated in T2D susceptibility if reduced MTNR1B function was

accompanied by changes in MTNR1B subcellular localization or a secondary increase of pro-

tein levels, the data by Bonnefond and colleagues [65] is not consistent with this explanation. It

has also been proposed that these apparently contradictory findings could be explained by an

absence of a negative feedback loop onMTNR1B expression in conditions of seriously impaired

melatonin receptor function [65]. However, this appears inconsistent with the observation that

islet expression ofMTNR1B was entirely absent (below background, RPKM< 0.1) in 69% of

individuals homozygous for the non-risk allele (and 37% of homozygous risk-allele carriers).

These contrasting data hint at a complexity in the relationship between genetic variation and

MTNR1B function that may only be resolved by direct assessment of the effects of melatonin

on glucose homeostasis in human studies.

The present study represents the largest sample of human islet gene expression reported to

date, but the sample size remains modest compared to those available for many other tissues.

However, whereas association studies typically need effective sample sizes in the tens of thou-

sands, the current islet eQTL study of 118 samples already identified putative effector tran-

scripts at eight T2D loci. Physiological data had previously implicated a role for the islet at the

majority of these loci, showing they affected beta-cell function [11]. This, combined with the

extensive, but incomplete, overlap with the signals detected in a recent report of human islet

expression [26], indicates that there is much to be gained by combining available data sets.

Such efforts will likely generate many additional signals, at GWAS loci and beyond, as well as

supporting additional analyses (e.g. of allele-specific expression). Similar studies in other T2D-

relevant tissues will shed light on effector transcripts for loci that do not directly modulate

insulin secretion–an example of this can be found at the KLF14 locus, where eQTL studies in

adipose tissue uncovered a large KLF14-regulated trans-eQTL network underlying the T2D

association signal [16]. Data for non-islet tissues will also help answer whether loci that have

been associated with changes in beta-cell function by in vivo studies in humans act directly on

the islet or affect insulin secretion indirectly by altering, for example, expression in brain or

gut.
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As a more complete picture of the islet cis-eQTL landscape emerges, it will be highly infor-

mative to integrate these data with those obtained from the implementation of orthogonal,

informatic and experimental, approaches for linking regulatory variants of interest to their

transcriptional targets. Recent advances that enable scale up of conformational capture across

multiple genomic regions are likely to be particularly relevant here [60]. Additionally, dense

genomic annotations have become available for key T2D-relevant tissues, and similar data is

being generated on islets at different developmental stages and after application of metabolic

stimuli (e.g. comparing high versus low glucose culturing). This provides a rich framework for

deriving functional inference from human genetics, and for identifying translational opportu-

nities with respect to target identification and biomarker discovery.

Methods

Human tissue

Human islets were collected in two locations. Forty samples were freshly isolated at the Oxford

Centre for Islet Transplantation (OXCIT) in Oxford, UK, as described [66], and processed for

RNA and DNA extraction after 1–3 days in culture in CMRL media. In Edmonton, Canada, 65

samples were extracted from the long-term cryopreserved biobank and thawed as described

[22], or were freshly isolated (n = 13) from donor pancreas as described previously [67]. For

functional studies islets from a total of 12 donors were used (age = 52.4 +/- 3.9 years, 50%

male, BMI 27.8+/-1.7). Pancreas biopsies were taken, fixed in Z-fix, and paraffin embedded

prior to sectioning and immunostaining (described below). Isolated or thawed islets were cul-

tured in CMRL media for 1–3 days prior to storage for RNA extraction or in vitro experimenta-

tion. Only freshly isolated islets were used for electrophysiology and insulin secretion studies.

All studies were approved by the Human Research Ethics Board at the University of Alberta

(Pro00001754), the University of Oxford's Oxford Tropical Research Ethics Committee

(OxTREC Reference: 2–15), or the Oxfordshire Regional Ethics Committee B (REC reference:

09/H0605/2). All organ donors provided informed consent for use of pancreatic tissue in

research.

RNA extraction from human islets

RNA was extracted from human islets using Trizol (Ambion, UK or Sigma Aldrich, Canada).

To clean remaining media from the islets, samples were washed three times with phosphate

buffered saline (Sigma Aldrich, UK). After the final cleaning step 1 mL Trizol was added to the

cells. The cells were lysed by pipetting immediately to ensure rapid inhibition of RNase activity

and incubated at room temperature for ten minutes. Lysates were then transferred to clean 1.5

mL RNase-free centrifuge tubes (Applied Biosystems, UK). For islet preparations isolated in

Edmonton, Trizol fractions were shipped to Oxford before further processing.

For the phase separation, 200μL chloroform (Fisher Scientific, UK) was added to each tube.

Samples were vigorously shaken to begin organic and aqueous phase separation. This was fol-

lowed by a 5 minute incubation room temperature and 30 minute-spin at 12,000 x g and 4°C

to complete phase separation. The aqueous phase containing the RNA was transferred to a

clean 1.5ml RNase-free tube by pipette, and 500μl isopropanol (Fisher Scientific, Loughbor-

ough, UK) was added to precipitate the RNA. The remaining organic and DNA phases were

used for DNA extraction (see below). The RNA solution was incubated for 5 minutes at room

temperature and stored overnight at -20°C. The following day, RNA was pelleted by centrifuga-

tion at 12,000 x g for 50 minutes (4°C) and supernatant was carefully removed. The pellet was

washed twice in 1 ml 75% ethanol (Sigma Aldrich, UK) before centrifugation at 12,000 x g for

30minutes. After the final ethanol wash was removed, the RNA pellet was allowed to air-dry
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for 10 minutes. To re-suspend the RNA, a minimum of 20μl RNase-free water (more as neces-

sary for complete re-suspension) was added to each sample. RNA quality (RIN score) was

determined using an Agilent 2100 Bioanalyser (Agilent, UK), with a RIN score> 6 deemed

acceptable for inclusion in the study. Samples were stored at -80°C prior to sequencing.

DNA extraction for genotyping

For the majority of samples, DNA was extracted from either spleen or the exocrine fraction of

the islet isolation using the Tissue DNA Purification Kit according to manufacturer’s instruc-

tions on an automated Maxwell 16 system (both Promega, USA). When no other tissue was

available, DNA was extracted from human islets using the Trizol fraction remaining after

extraction of RNA (see above). To precipitate the DNA, 300μl 100% ethanol was added to the

thawed solution. This mixture was incubated at room temperature for a minimum of 30 min-

utes. DNA was then pelleted by centrifugation at 4,000 x g for 5 minutes at 4°C. After removing

the supernatant, the pellet was twice washed with 0.1M trisodium citrate (Sigma Aldrich, UK)

in 10% ethanol and left at room temperature for 30 minutes, followed by another wash step

with 75% ethanol. After the final wash step, pellets were air-dried for 10 minutes to remove

residual ethanol and re-suspended in a minimum of 100 μL 8mMNaOH (Sigma Aldrich).

Extracted DNA was stored at -20°C before further use.

Genotyping and imputation

In total, 118 samples were genotyped on the Illumina Omni2.5+Exome genotyping array. Sam-

ples were prepared according to the Illumina Infinium protocol and run on the Illumina iScan

platform at the Oxford Genomics Centre (Wellcome Trust Centre for Human Genetics, Uni-

versity of Oxford, Oxford, UK). Genotypes were called with Illumina GenCall software using

the standard Illumina cluster file and default genotype calling cut-offs. The direct genotypes

were then used for imputation. Principal component analysis was performed to confirm Euro-

pean ancestry of all samples (S3 Fig). Variants with a call rate< 99% and minor allele fre-

quency (MAF)< 0.01, as well as those deviating from Hardy–Weinberg equilibrium

(p<0.0001), were filtered out before imputation–leaving 1,323,351 variants. Haplotypes were

inferred from these genotype data using SHAPEIT [68]. Genotypes were imputed into the

phased haplotypes using IMPUTE2 [69] with the entire 1000 Genomes Phase 1 v3 release [20]

as the reference panel. For the QTL analysis, we used 5.8 million imputed autosomal single

nucleotide variants with an INFO score> 0.4 and MAF> 0.05.

RNA sequencing and expression quantification

Poly-A selected libraries were prepared from total RNA at the Oxford Genomics Centre using

NEBNext ultra directional RNA library prep kit for Illumina with custom 8bp indexes [70].

Libraries were multiplexed (3 samples per lane), clustered using TruSeq PE Cluster Kit v3, and

paired-end sequenced (100nt) using Illumina TruSeq v3 chemistry on the Illumina HiSeq2000

platform. Samples were mapped with TopHat2 [71] on default settings with GENCODE v18

[19] as transcriptome and GRCh37 as genome reference. Exon level reads counts for all pro-

tein-coding and long non-coding transcripts present in GENCODE v18 were quantified with

RNA-SeQC [72] with the “strictMode” flag set. Transcript level counts were compiled by add-

ing up the counts for all exons. The sequenced data was required to contain at least 10M

mapped and properly paired reads after applying the quality filters.
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Expression normalization and eQTL analysis

First, exons with no expression in 10 or more samples were removed. To normalize for varia-

tion in read depth across samples, exon counts were scaled to the median number of exon-

mapping reads per sample. The scaled exon counts were log2-normalized followed by per exon

transformation to a standard normal (to minimize the effects of outliers in the linear regres-

sion). Even considering only the index variant variation in the QTL analysis, we derived 15 syn-

thetic covariates from the normalized exon profile using PEER with default settings [23]. Since

none of the 15 PEER factors were significantly correlated (q-value< 0.05) with gender, we

added this as an additional covariate. The QTL analysis was performed on all SNP-exon pairs

within 1Mb flanking regions of the transcripts transcriptional start site (TSS) using linear

regression assuming an additive model as implemented in MatrixEQTL [21]. To correct for

multiple testing per gene expression phenotype, we permuted the expression labels per samples

(while maintaining the relation between PEER factors and expression labels) and compared

the minimum p-value for each permutation against the minimum observed p-value until at

least 15 more extreme p-values were observed (with a minimum of 1,000 and maximum 10,000

of permutations). From these data we calculated a permuted p-value for each exon. False-dis-

covery rate across the permuted p-values for all exons estimated using the q-value method [24],

with a q<0.05 threshold used for identifying study-wide significant islet exon-eQTL genes. For

the overlap between GWAS loci and islet eQTLs we additionally considered all exons with a

permuted p<0.05, with the best exon used per locus.

Exon eQTL calls from GTEx pilot data

To determine the islet exon-eQTLs sharing across tissues, we generated exon-eQTL calls for

the GTEx pilot dataset [18]. We used reference files and exon count from the GTEx portal

(http://www.gtexportal.org/home/datasets2, last accessed on 30 August 2015), and genotype

files available through dbGaP. Exon counts were processed as described above. We replaced

the 15 GTEx-supplied gene-level PEER factors with those derived from the normalized exon

counts, while retaining the other GTEx covariates. Finally, exon-eQTL mapping was performed

as described above.

Immunohistochemistry

Human pancreatic biopsies were fixed in Z-fix (Anatech, USA), paraffin embedded, and sliced

into 5μm sections. Sections were rehydrated and antigen unmasking performed. Immunostain-

ing was performed for insulin (Santa Cruz Biotechnology Inc., USA), glucagon (EMDMilli-

pore, USA) as previously described. The antibody targeting ZIMZ1 (ZIMPZ10; sc-82438 Santa

Cruz Biotechnology Inc. 1:50, overnight incubation) recognizes an N-terminal epitope. All

slides were coverslipped with prolong gold antifade and visualized on a WaveFX spinning disk

confocal (Quorum Technologies, Canada) using a 40X/1.3 NA lens and 405,491,561, and

642nm excitation lasers coupled with matched filter sets. Images were captured on a Hamama-

tsu EMC9100-13 camera (Hamamatsu Corp, USA) using Volocity imaging software (Perkin

Elmer, Canada). Analysis of images was performed using Volocity and ImageJ (NIH).

Electrophysiology studies

Human islets were hand-picked to purity and dispersed using enzyme-free cell dissociation

buffer (Life Technologies, Canada). Cells were plated on 35mm dishes and transfected

with control (pEGFP-N1, Clontech, Mountain View, CA, USA) or ZMIZ1 over-expression

(ZMIZ1 pCMV6- AC-GFP, Origene, Rockville, MD, USA) plasmids via lipid transfection
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(Lipofectamine 2000, Life Technologies, Canada). Following 48hrs post-transfection culture

we used the standard whole-cell techniques with the sine+DC lockin function of an EPC10

USB amplifier and Patchmaster software (HEKA Electronics, Germany) to measure capaci-

tance during a series of ten depolarizations of 500ms each from -70 to 0mV. Experiments were

performed at 32–35°C. Extracellular bath solution for depolarization trains contained (in mM):

118 NaCl, 20 TEA, 5.6 KCl, 1.2 MgCl2, 2.6 CaCl2, 10 glucose and 5 HEPES (pH7.4 with

NaOH). Dishes were preincubated for one hour in culture media with 1mM glucose before

capacitance measurements. Pipette solution for depolarization trains contained (in mM): 125

Cs-glutamate, 10 CsCl, 10 NaCl, 1 MgCl2, 0.05 EGTA, 5 HEPES, 0.1 cAMP and 3 MgATP (pH

7.15 with CsOH). To measure voltage-dependent Ca2+ channel activity, using Ba2+ as a charge

carrier, the pipette solution contained (in mM): 140 Cs-glutamate, 1 MgCl2, 20 tetraethylam-

monium chloride, 5 EGTA, 20 HEPES and 3 MgATP (pH 7.3 with CsOH). The bath contained

(in mM): 20 BaCl2, 100 NaCl, 5 CsCl, 1 MgCl2, 5 glucose, 10 HEPES, and 0.5 μM tetrodotoxin

(pH 7.35 with CsOH). Patch pipettes, pulled from borosilicate glass and coated with Sylgard,

had resistances of 3-4megaohm (MΩ) when filled with pipette solution. Whole-cell capacitance

responses were normalized to initial cell size and expressed as femtofarad per picofarad (fF/pF)

or picoampere per picofarad (pA/pF).

Insulin secretion

Human islets were hand-picked to purity and dispersed using Accutase (Life Technologies,

Canada) and plated in a 96 V-well plate at a density of 5000 cells/well. ZMIZ1 over-expression

(AdZMIZ1 or AdGFP, Welgen Inc., USA) or siRNA knockdown (siZMIZ1 or siScrambled,

Life Technologies) was performed at the time of plating. Cells were cultured in CMRL 1066

(Corning, USA) supplemented with 0.5% bovine serum albumin (Equitech-Bio Inc., USA), 1%

insulin transferrin selenium (Corning), 100 U/mL penicillin/streptomycin (Life Technologies)

and L-glutamine (Sigma-Aldrich) at 37°C, 5% CO2. Insulin secretion experiments were per-

formed after 24 hours (over-expression) or 48 hours (siRNA knockdown) culture in incubation

buffer containing (in mM): 115 NaCl, 5.0 KCl, 24 NaHCO3, 2.2 CaCl2, 1 MgCl2, 0.25% BSA, 24

HEPES (pH7.3 with NaOH). Cells were pre-incubated for 45 minutes at 1mM glucose, fol-

lowed by 1hour stimulation with 1mM glucose, 16.7mM glucose or 16.7mM glucose plus

20mM KCl. Samples were collected at stored at -80°C prior to assay by electrochemilumines-

cence (Meso Scale Diagnostics, USA). To account for the normal variation in secretory

responses between donors, data was normalized to the control 1 mM glucose condition and

presented as stimulation index (SI; fold increase). Data were analyzed by repeated measures

two-way ANOVA and Tukey post-test.

Data access

Genotype and sequence data have been deposited at the European Genome-phenome Archive

(EGA; http://www.ebi.ac.uk/ega/), which is hosted by the European Bioinformatics Institute

(EBI), under accession number EGAS00001001265.
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S2 Table. Detailed information on the 21 reported index variants for T2D and glycemic

traits co-inciding with islet eQTLs.

(PDF)

S3 Table. Overlap between islet exon-eQTLs and the gene-level eQTLs from Fadista et al.

(PDF)

S1 Fig. Expression of the twenty five most abundantly expressed genes in human islets used

in the study. Expression was quantified as reads per million mapped reads per kilobase of tran-

script (RPKM). Error bars denote standard error of the mean.

(PDF)

S2 Fig. Replication of previous allele-specific expression findings. (a) Previously reported

ASE variant in ARAP1 (rs11603334) associated with T2D and glycemic traits showed no signif-

icant (p>0.1) allelic imbalance in the human islet data. (b,c) Both previously reported ASE var-

iants in ANPEP (rs17240240 and rs41276922), which are in very weak LD with the T2D signal

at the AP3S2 locus, also show significant (p<0.01) ASE in this study.

(PDF)

S3 Fig. Principal component analysis confirms European ancestry of islet samples. Principal

component analysis of the 118 islet samples with the 1000 Genomes Northern European

ancestry populations, computed using independent common (MAF> 1%) variants on chro-

mosome 1.

(PDF)
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