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ABSTRACT 

Already a proven mechanism for drought resilience, crassulacean acid metabolism 

(CAM) is a specialized type of photosynthesis that maximizes water-use efficiency (WUE) via 

an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening 

to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level 

understanding of temporal molecular and metabolic controls is needed to define the cellular 

behavior underpinning CAM. Here, we report high-resolution temporal behaviors of transcript, 

protein and metabolite abundances across a CAM diel cycle and, where applicable, compare 

those observations to the well-established C3 model plant, Arabidopsis. A mechanistic finding 

that emerged is that CAM operates with a diel redox poise that is shifted relative to that in 

Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with 

signal transduction mechanisms that regulate stomatal opening/closing. Controlled production 

and degradation of transcripts and proteins represents a timing mechanism by which to regulate 

cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. 

Here, we provide new insights into complex post-transcriptional and -translational hierarchies 

that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more 

efficient CAM traits into economically valuable C3 crops. 
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INTRODUCTION 

The water-use efficiency of Agave spp. hinges on crassulacean acid metabolism (CAM), 

a specialized mode of photosynthesis that evolved from ancestral C3 photosynthesis in response 

to water and CO2 limitation (Silvera et al., 2010) and is found in ~6.5% of higher plants. While 

C3 photosynthesis produces a three-carbon (3-C) molecule for carbon fixation during the day, 

CAM generates a four-carbon organic acid from carbon fixation at night. In CAM, this nocturnal 

carboxylation reaction is catalyzed by phosphoenolpyruvate carboxylase (PEPC), while the 3-C 

substrate phosphoenolpyruvate (PEP) is supplied via the glycolytic breakdown of carbohydrate 

formed during the previous day. The nocturnally accumulated malic acid is stored overnight in a 



central vacuole and during the subsequent day, malate is decarboxylated to release CO2 at an 

elevated concentration for RuBisCO in the chloroplast. The diel separation of carboxylases in 

CAM is accompanied by an inverse (compared to C3 and C4 photosynthesis-performing species) 

day/night pattern of stomatal closure/opening that results in improved water-use efficiency (i.e., 

CO2 fixed per unit water lost) that is up to 6-fold higher than that of C3 photosynthesis plants and 

up to three-fold higher than that of C4 photosynthesis plants under comparable conditions 

(Borland et al., 2009). 

The frequent emergence of CAM from C3 photosynthesis over evolutionary history 

implies that all of the enzymes required for CAM are homologs of ancestral forms found in C3 

species (Silvera et al., 2010, West-Eberhard et al., 2011). As such, the CAM pathway has been 

identified as a target for synthetic biology because it offers the potential to engineer improved 

water-use efficiency in C3 crops (Borland et al., 2014, Borland and Yang, 2013, DePaoli et al., 

2014). However, the day/night separation of carboxylation processes and the inverse night/day 

opening/closing of stomata that distinguishes CAM from C3 photosynthesis imply that the 

bioengineering of CAM will require a temporal reprogramming of metabolism in the C3 host. 

Therefore, key challenges for CAM biodesign will be to establish how many genes must be 

reprogrammed in a diel manner to modify the behavior of C3 plants to perform CAM and to 

identify which functional or mechanistic governing principles are shared among the diel 

transcriptional and translational dynamics of C3 and CAM. 

Generating an integrated functional -omics dataset (i.e., transcriptomics, proteomics and 

metabolomics) for a CAM species is an essential first step for providing global insight into the 

complete set of genes controlling the metabolic steps of CAM, for revealing genes in co-

occurrence networks, and for determining the functional consequences of diel co-regulation of 

transcription and translation. In the present study, temporal profiles of the transcriptome, 

proteome and metabolome of CAM-performing leaves from the obligate CAM species Agave 

americana were investigated across a 12h/12h light/dark diel cycle. With this experimental 

design, we sought to: a) identify temporally defined clusters of co-regulated genes, b) define diel 

shifts in gene expression between CAM- and C3-specific gene networks, and c) describe the 

temporal dynamics between gene expression profiles and protein abundance profiles across the 

24-hr light/dark CAM cycle. 

RESULTS 



Metabolic reprogramming in CAM-performing leaves 

CAM plants are classified according to the amount of atmospheric CO2 that is taken up at 

night (Silvera et al., 2010, Winter et al., 2008, Winter and Holtum, 2014). For A. americana, the 

magnitude of nocturnal net CO2 uptake changes according to leaf age, with a progressive shift 

from predominantly C3 photosynthesis in the youngest leaf to increasing CAM activity with leaf 

age (Figure 1A; Supplemental Table 1). We limited all sampling for metabolites, transcriptome 

and proteome to the fourth fully expanded leaf, which is a mature CAM-performing leaf under 

the controlled environmental conditions used here (i.e., day/night temperature 25/15 °C; 12-hr 

photoperiod, PFD 540 μmol m-2 s-1 at plant height). 

We inspected GC-MS profiles of 64 abundant metabolites over the Agave diel cycle (Figure 

1B; Supplemental Table 2), and then compared a subset of these to those in an Arabidopsis C3 

leaf (Supplemental Table 3; Figure 1C). Unlike C3 leaves, in which malic and fumaric acid levels 

increase during the day and decrease during the night (Chia et al., 2000, Fahnenstich et al., 

2007), Agave leaves accumulate malic acid at night, a defining feature of the nocturnal CO2 

fixation that occurs during CAM. Agave leaves also accumulated fumaric acid during the night, 

which is consistent with the relatively high nighttime fluxes of carbon passing through the 

tricarboxylic acid (TCA) cycle and the C exchange between malate and fumarate (Osmond et al., 

1988) reported for CAM plants. The diel abundance profile of sucrose, which is reciprocal to that 

of malic acid, provides support for the hypothesis that Agave uses soluble sugars, mainly 

fructans, oligofructans, fructose, glucose and sucrose as potential carbon sources for nocturnal 

malate synthesis (Arrizon et al., 2010, Mancilla-Margalli and López, 2006, Raveh et al., 1998, 

Wang and Nobel, 1998) (Figure 1C). Among the antioxidants found in plants, ascorbate is 

usually the most abundant (Horemans et al., 2000) and accumulates to high concentrations in the 

chloroplast and vacuole following high-light stress. The levels of ascorbic acid, which is 

involved in metabolic crosstalk between redox related pathways, is high in Agave leaves (7-1100 

µg/g FW sorbitol equivalents) (Figure 1C). Interestingly, the diel pattern of daytime depletion 

and nocturnal accumulation of ascorbic acid in Agave contrasts markedly with that in 

Arabidopsis and other C3 species (Bartoli et al., 2006, Dutilleul et al., 2003). 

The reprogramming of the day/night pattern of ascorbic acid turnover in Agave is intriguing 

if ascorbic acid is a key component of a redox hub that integrates metabolic information and 

environmental stimuli to tune responses within the cellular signaling network (Foyer and Noctor, 



2011). Recent studies have shown that many organisms, including Arabidopsis, have a redox 

rhythm that is dictated by circadian clock components and metabolic activities such as the 

production and scavenging of reactive oxygen species (ROS) (Lai et al., 2012, Stangherlin and 

Reddy, 2013, Zhou et al., 2015). The concept that redox regulation links CO2 assimilation and 

related photosynthetic processes to light was established more than two decades ago. Thus, we 

examined the diel redox status of nicotinamide adenine dinucleotide phosphate (NADP) in Agave 

and compared it to that in Arabidopsis leaves that were measured under comparable 

environmental conditions (Figure 1C). In Arabidopsis, the abundances of the coenzymes 

NADPH and NADP+ increased over the first few hours of the photoperiod concomitantly with 

photosynthetic activity. However, the diel abundance patterns of these coenzymes differed in 

Agave leaves, with NADP+ declining in abundance during the day but increasing overnight. In 

Agave, NAD(P)H abundance peaked around 8 hr into the night, then declined over the remaining 

dark period as the abundance of NADP+ increased. The observed pattern of NADPH turnover in 

Agave is consistent with a network-scale model of the diel CAM cycle that predicts partitioning 

of carbohydrate into the oxidative pentose phosphate pathway (OPP) at night to produce 

NADPH for maintenance processes (Cheung et al., 2014) (Supplemental Note 4). The 

contrasting diel patterns of abundance for NADP+ and NADPH in Arabidopsis and Agave 

indicate a diel shift in the supply of and demand for reductant between C3 and CAM. This altered 

diel redox poise indicates a fundamental difference between C3 and CAM in the relative 

day/night fluxes through a range of central metabolic processes that include glycolysis, TCA 

cycle, OPPP, nitrogen assimilation and respiratory electron transport. 

 

Temporal dynamics of gene expression across a CAM diel series 

Using the same leaf material as sampled for the metabolite profiles, RNA sequencing 

(RNA-Seq) was performed across eight time points at 3-hr intervals in biological triplicates. 

RNA-Seq-derived transcript profiles were obtained, and the total abundance of each transcript 

was assessed after normalizing the number of reads per kilobase and normalizing per million 

reads (RPKM). In total, 47,499 transcripts were observed in mature leaves of Agave. For 

quantitative analyses, an empirically derived threshold (maximum RPKM ≥ 5.02 and minimum 

average RPKM ≥ 3.483; Supplemental Note 6) was applied to remove low-abundance transcripts 

that had large variance across the entire transcriptomic data set (Lochner et al., 2011) resulting in 



37,808 transcripts (Supplemental Table 4). Examination of the data revealed that 82% (31,126) 

of transcripts were expressed throughout the entire 24-hr period. Pearson correlations were 

computed and high reproducibility was found at an average Pearson correlation coefficient of 

0.91. 

On the basis of paired t-tests, the expression patterns of 21,168 transcripts that showed at 

least a twofold change from their mean value with a p-value < 0.05 between one or more time 

points across the diel cycle (Supplemental Table 5) were grouped into nine major clusters based 

on similarity of expression patterns identified using the k-means algorithm implemented in the 

MeV software package (Saeed et al., 2003) (Supplemental Table 6). Figure 2 shows co-

expression patterns across a 24-hr period, with thousands of genes showing oscillating patterns 

or acute, rapid changes. Interestingly, across many clusters, significantly high (Cluster 3) or low 

(Clusters 5, 6, 7) transcript abundance occurs during the middle of the night when nocturnal CO2 

fixation is at its highest, which might highlight a major metabolic transition. As supplemental 

information, we have identified over-represented gene ontology biological processes (GOBP) for 

each cluster (Supplemental Note 8 and Supplemental Table 7). In Figure 2, we highlight the five 

most over-represented GOBP categories for each cluster. 

 

Phase relationships of gene expression between CAM and C3 

A key challenge for CAM biodesign will be to establish the number of genes that need to be 

reprogrammed to modify the behavior of C3 plants to perform CAM. While gene expression is 

remarkably flexible and constantly reconfigures to respond and adapt to perturbations, plants 

have evolved a scheduling mechanism to coordinate and synchronize biological processes over 

the day/night cycle. 

To provide insight into the required degree of reorganization of diel gene expression, we 

compared the global gene expression profiles of the Arabidopsis C3 leaf and Agave CAM-

performing leaf over a day/night cycle. We leveraged a tractable and widely used diel gene 

expression dataset from the Arabidopsis community, which was sampled under similar 

environmental growth conditions to those used for Agave, except at 4-hr intervals (Mockler et 

al., 2007). To account for the different sampling intervals and numbers, the 4-hr intervals were 

adjusted to 3-hr intervals using cubic spline interpolation (Supplemental Figure 2 and 

Supplemental Table 8). We used the reciprocal best blast hit to identify orthologs based upon 



sequence similarity and then computed Pearson correlations to characterize the temporal 

relationships of their expression. Among genes with Pearson correlation coefficients > |0.6|, we 

identified 584 genes that had similar expression profiles and 641 genes that had opposite time-of-

day expression patterns (Supplemental Table 9). From the combined set of over 1000 Agave and 

Arabidopsis gene profiles, k-means clustering generated four clusters that capture the general 

relationships among orthologs (Figure 3A), highlighting the established diel rhythms that are 

either in phase or reciprocal to one another. Importantly, the clusters with altered diel expression 

(Clusters 1 and 3) include, yet were not limited to, several Arabidopsis genes related to redox 

poise that further corroborate the altered diel redox poise in CAM plants (Supplemental Table 9). 

Inverse stomatal behavior in CAM plants presents an attractive perspective from which to 

study guard cell signaling because CAM-performing leaves differ in the timing of perception and 

response to physiological signals related to stomata opening/closing. Whether there are any time-

of-day redundancies in major signaling components between C3 and CAM plants for regulation 

of stomatal behavior is still unclear. Therefore, we compared the expression profiles of 

Arabidopsis genes previously associated with light or CO2 responses to their reciprocal blast hits 

in Agave (Figure 3B-C). 

While various stimuli can lead to stomatal closure, stomatal opening is predominately evoked 

via wavelength-responsive mechanisms (Zhou et al., 2013). The regulatory mechanism of 

stomatal opening by blue light has been well studied in a number of C3 plants (Inada et al., 2004, 

Tseng and Briggs, 2010), but its role is less clear in CAM plants (Ceuster et al., 2014). Previous 

work in facultative CAM plants suggests that a blue light receptor mediates a light-induced 

switch from C3 to CAM in Clusia minor (Grams and Thiel, 2002). In the present study, we 

observed a light-induced gene expression profile for a blue/UV-A light-absorbing cryptochrome 

2 (CRY2) (Aam348626) that has been implicated in inhibition of hypocotyl elongation, 

regulation of flowering time and entrainment of the circadian clock (Banerjee and Batschauer, 

2005). Furthermore, similar expression was observed for the blue/UV-A light-induced 

photoreceptor 1 (PHOT1) (Aam086385) that has been implicated in mediating stomatal opening 

in response to light (Banerjee and Batschauer, 2005). Because these light receptor genes have 

similar expression patterns in Arabidopsis and Agave, these data suggest that these particular 

genes may not be involved in stomatal opening in a constitutive CAM plant, for which other 

photoreceptors or cues, such as low CO2, could be the predominant signal. 



The perception of CO2 by guard cells serves as a physiological signal regulating stomatal 

activity: stomata open at low CO2 concentrations and close at high CO2 concentrations in 

conjunction with abscisic acid (ABA) and the presence of ABA receptors (Chater et al., 2015). 

Previously implicated as a central regulator of stomatal CO2 signaling, high leaf temperature 1 

(HT1) negatively regulates high-CO2-induced stomatal closing. Consequently, Arabidopsis 

plants lacking HT1 activity show a constitutive high-CO2 stomatal response and do not open 

stomata in response to low CO2 (Hashimoto et al., 2006). Interestingly, expression of the HT1 

(Aam018566) gene in Agave was rescheduled relative to that in Arabidopsis (Figure 3C). CO2 

and ABA-induced perception and signaling are interdependent and open stomata 1 (OST)/SNF-

related protein kinase 2.6 (Aam349853), which is a downstream target of HT1 (Tian et al., 

2015) and a convergence point for ABA and CO2 signaling pathways, also exhibited rescheduled 

expression in Agave compared to Arabidopsis (Figure 3C). Two other SNF-related protein 

kinases, salt overly sensitive 2 (SOS2) (Aam080324) and SnRK2.10 (Aam332354), exhibited 

shifted expression patterns in Agave (Figure 3C). Several classes of serine/threonine 

phosphatases (PP1A, PP2A, PP2B and PP2C) can all regulate aspects of guard cell signaling. 

PPC2 protein phosphatases, in particular, contribute to the ABA perception complex with 

PYR1/PYL1/RCAR by inhibiting SNF-related protein kinases, such as OST1 (Umezawa et al., 

2009, Xie et al., 2012). Transcript abundances of PP2C family protein (Aam012848) as well the 

regulatory component of an ABA receptor (RCAR3) (Aam022092) exhibited temporal shifts in 

abundance compared to that in Arabidopsis. 

The opening and closing of stomata is driven by turgor and volume changes in guard cells 

surrounding the stomatal pores (Azoulay‐Shemer et al., 2015). The osmotic uptake of water 

driven by the accumulation of ions and sugars causes the stomata to open or close. Therefore, the 

varying activities of different ion channels and their fluctuating spatiotemporal patterns 

contribute to the regulation of stomatal apertures. Several different sources of ion flux show 

shifted temporal profiles in Agave compared to Arabidopsis (Figure 3C). Investigations of the 

osmotic changes driving guard cell behavior have mainly focused on the role of K+ transport 

across the plasma membrane of guard cells, which is a major contributor to stomatal opening and 

closing. The activity of inward-rectifying channels in guard cells induces swelling (opening) or 

shrinking (closing) of the guard cells surrounding the stomatal apertures (Wang et al., 2013). The 

inward-rectifying Ca2+-sensitive K+ channels are thought to serve as a major pathway for K+ 



migration into guard cells during stomatal opening (Wang et al., 2013). The transcript abundance 

of the potassium transporter 2/3 (AKT2/3) (Aam018832), which controls Ca2+-sensitive uptake 

of K+ by guard cells, showed an expression pattern reciprocal to that in Arabidopsis. Two 

endoplasmic reticulum (ER) Ca2+ ATPase transcripts, including calcium ATPase 2 (ACA2) 

(Aam003442) and an endomembrane-type CA-ATPase 4 (ECA4) (Aam088048), also exhibited 

shifts in temporal expression patterns relative to those in Arabidopsis. These ATPases might 

serve as part of a tuning mechanism to regulate the magnitude or duration of a calcium flux (Sze 

et al., 2000). Essential to stomatal activity, the K+ flux within guard cells must be 

counterbalanced by fluxes of anions, such as Cl-. Thus, it was particularly interesting that a 

member of the chloride channel family (CLC-c) (Aam081659) that is localized to the vacuole 

and highly expressed in guard cells in Arabidopsis (Jossier et al., 2010) showed reciprocal 

expression behavior in Agave compared to that in Arabidopsis. Collectively, the expression 

patterns we observed provide substantial evidence for the temporal reprogramming of particular 

genes essential to regulation of stomatal behavior in an obligate CAM plant. 

 

Detection of candidate regulators of reprogrammed metabolism 

Given the observed rescheduling of gene expression in Agave, a comparative co-expression 

analysis has great potential for characterizing the evolution of biological pathways between well-

studied Arabidopsis and relatively uncharacterized Agave. Because transcription factors are part 

of a prime mechanism that orchestrates specific control over the time of day during which 

biological processes operate, transcription factors that show reprogrammed expression in Agave 

relative to Arabidopsis could help unravel novel differences in transcriptional regulatory control 

between C3 and CAM. Therefore, we sought to identify transcription factors with reciprocal 

expression profiles in Agave and Arabidopsis. 

To predict transcription factor regulatory interactions and identify new candidate genes 

for CAM biodesign efforts, integrated analysis of CAM and C3 transcriptomics data was 

performed by generating cross-taxa co-expression network modules (Supplemental Note 5). We 

defined the list of candidate regulators via the inverse pattern of their transcript expression in 

Agave relative to that in Arabidopsis. We also enforced strict criteria to define their target genes 

by the relationship of their expression and function to that of targets predicted in Arabidopsis 

(Supplemental Figure 4). Using this approach, we identified auxin response factor 4 (ARF4) as a 



candidate transcription factor that could regulate inverse gene expression in Agave compared to 

Arabidopsis as well as several candidate target genes containing auxin response elements 

(AuxREs) (Supplemental Note 5). Although experimental validation is needed, this result will 

enable future studies into the connections between CAM regulatory mechanisms and adaptation 

to the environment. 

 

Protein abundances across a CAM diel series 

While RNA-Seq data provides insight into gene expression, protein abundances better 

reflect the functional state of a cell at a given point in time. Therefore, protein was extracted 

from the same Agave tissue from which the metabolomic and transcriptomic profiles were 

generated. Tryptic peptides generated from each sample were measured by two-dimensional 

liquid chromatography nano-electrospray tandem mass spectrometry and yielded 32,561 non-

redundant distinct peptide sequences that mapped to 14,207 A. americana protein accessions 

(~20% of total predicted Agave protein sequences) across the entire data set (Supplemental Table 

12). The data revealed that >90% of these proteins were observed throughout the entire 24-hr 

period. Pearson correlations show high biological reproducibility with an average correlation 

coefficient of 0.90. Given the incompleteness of the data (i.e., fragmented gene models) and the 

protein inference problem (i.e., shared peptides), we grouped proteins with 90% sequence 

homology to more accurately report identifications. When considering only protein groups that 

were uniquely identified, a total of 6,714 protein groups representing 11,337 protein accessions 

were observed. From this subset, total abundances of proteins were assessed by adding peptide 

intensities (i.e., spectral counts) obtained in the MS analysis and using the normalized spectral 

abundance factors (NSAF) (Zybailov et al., 2007). For quantitative analysis, an empirically 

derived threshold (maximum NSAF > 1.5 and minimum average NSAF > 1) was used to remove 

low-abundance proteins with large variances across the entire proteomic data set, resulting in 

4,710 protein accessions (2,434 protein groups) (Supplemental Table 13). On the basis of paired 

t-tests, the abundance patterns of 2,002 proteins (1,226 protein groups) showed at least a twofold 

change from their mean value with a p-value < 0.05 between one or more time points across the 

diel cycle (Supplemental Table 14). These proteins were grouped across six major clusters based 

on similarity of expression patterns identified by the k-means algorithm implemented in the MeV 

software package (Howe et al., 2011) (Supplemental Table 15). Figure 4 shows the oscillating 



patterns or acute, rapid changes in protein abundances across a 24-hr period, similar to those 

observed in gene expression profiles. To detect functional specialization within the clusters, we 

tested for over-representation of GOBP terms and show the five most over-represented GOBP 

categories for each cluster (Figure 5; Supplemental Table 16). 

In addition to inverse stomatal behavior, another major distinctive feature of CAM is the 

nocturnal fixation of CO2 by phosphoenolpyruvate carboxylase (PEPC) and subsequent 

remobilization the following day to release CO2 for the Calvin-Benson cycle plus pyruvate, 

which is recycled by gluconeogenesis via pyruvate orthophosphate dikinase (PPDK) 

(Supplemental Figure 5 and Supplemental Note 6). Given their importance to CAM, we show 

that the transcript abundance of Ppc1 changes substantially across the diel cycle, peaking at the 

end of the day. More importantly, we show for the first time that PEPC1 protein abundance 

follows a diel oscillation similar to that of the transcript. The expression of the PPDK transcript 

and protein were largely coincident with one another, peaking in the morning, which is 

consistent with a role in the decarboxylation of malic acid during the early morning hours in 

Agave. As anticipated, the protein responsible for down-regulating the activity of PPDK, PPDK-

regulatory protein (RP1) (Aam051010), reaches peak abundance at night in Agave, yet has an 

abundance profile reciprocal to that of its transcript. 

 

Variation in temporal dynamics of transcript and protein abundance 

The temporally distinct modulation of the transcript and protein abundance profiles has 

great potential for elucidating gene function and biological pathway regulation by revealing 

regulatory mechanisms that occur post-transcriptionally and beyond. Therefore, we explored the 

temporal relationships of the expression of each transcript and its representative protein in 

Agave. When looking at relationships for a single time point, we observed non-linear 

relationships with weak correlations (average Pearson’s correlation between log-transformed 

abundances was r = 0.48), which is consistent with results of previous studies (Walley et al., 

2013). The temporal dynamics between the expression of transcripts and their encoded proteins 

could explain this variation, which results from various rates of biosynthesis and degradation and 

subsequent post-transcriptional or -translational modifications. For this reason, rational 

bioengineering design efforts must consider the temporal relationship between the expression of 



a transcript and its subsequent protein product not only in native CAM species, but also in the 

engineered C3 target species for particular combinations of promoter and expressed protein. 

Transcript and protein abundances that occur in phase represent transcription directly 

linked to translation with either very little or rapid regulation. Transcript and protein abundance 

patterns that are out of phase, on the other hand, are likely regulated at or beyond the post-

transcriptional level. To calculate the cross-correlations between transcript and protein 

abundance profiles, we implemented a cross-correlation function to estimate delays (0 and time 

delay ± 0–7) between transcript and protein signals and then rearranged the data according to 

lags to calculate a correlation coefficient and p-value. Only transcripts and proteins observed at 

every time point and only relationships involving non-ambiguous, uniquely identified proteins 

exhibiting a significant change in abundance were used for this analysis. A correlation 

coefficient cutoff of > 0.7 and p-values < 0.05 were selected as thresholds to generate a refined 

subset of 336 transcript/protein relationships. Further manual annotation was used to refine the 

set of transcript and protein abundance relationships while considering variation across 

replicates. In total, 254 transcript/protein relationships were retained and their curated transcript-

to-protein time delays are reported in Supplemental Table 17. We were thus able to exploit high-

resolution sampling of transcript and protein abundances to evaluate the temporal dynamics of 

several key processes related to photosynthesis and respiration (Supplemental Figure 7 and 

Supplemental Note 7). 

 

DISCUSSION 

Metabolic profiling not only corroborated previous findings for CAM, for example, 

oscillations in organic acid concentrations, but also provided novel insights into diel variations in 

other identifiable metabolites, which now serve as a rich data set to facilitate future 

investigations into CAM. By comparing Agave and Arabidopsis leaves under comparable growth 

conditions, we were able to examine rescheduled components of C3- and CAM-specific gene 

expression controlling other processes. Comparison of sucrose abundance at different times of 

day lends further support to the premise that this carbon source is broken down in Agave at the 

end of the light period to release glucose and fructose, which supply the PEP for nocturnal 

carbon fixation, as in other Agave species (Christopher and Holtum, 1996). Overall, the 

nocturnal increases in malic acid, fumaric acid and NADP+ in Agave are consistent with the 



reportedly high mitochondrial fluxes of carbon and electron transport that occur in CAM plants 

at night. The elevated levels of ascorbic acid that accumulate over the nighttime in Agave are 

consistent with the need for anti-oxidant activity to deal with reactive oxygen species generated 

by high rates of respiratory electron transport that occur at night in CAM plants. 

The diel patterns of gene expression in plants are likely to be meaningful indicators of the 

innate relative timing of different cellular and metabolic processes, particularly the manners in 

which gene expression is affected by environmental and endogenous signals. Interestingly, we 

observed significant increases and decreases in gene expression at a period during the night 

coinciding with maximum net CO2 uptake. The relative contributions of unknown external or 

internal regulatory inputs during this period remain to be determined. Whilst these high-

resolution transcriptional profiles will certainly contribute to our understanding of the diel 

regulation of gene expression in CAM, here we instead focused our analysis on the similarities 

and differences between the temporally regulated transcriptomes of CAM and C3 leaves. 

We examined convergent and divergent timing of gene expression systems that reflect the 

adapted physiology of CAM species relative to C3 plant species. Interestingly, we did not 

observe temporal differences in the expression of blue-light-responsive genes identified in 

Agave. Instead, we identified diel variation between CAM and C3 orthologs implicated in CO2- 

and ABA-related signaling events. We propose these rescheduled genes are among the key 

components of the core signaling mechanism responsible for inverse stomatal activity in CAM 

plants. Moreover, the expression of the transcripts for many of the genes discussed here, 

including SOS2, have also shown distinct temporal changes in response to salinity or oxidative 

stress in Arabidopsis (Yang et al., 2009) and might be appropriate candidates for improving 

stress tolerance or WUE as part of CAM biodesign research efforts. 

We also describe the generation of the first large-scale proteomic profile for CAM-

performing leaves to identify the temporal protein abundance profiles underpinning CAM. 

Across the diel cycle, we observed significant changes in protein abundance similar to patterns 

of changes observed in transcript profiles. Interestingly, some proteins exhibited substantial 

abundance changes during the middle of the dark period, coinciding with nocturnal CO2 fixation 

and the increased abundance of the coenzyme NADPH. In addition to detailing the temporal 

dynamics of over-represented GOBP processes, we have illustrated protein abundance patterns 

for many key metabolic processes pertinent to CAM. By comparing diel patterns of transcript 



and protein abundance in Agave, we have revealed new insights that will help facilitate rational 

design to enhance WUE and improve drought tolerance of C3 crops through a better 

understanding of the complex regulatory processes that govern the operation of CAM. 

 

METHODS 

Plant materials. Agave americana ’Marginata’ plants were obtained from Notestein's Nursery, 

Gainesville, FL (http://southerngardening.org). Arabidopsis thaliana (Col-0) seeds were obtained 

from TAIR (http://www.arabidopsis.org/). The A. americana and A. thaliana plants were grown 

in controlled environments (Supplementary Note 1). 

 

Measurement of leaf gas exchange. Net CO2 uptake in Agave americana ’Marginata’ was 

measured using a compact mini cuvette system in a Central Unit CMS-400 with BINOS-100 

infrared gas analyzer working in an open format (Heinz Walz GmbH, Germany) (Supplementary 

Note 2). 

 

Metabolite profiling by gas chromatography mass spectrometry. For A. americana 

metabolite identification, 8 samples were collected with three biological replicates of mature leaf 

samples (4th fully expanded leaf) collected at 3, 6, 9, 12, 15, 18, 21, 24 hours after the starting of 

the light period. Samples were frozen in liquid nitrogen and ground using a mortar and pestle and 

stored at −80°C until metabolite profiling. For Arabidopsis thaliana (Col-0), 8 samples were 

collected with three biological replicates of fully-expanded leaf samples collected at 3, 6, 9, 12, 

15, 18, 21, and 24 hours after the starting of the light period. Samples were frozen in liquid 

nitrogen and ground using a mortar and pestle and stored at −80°C until metabolite profiling 

(Supplementary Note 3). 

 

NADPH and NADP+ measurement. Fully expanded leaves of Agave americana and 

Arabidopsis thaliana (Col-0) were collected for enzymatic assays to determine total NADP and 

calculated NADPH from decomposed NADP using the NADP/NADPH Quantification Kit 

(BioVision, Mountain View, CA) according to the manufacturer’s instructions (Supplementary 

Note 4). 

 

http://www.arabidopsis.org/


Chloroplast genome sequencing, assembly and annotation. Chloroplasts were isolated from 

the Agave americana leaf tissue using a Chloroplast Isolation Kit (Sigma, Cat CP-ISO). DNA 

was extracted from enriched chloroplasts using the DNeasy DNA Extraction Kit (QIAGEN, Cat 

No. 69104). Paired-end (PE) sequencing libraries with an average insert size of 500 bp were 

constructed from the chloroplast DNA using an Illumina TruSeq DNA Sample Prep Kit v2 and 

sequenced on a MiSeq instrument using the MiSeq Reagent Kit v3 (600-cycle). PE reads (2300 

bp) were trimmed using Trimmomatic (Bolger et al., 2014) with settings of MINLEN = 100 and 

SLIDINGWINDOW = 4:20. Trimmed overlapping PE reads (NCBI SRA accession SRP076143)  

were merged into extended long reads using FLASH (Magoc and Salzberg, 2011). Merged long 

reads were searched against public chloroplast genome sequences available at NCBI 

(http://www.ncbi.nlm.nih.gov/) using blastn (Altschul et al., 1990) with an e-value cutoff of 1e-

5.  Merged long reads with blastn hits in the NCBI chloroplast database and the un-merged PE 

reads were used to create de novo genome assemblies using SOAPdenovo version r240 (Luo et 

al., 2012) with multiple k-mer lengths from 20–99. Individual assemblies were merged using 

CAP3 (Huang and Madan, 1999) with default settings. For filling the gaps in the genome 

assembly, two pairs of PCR primers (pair1: 5’-GAATTCGCGCCTACTCTGAC-3’, 5’-

GGCCGATTGATCTTCCAATA-3; pair2: 5’-AATCCACTGCCTTGATCCAC-3’, 5’-

ATCAACCGTGCTAACCTTGG-3’) were designed based on the Agave chloroplast genome 

sequence. Gap sequences were obtained by sequencing PCR amplified chloroplast DNA 

fragments using Sanger sequencing on an ABI machine. Chloroplast genome annotation was 

performed using CpGAVAS (Liu et al., 2012). The chloroplast genome assembly and annotation 

were deposited at GenBank (accession KX519714). 

 

Transcriptomics. For transcriptome sequencing, 15 A. americana samples were collected with 

three biological replicates, including eight samples of the mature fourth fully expanded leaf 

collected at 3, 6, 9, 12, 15, 18, 21 and 24 hours after the beginning of the light period; three 

young leaf samples collected at diel time points of 6, 12 and 21 hours, respectively; and four 

non-leaf samples (i.e., meristem, rhizome, root or stem) collected at 3 hr after the beginning of 

the light period. Samples were frozen in liquid nitrogen, ground using a mortar and pestle and 

then stored frozen at -80°C until transcriptomics analysis (Supplementary Note 5). 

 



Proteomics. For proteome sequencing, A. americana leaf samples were collected with three 

biological replicates and included eight samples of the mature fourth fully expanded leaf 

collected every at 3, 6, 9, 12, 15, 18, 21 and 24 hours after the beginning of the light period. 

Samples were frozen in liquid nitrogen, ground using a mortar and pestle and then stored frozen 

at -80°C until proteomics analysis (Supplementary Note 6). 

 

Statistical analysis. For this study, we performed pair-wise comparisons of time points as our 

hypothesis is concerned with the change among different time-points and not the overall change 

in transcripts and proteins. To this end, we employed two approaches for each dataset to provide 

a comprehensive assessment of the statistical confidence (Supplemental Note 7 and 

Supplemental Figure 8).  

 

Temporal relationship between mRNA and protein expression. As illustrated (Supplemental 

Figure 6), cross-correlations between RNA-Seq and proteomic datasets were calculated using the 

crosscorr function implemented in the Econometrics Toolbox (MATLAB) to estimate time 

lags with the sample cross-correlation (XCF) for each gene in the two datasets. Because both 

datasets were periodic, we rearranged the data according to lags and calculated the correlation 

coefficients for each gene. A correlation coefficient cutoff of > 0.7 and p-value of < 0.05 were 

selected as thresholds to ensure a subset of high-quality relationships. Visual inspection of the 

relative transcript and protein abundances and standard error of the means were then used for 

further validation. 

 

DATA AVAILABILITY: 

Data that support the findings of this study have been deposited into public repositories. 

Chloroplast sequence data is deposited at GenBank (http://www.ncbi.nlm.nih.gov/genbank/) with 

the accession code KX519714. The metabolite data is deposited at MetaboLights 

(http://www.ebi.ac.uk/metabolights/) under the accession code MTBLS363. The transcriptomics 

data is deposited at GenBank under the accession code GBHM00000000. The proteomics data 

has been deposited at MassIVE (https://massive.ucsd.edu/) under the accession code 

MSV000079780 and ProteomeXchange (http://www.proteomexchange.org) with the accession 

code PXD004239. 

http://www.proteomexchange.org/
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Figure Legends: 

 

Figure 1. CAM exhibits rescheduled central metabolism and redox homeostasis relative to 

C3. (a) The rate of net CO2 uptake was measured over a light/dark cycle across four leaf 

developmental states in Agave. The leaf performing the greatest degree of CAM (L4) was 

selected for all experiments. (b) A hierarchical clustering (Fast Ward method) heatmap 

highlights quantified Agave metabolites. (c) Abundance profiles (sorbitol equivalents) for select 

metabolites between Agave (blue) and Arabidopsis (red). Agave metabolite measurements were 

made from tissue collected at diel times 3, 6, 9, 12, 15, 18, 21 and 24 hr from the beginning of 

the light period and Arabidopsis metabolite measurements were made from tissue collected at 

diel times 3, 6, 9, 12, 15, 18, 21 and 24 hr from the beginning of the light period. Error bars 

represent standard error for three biological replicates. (d) Abundance of NADPH (solid line) 

and NADP+ (dashed line) cofactors for Agave (blue) and Arabidopsis (red). Both Agave and 

Arabidopsis NADPH and NADP+ measurements were made from tissue collected at diel times 

3, 6, 9, 12, 15, 18, 21 and 24 hr from the beginning of the light period. Error bars represent 

standard deviation for two Agave biological replicates and three Arabidopsis biological 

replicates. 

Figure 2. Temporal changes in Agave gene expression across the diel cycle. Agave RNA-Seq 

measurements were made from tissue collected at diel times 3, 6, 9, 12, 15, 18, 21, and 24 hr 

from the beginning of the light period. K-means clustering using Pearson’s correlations grouped 

genes into nine clusters based on the similarity of their abundance profiles. The y-axis represents 

the standard deviation z-score for each gene [(expression - mean)/SD] and highlights prominent 

patterns of abundance across the diel cycle. For each cluster, each blue line represents an 

individual gene, the median pattern of expression is represented by a dark blue line and the 

number of genes belonging to each cluster is reported. Below each cluster, up to the top five 

most significant gene ontology groups are graphically represented according to their adjusted p-

values. 

Figure 3. Diel gene expression and the rescheduling of stomatal movement-related genes in 

Agave compared with Arabidopsis. (a) Agave and Arabidopsis reciprocal best BLAST hit 



orthologs with Pearson correlation coefficients > |0.6| were clustered together using k-means to 

characterize the temporal relationship of their expression. For each cluster, the median pattern of 

expression is represented for Agave (blue) and Arabidopsis (red). The y-axis represents the 

standard deviation z-score for each cluster profile [(median expression - mean)/SD] and 

highlights prominent correlative and anti-correlative relationships. The number of genes 

belonging to each cluster is reported and error bars represent the standard deviation of their 

expression. (b) A subset of genes implicated in stomatal movement are illustrated and (c) the 

standard deviation z-score of each gene [(expression - mean)/SD] for Agave (blue) and 

Arabidopsis (red) is shown. 

Figure 4. Temporal changes in protein abundances in Agave across the diel cycle. Protein 

measurements were made on Agave leaf samples collected at diel times 3, 6, 9, 12, 15, 18, 21 and 

24 hr from the beginning of the light period. K-means clustering using Pearson’s correlations 

grouped genes into six clusters based on their similarity in abundance profiles. The y-axis 

represents the standard deviation z-score for each protein [(protein abundance - mean)/SD] to 

highlight prominent patterns of protein abundance across the diel cycle. For each cluster, each 

blue line represents an individual protein, the median pattern of abundance is represented by a 

dark blue line and the number of proteins belonging to each cluster is reported. Below each 

cluster, up to the top five most significant gene ontology groups are graphically represented 

according to their adjusted p-values. 









 



Supplemental Figures 

 

 

Supplemental Figure 1. Comparison of metabolite relative abundances using fresh weight or 

dry weight. The relative abundance of malic acid in Agave was normalized by the leaf biomass 

(a) fresh weight (FW) and (B) dry weight measurements. The relative abundance of the metabolic 

cofactor NADP was normalized by the leaf biomass (c) fresh weight measurements and (d) dry 

weight using protein biomass measurements. 

  



 

Supplemental Figure 2. Arabidopsis gene expression measurements were adjusted using cubic 

spline interpolation and then time points in blue triangles were averaged to get an expression value 

for the Agave time point between them. 

  



 

Supplemental Figure 3. Illustration of criteria applied to reduce ambiguity and improve 

confidence in comparison of ORTHOMCL orthologs between Agave and Arabidopsis co-

expression networks to identify candidate regulators of rescheduled CAM processes. 

 



 

Supplemental Figure 4. Comparative cross-species co-expression network for an auxin 

response factor (ARF) to identify candidate target genes. Graphical network representation of 

rescheduled gene expression within the gene family OrthoMCL11025, which represents auxin 

response factor 4 (ARF4). The y-axis represents the standard deviation z-score [(expression - 

mean)/SD] and shows expression peaking at the end-of-night in Arabidopsis (green) and end-of-

day in Agave (blue). For the cross-species co-expression network, relationships between genes 

are represented in networks, where nodes represent genes passing the correlation threshold (>= 

|0.8|) and edges represent the correlation relationship to the species TF and also link to an 

OrthoMCL gene family. Blue edges represent a positive correlation and red edges represent a 

negative correlation. 

 



Supplemental Figure 5. Diel expression and protein abundance patterns for genes implicated 

in carboxylation and decarboxylation reactions in CAM. Transcript abundance (Log2 

transformed RPKPM values; purple) and protein abundance (NSAF or MIT; orange) profiles. 

Error bars represent the standard error for three biological replicates. (a) The transcript and protein 

abundance profile of Agave phosphoenolpyruvate carboxylase (PEPC) (Aam080248) using Log2 

transformed NSAF values or (b) peak intensity information obtained from matched ion intensities 

(MIT) (see Supplementary Note 6), as a function of time (hours from the beginning of the light 

period on x-axis). (c) The expression and protein abundance profiles of Agave pyruvate 

orthophosphate dikinase (PPDK) (Aam010102) and (d) PPDK-regulatory protein (RP) 

(Aam051010) are shown. 

 



 

Supplemental Figure 6. Illustration of criteria applied to report high-quality transcript and protein 

abundance relationships. (a) the crosscorr function from Econometrics Toolbox (Matlab) was first 

applied to first estimate temporal differences in transcripts and proteins having similar abundance 

profiles. (b) After enforcing crosscorr threshold of 0.7, the time delay was then used rearrange the 

data to calculate a Pearson correlation coefficient and p-value. (c) The relative abundance and 

standard error from the mean (SEM) was then used for manual validation.  

 



 

Supplemental Figure 7. Temporal dynamics of transcript and protein abundances for 

mitochondria- and chloroplast-related genes. The y-axis represents the standard deviation z-

score for each gene or protein [(abundance - mean)/ SD]. 

  



 

Supplemental Figure 8. Test for differential abundance workflow. This illustration provides 

an overview of the data processing workflow for (A) transcript and (B) protein data to test for 

differential abundances between time points. For both datasets, two different statistical tests were 

performed. Note, for the protein data, in order to address the stochastic sampling of low-abundant 

proteins, only proteins above the limit of quantification were assessed by the FCROS method. 



Supplementary Tables 

 

Supplemental Table 1 

Net gas exchange and photon flux density measurements across the Agave diel cycle. 

 

Supplemental Table 2 

Fresh weight (FW) concentration (µg/g) of Agave metabolites normalized to sorbitol for diel 

time (DT) 3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light period. 

 

Supplemental Table 3 

Fresh weight (FW) concentration (µg/g) of Arabidopsis thaliana (Col-0) metabolites normalized 

to sorbitol for diel time (DT) 3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light 

period. 

 

Supplemental Table 4 

List of Agave transcripts that passed the prevalence value threshold. Values represent Log2 

transformed RPKMs. Missing values were replaced by values imputed by drawing random 

numbers from a normal distribution to simulate signals from low abundant transcripts. 

 
Supplemental Table 5 

Differential abundance analyses for Log2 transformed RPKM values in Agave for diel time (DT) 

3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light period. 

 
Supplemental Table 6 

K-means clusters for differentially abundant Agave transcripts for diel time (DT) 3, 6, 9, 12, 15, 

18, 21, and 24 hours after the starting of the light period. 

 

Supplemental Table 7 

List of over-represented biological process ontologies for each transcript K-means cluster. Each 

value represents a corrected p-value from a right-sided hypergeometric enrichment test using the 

Bonferroni step down method. Terms that did not pass a significance threshold are marked as 

"NaN". 

 

Supplemental Table 8 

Arabidopsis microarray abundance values (Mockler et al., 2007). 



Supplemental Table 9 

Reciprocal best BLAST hit gene expression relationships having identified Pearson correlation 

coefficients > |0.6| 

 
Supplemental Table 10 

List of ORTHOMCL gene families between Agave and Arabidopsis 

 

Supplemental Table 11 

List of candidate target genes of Agave ARF4 (Aam004755) 

 

Supplemental Table 12 

An inclusive list of all Agave and chloroplast protein accessions that passed the FDR threshold. 

These values represent raw spectral counts that have not been normalized. 

 

Supplemental Table 13 

An inclusive list of protein accessions that passed the prevalence value threshold. Only those 

protein accessions that belonged to proteins groups unambiguously identified (i.e., unique) were 

used for quantitative analyses. Values represent Log2 transformed NSAF values. Missing values 

were replaced by values imputed by drawing random numbers from a normal distribution to 

simulate signals from low abundant proteins.  

 

Supplemental Table 14 

Differential abundance analyses for Log2 transformed NSAF values in Agave for diel time (DT) 

3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light period. 

 

Supplemental Table 15 

K-means clusters for differentially abundant Agave proteins for diel time (DT) 3, 6, 9, 12, 15, 18, 

21, and 24 hours after the starting of the light period. ** signifies differential abundances 

determined to be statistically significant by the ranked fold change method (Dembélé and 

Kastner, 2014). 

 

Supplemental Table 16 

List of over-represented biological process ontologies for each protein K-means cluster. Each 

value represents a corrected p-value from a right-sided hypergeometric enrichment test using the 

Bonferroni step down method. Terms that did not pass a significance threshold are marked as 

"NaN". 



 

Supplemental Table 17 

List of high-quality Agave mRNA and protein temporal abundance relationships. 



Supplementary Notes 

 

1. Plant material—Agave americana “marginata” plants were obtained from Notestein's Nursery, 

Gainesville, FL (http://southerngardening.org). Two-year-old plants with an average of eight 

leaves per plant were placed in 3.8-gallon (14.4-liter) plastic pots filled with Metro-Mix PX3 soil 

(Sun Gro Horticulture, Agawam, MA, USA). The plants were maintained in a Conviron CMP6050 

Control system (Pembina, ND, USA) with day/night temperatures of 25/15oC and day/night 

relative humidity of 45/75%. The photoperiod was 12-hr with a photosynthetic photon flux (PPF, 

400 to 700 nm) of 540 µmol m-2 s-1 on the upper surface of the leaves examined, as determined 

with a quantum meter (Model MQ-100, APOGEE, USA). The plants were watered once weekly 

until drainage from the pots occurred.  

Arabidopsis thaliana (Col-0) plants used for gas chromatography mass spectrometry (GC-

MS) measurements were obtained from TAIR (http://www.arabidopsis.org/). Seeds were 

incubated with desiccant for 48 hours, sterilized in 75% ethanol and 100% ethanol for 8 minutes 

each, respectively, and air dried on sterile paper filter inside the hood. Seeds were plated on 0.5X 

MS media (M5524, Sigma, USA), stratified for 2-5 days at 4ºC in the dark, and placed in growing 

room at 23ºC. Photosynthetic photon flux (PPF, 400 to 700 nm), as determined with a quantum 

meter (Model MQ-100, APOGEE, USA), was 70 µmol m-2 s-1 for day period (14-hr) and zero for 

night period (10-hr). After 8 days, seedlings were transplanted into plastic trays of 10"x20" (6 

plants per pot, 12 pots per tray) in soil 3B MIX (Conrad Fafard INC. MA, USA) and maintained 

under similar conditions (except for PPF = 100-120 µmol m-2 s-) in a Conviron CMP6050 Control 

system (Pembina, ND, USA) at 50% humidity. Plants were watered twice a week (~1000ml) and 

fertilized twice a month (Miracle-Gro All Purpose Dry Plant Food). Adult plants (3 weeks on soil) 

had 3 leaves from the rosette harvested from different plants for each time point trialed. Each plant 

was harvested only once. Biological replicates were sampled from same batch of plants grown 

under similar conditions. 

 

2. Leaf Gas Exchange—Net CO2 uptake in A. americana was measured using a compact mini 

cuvette system, Central Unit CMS-400 with BINOS-100 infra-red gas analyzer, working in an 

open format (Heinz Walz GmbH, Germany). A single leaf, ranging in age from the youngest still-

expanding to the 4th fully expanded, was clamped in the cuvette, ensuring it received full light (i.e., 

http://www.arabidopsis.org/


400 µmol m-2 s-1) within the growth chamber. Environmental conditions used for gas exchange 

analyses tried to mimic as closely as possible those experienced by plants sampled for 

metabolomics, mRNA and protein sequencing (i.e., the oldest leaf used for gas exchange analyses 

was leaf #4). Temperature of the cuvette was set to track environmental conditions within the 

growth room (i.e., 27°C day/19°C night, 60/80% day/night relative humidity, 12-hr photoperiod). 

Data for net CO2 uptake were collected every 15 minutes and gas flow through the cuvette was 

maintained between 400 and 500 mL min-1 to avoid water condensation inside the cuvette. Each 

leaf was maintained inside the cuvette for at least 48 hours to get a complete 24-hr gas exchange 

profile. Data were analyzed using DIAGAS software (Heinz Walz GmbH, Germany) based on the 

area of leaf inside the cuvette. Each leaf gas exchange curve presented is representative of that 

obtained from 3 biological replicates (Supplemental Table 1). 

 

3. Gas chromatography mass spectrometry metabolite profiling— For A. americana 

metabolite identification, a total of 8 samples were collected with three biological replicates for 

samples (4th fully expanded leaf) collected every at 3, 6, 9, 12, 15, 18, 21, 24 hours after the starting 

of the light period. The plant samples were frozen in liquid nitrogen and ground using a mortar 

and pestle and frozen at −80°C until further use. For Arabidopsis thaliana (Col-0) metabolite 

identification, a total of 8 samples were collected with three biological replicates of fully-expanded 

leaf samples collected at 3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light period. 

The plant samples were frozen in liquid nitrogen and ground using a mortar and pestle and stored 

at −80°C until further use. 

Fast-frozen tissues were ground with liquid nitrogen in a chilled mortar and pestle with 

~50 (19-60) mg FW Agave leaf subsequently twice extracted with 2.5 mL 80% ethanol overnight 

and then combined prior to drying a 1.0 ml aliquot in a nitrogen stream. A 50 μL aliquot was also 

dried for analysis of high concentration metabolites. For Arabidopsis, ~120 (52-161) mg FW of 

fast-frozen plant tissue was twice extracted with 2.0 mL 80% ethanol overnight and then combined 

prior to drying a 0.5 ml aliquot in a nitrogen stream. Sorbitol (75 μL of a 1 mg/mL aqueous 

solution) was added to the first 80% ethanol extraction volume into which the frozen tissue was 

directly weighed for extraction as an internal standard to correct for differences in extraction 

efficiency, subsequent differences in derivatization efficiency and changes in sample volume 

during heating. Dried extracts were dissolved in 500 μL of silylation–grade acetonitrile followed 



by the addition of 500 μL N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% 

trimethylchlorosilane (TMCS) (Thermo Scientific, Bellefonte, PA), and samples were then heated 

for 1-hr at 70°C to generate trimethylsilyl (TMS) derivatives (Li et al., 2012, Tschaplinski et al., 

2012). After 2 days, 1-μL or 0.1-μL aliquots were injected into an Agilent Technologies Inc. (Santa 

Clara, CA) 5975C inert XL gas chromatograph-mass spectrometer, fitted with an Rtx-5MS with 

Integra-guard (5% diphenyl/95% dimethyl polysiloxane) 30 m x 250 µm x 0.25 µm film thickness 

capillary column. The standard quadrupole GC-MS was operated in the electron impact (70 eV) 

ionization mode, targeting 2.5 full-spectrum (50-650 Da) scans per second, as described previously 

(Tschaplinski et al., 2012). TCA cycle organic acids, sugars, and abundant secondary metabolites 

known or thought to be under diurnal regulation were the focus of this study. Metabolite peaks 

were extracted using a key selected ion, characteristic m/z fragment, rather than the total ion 

chromatogram, to minimize integrating co-eluting metabolites. The extracted peaks of known 

metabolites were scaled back up to the total ion current using predetermined scaling factors. Peaks 

were quantified by area integration and concentrations normalized to the quantity of the internal 

standard (sorbitol) recovered, amount of sample extracted, derivatized, and injected. A large user-

created database (>2300 spectra) of mass spectral electron impact ionization (EI) fragmentation 

patterns of TMS-derivatized compounds, as well as the Wiley Registry 10th Edition combined 

with NIST 14 mass spectral database, were used to identify the metabolites of interest to be 

quantified. Unidentified metabolites were denoted by their retention time as well as mass-to-charge 

(m/z) ratios. The Agave data (Supplemental Table 2) and Arabidopsis data (Supplemental Table 3) 

have been provided. Because we highlight the relative abundances of metabolites for both 

succulent leaves (i.e., Agave) and standard leaves (i.e., Arabidopsis), we compared the relative 

abundances of metabolites using both fresh weight and dry weight as normalizing measures. For 

both plants, we did not observe a substantial difference between the two methods (Supplemental 

Figure 1). Research has shown that changes in water content between day and night periods of 

well-watered plants is small (Castro-Camus et al., 2013). 

 

4. NADPH and NADP+ measurement—For A. americana measurements, 4th fully expanded 

leaves were collected with biological duplicates at 3-hr intervals for a 24-hr period. For A. thaliana 

(Col-0), the wild-type plants were grown in 3.5” plastic pots containing 0.6 liter Sunshine 781 soil 

mix (custom blend, 45-50% peat moss) (Scotts Sierra Horticultural Products, Marysville, OH) at 



23/21°C (day/night) in a Percival® model AR-77L2 growth chamber under 12-hr photoperiod 

(light, 135 μmol m-2 s-1) conditions for four weeks. Fully expanded 5th leaves were collected with 

biological triplicate at 3-hr intervals for a 24-hr period. Each of ground samples (~210 mg for 

Arabidopsis and ~ 580 mg for Agave) was deproteinized and neutralized using the Deproteinizing 

Sample Preparation Kit (BioVision, Mountain View, CA) according to manufacturer’s 

instructions. For all samples, enzymatic assays were performed to determine total NADP and 

calculated NADPH from decomposed NADP using the NADP/NADPH Quantification Kit 

(BioVision, Mountain View, CA) according to manufacturer’s instructions. Cofactor values were 

normalized to the amount of material and were reported as picomoles of cofactor per milligram of 

fresh weight. 

 

Theoretical energetics of the CAM cycle in Agave 

The assimilation of 1 mole CO2 and accumulation of 1 mole of malic acid in the vacuole 

at night requires 1 mole of ATP. In soluble sugar storing PEPCK-type CAM plants like Agave, it 

is predicted that this ATP is produced by mitochondrial oxidative phosphorylation with the most 

plausible respiratory substrate being malate (Winter and Smith, 1996). Complete oxidation of 1 

mole malate to 4 moles CO2 can yield 14.75 moles ATP (Winter and Smith, 1996). These respired 

4 CO2 must be conserved at night by re-fixation via PEPC into malate, but 3 of the 4 malate 

produced can be removed to the vacuole as malic acid, at a cost of 1 ATP per malic acid 

accumulated. During the subsequent day, the CO2 released by decarboxylation of these 3 malates 

will be converted via photosynthetic carbon reduction back to storage carbohydrate which will be 

retained to provide PEP for nocturnal carboxylation. To sustain steady-state operation of the day-

night CAM cycle, any respiratory CO2 produced from malate at night must be quantitatively re-

assimilated back to storage carbohydrate during the day. Net energy requirements for day-time 

decarboxylation in a PEPCK–type CAM plant have been calculated as 3.8 ATP: 2.6 NADPH per 

CO2 (Winter and Smith, 1996). Thus over a ‘typical’ 24-hr cycle in a PEPCK-type CAM plant, 

the theoretical net energy requirement is 4.8 ATP: 3.2 NADPH per CO2 assimilated (see Winter 

and Smith, 1996 for a detailed description of theoretical energetics of different CAM sub-types). 

Modelling of the diel CAM cycle at a network scale via flux balance analysis provides additional 

insight into the energetics of CAM and has shown that photon use in a mature CAM leaf is similar 

to that in a C3 leaf, being ±10% of C3 photosynthesis depending on the CAM subtype (Cheung et 



al., 2014). Thus, there appear to be no overall energetic advantage to CAM compared to C3, despite 

the potential for suppression of photorespiration through CO2 concentrating mechanism in CAM. 

 

5. Transcriptomics—For transcriptome sequencing, a total of 15 A. americana samples were 

collected with three biological replicates, including eight mature leaf (4th fully expanded leaf) 

samples collected at 3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light period; three 

young leaf samples collected at diel time points 6, 12, and 21-hr, respectively; and four non-leaf 

samples (i.e., meristem, rhizome, root, stem) collected at time point 3-hr after the starting of the 

light period. The plant samples were frozen in liquid nitrogen and ground using a mortar and pestle 

and frozen at −80°C until further use. 

 

RNA isolation 

RNA was extracted from A. americana samples using a Spectrum™ Plant Total RNA 

isolation kit (Sigma, St. Louis, MO, USA) according to the protocol provided. The increased 

binding buffer option was used due to the high water content of the tissues. The optional on-column 

DNase treatment was included during RNA isolation to rid the samples of potential genomic DNA 

contamination. Total RNA quantity was determined using a NanoDrop 1000 spectrophotometer 

(Thermo Scientific, Wilmington, DE, USA), and RNA quality was determined using an Experion 

RNA StdSens Analysis kit (Bio-Rad Laboratories, Hercules, CA, USA). Only non-degraded 

samples with an acceptable A260: A280 ratio (≥1.8) and RNA Quality Indicator (RQI) ≥ 7 were 

used. mRNA purification was done using a Dynabeads® mRNA purification kit (Invitrogen, 

USA). 

 

Transcriptome sequencing using Roche/454 platform 

Purified mRNA was used to synthesize a double-stranded cDNA library using the cDNA 

Rapid Library Preparation protocol provided by Roche 454 (Branford, CT, USA). After the library 

was synthesized, library quantity was determined using a 96-well plate Fluoroskan Ascent 

(Labsystems). Library quality was determined using an Agilent Bioanalyzer High Sensitivity DNA 

chip. The libraries were then diluted according to the protocol provided by Roche. Fragmentation 

of the cDNA library was done according to the protocol provided by Roche and resulted in an 

average fragment size of 1000bp. A GS FLX Titanium emPCR Lib-L SV kit (Roche) was used to 



do an emulsion titration on the fragmented library to determine the amount of library to add to the 

large volume emulsions. After following the Roche protocol to determine the proper amount, a GS 

FLX Titanium emPCR Lib-L LV kit was used to populate beads with the cDNA library. The 

resulting beads were sequenced using a GS Titanium sequencing kit XLR70 on a Genome 

Sequencer FLX Instrument (Roche). 

 

Transcriptome sequencing using Illumina HiSeq platform 

The mRNA was prepared into sequencing libraries as described previously (Wang et al., 

2011). Each library was assayed by an Agilent High Sensitivity Chip (Agilent, Cat. No. 5067-

4627) and measured using the dsDNA-HS protocol on the Qubit Fluorometer (Life Technologies). 

Equal quantities of libraries (~5 ng per sample) with different indices were mixed and stored in 

−80°C freezer before sequencing. Sequencing was performed in a v3 flowcell on an Illumina 

HiSeq 2000 sequencer, using the TruSeq Paired-End Cluster Kit v3 (Illumina PE-401-3001) and 

the TruSeq SBS HS Kit v3 200 cycles (Illumina FC-401-3001), generating 2 × 100 bp reads. Image 

analysis and base calling was done using the HiSeq Control Software v1.4 and the Off-Line Base 

Caller v1.9. 

 

Transcriptome assembly and transcripts expression estimates in Agave americana 

~231 million high quality RNA-Seq reads (96bp with quality score >20 for each base) 

pooled from Illumina sequencing of each of the 45 samples (three biological replicates of 15 

tissues) (NCBI SRA accession SRS631988) were assembled into contigs using Trinity 

(Release2012-04-27) (Grabherr et al., 2011), with the k-mer set as 25. Then Roche/454 sequencing 

reads (NCBI SRA accession SRS632003) that were not redundant with the contigs, as obtained by 

comparison using CD-HIT-EST-2D (Fu et al., 2012, Li and Godzik, 2006) with a sequence identity 

threshold of 0.95, were combined with the contigs and assembled into unigenes using CAP3 

(Huang and Madan, 1999), with an overlap length cutoff of 40 and an overlap identity of 95%. 

The RNA-Seq reads from 15 biological samples (NCBI SRA accessions SRS631987 and 

SRS631989 - SRS632002; three biological replicates per sample) were aligned to the unigenes 

using bowtie (Langmead et al., 2009) and abundance was estimated using RSEM (Li and Dewey, 

2011) implemented in the Trinity (Release2012-05-18) (Grabherr et al., 2011), with abundance 

defined as Reads Per Kilobase of transcript per Million mapped reads (RPKM). A total of 91,702 



unigenes with an average abundance (i.e., the average of three biological replicates) of 5 RPKM 

or higher in at least one of the 15 biological samples were retained as the final transcriptome 

assembly. The stranded Illumina RNA-Seq reads were mapped to the unigenes using blastn 

(Altschul et al., 1990) to identify the strand of unigenes. In the 91,702 unigene set, 61,634 

transcripts are 200bp or longer. Among these 61,634 transcripts, 85 contaminant sequences (e.g., 

Non-viridiplantae, rRNA, Vector) and one duplicated sequence were identified automatically 

through the NCBI Transcriptome Shotgun Assembly (TSA) submission process. After removing 

these contaminant/duplicated sequences, 61,548 transcripts of 200bp or longer in length were 

deposited at GenBank under the accession GBHM00000000.  

For the Agave gene expression analyses, only samples pertaining to the mature leaf tissue 

(4th fully expanded leaf) were used. To assess reliable quantitative differences across the mature 

leaf sample set, only those transcripts with substantive abundance values, as determined by 

prevalence value (PV) (Lochner et al., 2011), were carried on to subsequent quantitative analyses. 

Rather than choosing an arbitrary threshold, each identified transcript was given a PV, which is 

determined by averaging the RPKM values across all samples. Next, PVs were plotted as a 

histogram to graphically capture the distribution of abundances, such that one could assess the 

cumulative abundances assigned at varying PV cutoffs. An inflection point was identified, where 

transcripts with a minimum average RPKM ≥ 3.483 were considered to be highly representative 

and reproducible. 

As supplemental information, we identified over-represented gene ontology biological 

processes (GOBP) for each cluster (Supplemental Table 7). In the main text, Figure 2 highlights 

the five most over-represented GOBP categories for each cluster. In general, the functional 

analysis reveals strong enrichment of photosynthesis-related categories, in which associated genes 

predominately accumulated at the beginning of the day (Cluster 4) or during the night (Cluster 3). 

In Cluster 4, transcripts associated with the over-represented GOBP category photosynthesis, light 

harvesting have coordinated expression patterns with genes associated with GOBPs response to 

heat, response to high light intensity, and response to osmotic stress. The peak morning 

expression of these genes are consistent with the light-induced processes of photosynthetic 

electron transport and with the metabolic consequences of day-time stomatal closure, which could 

potentially elevate heat load on the leaf and impact leaf osmotic relations. In Cluster 3, transcripts 

with predominately higher abundance at night were associated with the over-represented GOBP 



category photosynthesis include photosystem I subunits PSAO (Aam015317), PSAN 

(Aam303305), PSI-P (Aam047661), PSAH-1 (Aam011059), LHCA2 (Aam049417), and 

photosystem II subunits, for example PSBY (Aam311217), PSBR (Aam339724), PSBX 

(Aam006871), PSBW (Aam016138). Coordinated expression of genes that are essential 

components of both photosystems and of photorespiration, together with an enrichment of genes 

implicated in translation, can be envisaged as a means of accommodating pre-dawn assembly of 

proteins that are critical for the effective harvesting of light and preventing over-reduction of the 

electron transport chain. 

 

Protein sequence prediction from Agave americana transcript sequences 

The open reading frames (ORFs) were annotated using six-frame translation based on 

standard genetic code with a length range of 10 - 10,000 amino acids. The best ORF for each 

transcript was chosen on the + strand of the transcript with the following criteria (1) having the 

highest score in blastp (Altschul et al., 1990) search, with default setting, against the UniRef90 

database (http://www.uniprot.org/) if there were blastp hits or (2) the longest ORF if there were no 

blastp hits. In total, 70,257 representative protein sequences in A. americana were identified and 

used as a reference database for proteomics. 

 

Arabidopsis gene expression data 

The diurnal expression data for Arabidopsis thaliana were obtained from (Mockler et al., 

2007). The Arabidopsis expression data were collected at 4, 8, 12, 16, 20, and 24 hours whereas 

the Agave data were collected at 3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light 

period. Since the Arabidopsis gene expression data was measured at 4-hr intervals and the Agave 

gene expression data was measured at 3-hr intervals, the Arabidopsis expression data was adjusted 

(Supplemental Figure 2) to arrive at expression profiles for all Arabidopsis and Agave genes on 

the same time scale. Here, the cubic interpolation algorithm (http://www.SRS1Software.com) was 

used to simulate the Arabidopsis gene expression levels at additional time points and specific time 

points were averaged so that both time-course data sets consisted of the same time intervals: 3, 6, 

9, 12, 15, 18, 21, and 24 hours after the starting of the light period. 

 

Ortholog analysis 

http://www.srs1software.com/


The ortholog groups (OGs) were constructed using OrthoMCL (Li et al., 2003). An all-vs-

all BLASTP was performed to calculate the amino acid sequence similarity between all pairs of 

Agave and Arabidopsis genes. This was performed using the standalone BLAST tool, version 

2.2.26 (Altschul et al., 1990). An e-value threshold of 10-5 was applied. The FastOrtho 

implementation of OrthoMCL (Wattam et al., 2014), http://enews.patricbrc.org/fastortho/) was 

then used to determine orthologous protein families from the resulting pairwise sequence 

similarities. The final step in the OrthoMCL algorithm involved the use of the clustering algorithm 

MCL (Van Dongen, 2001), http://micans.org/mcl) to cluster the genes into their respective 

orthologous groups. An inflation value of 1.5 was used. 

 

Cross-species co-expression networks for the detection of candidate regulators of 

reprogrammed metabolism 

Gene co-expression networks were constructed within Arabidopsis and Agave species and 

across both species. The Pearson correlation coefficient was then calculated between the 

expression profiles of all pairs of genes (within and across species) using the mcxarray software 

in the MCL-edge package (Van Dongen, 2001), http://micans.org/mcl). Co-expression networks 

were then visualized in Cytoscape (Shannon et al., 2003). 

Because Arabidopsis and Agave have both undergone multiple whole-genome duplication 

(WGD) events, the elucidation of functional orthologs is complicated by the different evolutionary 

trajectories that duplicated genes may follow (e.g., neo-functionalization, sub-functionalization, 

retention of function, or loss of function). This evolutionary history further complicates the process 

of comparing orthologs across species, leading to many-to-many orthologous relationships. To 

identify transcription factor gene expression patterns that have been preserved across the 

evolutionary history of plants (i.e., expressologs; homologous genes with similar expression 

patterns) and to identify those that have a rescheduled diel pattern of abundance (i.e., anti-

expressologs; homologous genes with opposite expression patterns), we used the OrthoMCL 

algorithm to identify gene families (Supplemental Table 10). For the subset of orthologous genes 

that were differentially expressed in the Agave dataset, we computed Pearson’s correlation 

coefficients between expression profiles of homologs between species. To select a correlation 

threshold, we graphed Pearson correlation distributions and selected the value near the observable 

inflection point of the distribution (i.e., |0.6|). The Pearson correlation levels are provided in the 

http://enews.patricbrc.org/fastortho/
http://micans.org/mcl
http://micans.org/mcl


Supplemental Table 9. Cross-species identification of expressologs or anti-expressologs can be 

challenging when a set of genes within a species for a particular family show varying expression 

profiles (Supplemental Figure 3). For example, the occurrence of two paralogs with opposing 

profiles introduces ambiguity in the identification of cross-species expressologs or anti-

expressologs. Because the presence of both a positive and negative cross-species correlation within 

a gene family introduces ambiguity into the interpretation of preserved or rescheduled expression 

in a functional genetic unit, we limited our analysis to only those gene families displaying a single 

expression profile within a species. Moreover, because there is not yet a well-curated genome for 

Agave, we avoided misinterpretation by requiring gene families to have acceptable correlations 

values for all nodes and edges. 

For the detection of candidate regulators of reprogrammed metabolism, we aimed to 

identify which genes annotated as transcription factors exhibited an anti-correlative relationship 

between Agave and Arabidopsis. In total, 10 transcription factors with reciprocal expression 

patterns were confidently identified in Agave. Given the considerable amount of information 

available on the regulation of auxin response factors (ARFs), we performed a cross-species co-

expression analysis of ARF4 (Aam004755), which has shifted its expression from end-of-night in 

Arabidopsis to a predominately end-of-day in Agave (Supplemental Figure 4). Because these TFs 

can either activate or repress gene expression, the co-expression networks developed for 

Arabidopsis and Agave ARF4 permitted relationships with Pearson correlation coefficient >=|0.8|. 

A comparative cross-species co-expression network representing the many-to-many relationships 

between Agave and Arabidopsis ARF gene families has been provided (Supplemental Figure 4). 

Here, co-expression relationships among genes are represented in networks, in which nodes 

represent gene correlations that exceed the correlation threshold and edges represent the 

correlation to the species ARF4 and also link to an OrthoMCL gene family. In total, we identified 

239 OrthoMCL gene families present in both co-expression networks. These gene families were 

limited to those that passed the ambiguity criteria outlined above, resulting in 25 gene families 

(Supplemental Table 11). With tractable, rescheduled gene expression patterns in Agave, these 

gene families represent candidate genes or functional processes that could be regulated by this 

particular TF. Interestingly, over half of the candidate gene families encode proteins located in the 

nucleus and several have been related to growth and development. Because ARF transcription 

factors target genes containing auxin response elements (AuxRE), we asked the question whether 



any of the candidate gene families contained predicted AuxREs in their regulatory regions. 

Although ChIP-seq data for the observed ARF is not yet available, we leveraged data from a recent 

computational analysis that identified genes containing AuxREs in the Arabidopsis genome 

(Mironova et al., 2014 ) to search for genes containing AuxRE motifs. In the 25 gene families, six 

contained an Arabidopsis gene with at least one AuxRE, and therefore these targets are more likely 

to be activated or repressed by ARF4. 

 

6. Proteomics—For proteome sequencing, a total of 8 A. americana samples were collected with 

three biological replicates, including eight mature leaf (4th fully expanded leaf) samples collected 

every at 3, 6, 9, 12, 15, 18, 21, and 24 hours after the starting of the light period. The plant samples 

were frozen in liquid nitrogen and ground using a mortar and pestle and frozen at −80°C until 

further use. 

 

Protein extraction and digestion 

For all samples, ~2−4 g of ground A. americana tissue was suspended in SDS lysis buffer 

(4% SDS in 100 mM of Tris-HCl), boiled for 5 min, sonically disrupted (30% amplitude, 10 s 

pulse with 10 s rest, 2 min total pulse time) and boiled for an additional 5 min. Crude protein 

extract was pre-cleared via centrifugation, and quantified by BCA assay (Pierce Biotechnology). 

Three milligrams of crude protein extract were precipitated by trichloroacetic acid (TCA), pelleted 

by centrifugation and washed with ice-cold acetone to remove excess SDS. As previously 

described (Abraham et al., 2013), pelleted proteins were resuspended in 250 µL of 8 M urea, 100 

mM Tris-HCl, pH 8.0 using sonic disruption to fully solubilize the protein pellet and incubated at 

room temperature for 30 min. Denatured proteins were then reduced with DTT (10 mM) and 

cysteines were blocked with iodoacetamide (20 mM) to prevent reformation of disulfide bonds. 

Proteins were digested via two aliquots of sequencing-grade trypsin (Promega, 1:75 [w:w]) at two 

different sample dilutions, 4 M urea (overnight) and subsequent 2 M urea (3-hr). Following 

digestion, samples were adjusted to 200 mM NaCl, 0.1% formic acid and filtered through a 10 

kDa cutoff spin column filter (Vivaspin 2, GE Health) to remove under-digested proteins. The 

peptide-enriched flow through was then quantified by BCA assay, aliquoted and stored at −80°C. 

 

Two-dimensional liquid chromatography tandem mass spectrometry  



~ 25 µg of each peptide mixture were bomb-loaded onto a biphasic MudPIT back column 

packed with ~3 cm strong cation exchange (SCX) resin followed by ~3 cm C18 reversed phase 

(RP) (Luna and Aqua respectively, Phenomenex). Peptide-loaded columns were first washed off-

line to remove residual urea and NaCl and then placed in-line with an in-house pulled nano-

electrospray emitter (100-micron ID) packed with 15 cm of C18 RP material and analyzed via 24-

hr MudPIT 2D-LC-MS/MS as previously described (Abraham et al., 2012). Peptide sequencing 

analysis was performed with an LTQ-Orbitrap-Velos-Pro mass spectrometer (ThermoScientific). 

Data acquisition was managed by XCalibur version 2.1. Mass spectra were acquired in a data-

dependent “top 20” mode: each survey scan (30,000 at m/z 400) was followed by MS/MS spectra 

of the ten most abundant precursor ions (3 m/z isolation window). For peptide fragmentation, 

charge state rejection of +1’s was enforced for precursor selection and normalized collision energy 

of 35% was used for collision-induced dissociation (CID). Each fragmented precursor ion was 

dynamically excluded from targeting for 60 seconds. A dynamic exclusion repeat of 1 and an 

exclusion mass width of 0.20 were applied to maximize peptide sequencing. 

 

Peptide identification 

Experimental MS/MS spectra were searched against the transcriptome sequencing-derived 

(RNA-seq) proteome database (see Supplementary Note 5). In addition to the 70,257 

representative protein sequences predicted in A. americana, the protein database was 

supplemented with proteins predicted in the Agave chloroplast genome (GenBank accession 

KX519714), and common contaminant proteins (i.e. trypsin and human keratin). A decoy 

database, consisting of the reversed sequences of the target database, was appended in order to 

discern the false-discovery rate (FDR) at the spectral level. For standard database searching, the 

peptide fragmentation spectra (MS/MS) were searched with MyriMatch algorithm v2.1 (Tabb et 

al., 2007). MyriMatch was configured to derive fully-tryptic peptides with the following 

parameters: unlimited missed cleavages, max peptide length 75, minimum peptide length of 5 

amino acids, maximum peptide mass of 10,000 Da, maximum number of charge states of 4, a 

precursor mass tolerance of 10 parts per million (ppm), a fragment mass tolerance of 0.5 m/z units, 

a static modification on cysteines (iodoacetamide; +57.0214 Da), dynamic modifications on the n-

terminus (carbamylation; +43.0058) and methionine (oxidation; 15.9949). The raw spectrum files, 

peak list files, and result files have been made available through the mass spectrometry interactive 



virtual environment (MassIVE) as public resource. These data can be obtained using the following 

accessions: MassIVE accession MSV000079780 and ProteomeXchange accession PXD004239. 

 

Protein inference and relative quantitation 

Resulting peptide spectrum matches were imported, filtered and organized into protein 

identifications using IDPicker v.3.0 (Ma et al., 2009). Given the incompleteness of the database, 

proteins were only required to have a minimum of one distinct peptide match. To obtain an average 

FDR of 5% at the protein level for each measurement, we required a maximum FDR of 1% at the 

peptide spectrum match level and each peptide must have a minimum of two observations, rather 

than the traditional criteria of 1 spectra count per peptide. 

 To deal with the sequence redundancy associated with the A. americana protein database, 

all identified proteins were consolidated into groups by sequence similarity as previously described 

(Abraham et al., 2012). In brief, proteins in the FASTA database were grouped by sequence 

similarity (≥ 90%) using the UCLUST component of the USEARCH v. 5.0 software platform 

(Edgar, 2010). The uniqueness of each peptide was then classified as follows: (i) shared; (ii) 

database unique (i.e., peptides whose sequence matched only one protein); and (iii) protein-group 

unique (i.e., peptides whose sequence matched to multiple proteins, but only to a single protein 

group). These consolidated reports were instrumental in classifying the ambiguity of every 

identified protein during data analysis. A verbose listing of the protein groups, proteins, and 

peptides identified and their respective uniqueness to the reference database are deposited at 

MassIVE under the accession MSV000079780 and ProteomeXchange accession PXD004239. 

For label-free quantification using spectra counts, summed protein spectral counts were 

converted to normalized spectral abundance factors (NSAF) (Zybailov et al., 2007). NSAF values 

were then multiplied by a value (i.e., 100,000) for ease of data interpretation. To assess reliable 

quantitative differences across the sample set, only those proteins with substantive abundance 

values, as determined by prevalence value (PV) (Lochner et al., 2011), were carried on to 

subsequent quantitative analyses. Similar to what was performed for transcript quantitation, each 

identified protein was given a PV, which was determined by averaging the adjusted NSAF values 

across all samples. Next, PVs were plotted as a histogram to graphically capture the distribution 

of abundances, such that one could assess the cumulative abundances assigned at varying PV 

cutoffs. An inflection point was identified, where proteins with a minimum average adjusted NSAF 



> 1.5 were considered to be highly representative and reproducible. The quantitative values were 

then log2-transformed. 

 

Transcript and protein abundances related to the carboxylation and decarboxylation phase of 

CAM in Agave 

A number of studies thus far have shown that CAM-specific PEPC1 transcripts in a 

facultative CAM plant show higher abundance at night (Cushman et al., 2008), whereas in C3 and 

C4 plants, these transcripts are more abundant during the day (Chollet et al., 1996). Previous 

findings suggest that the PEPC activity is increased at night; however, its protein abundance 

pattern varies over the diel cycle in facultative CAM species (Häusler et al., 2000). In Agave, 

measured transcript and protein abundances of the reciprocal blast hit for A. thaliana PEPC1 

(Aam080248) show increased relative abundance during the day (Supplemental Figure 5A-B). 

However, a closer look at the NSAF measured abundance of PEPC1 shows that the relative 

abundance is nearly as high as RuBisCO large subunit and could therefore be outside the linear 

range of quantification for the label-free quantitative approach used here. Because measurements 

of mass spectral peak intensities can help quantify relative changes in protein abundances with 

high spectral counts, we evaluated the overall spectral ion intensity for PEPC1. Because proteins 

with a large number of spectral counts can fall outside the linear range of quantitation, summed 

fragment ion intensities were calculated for peptides belonging to PEPC1 (Aam080248). The 

matched fragment ion intensities (MIT) for each peptide spectrum match were collected directly 

from their corresponding mzML files and summed together to calculate each peptide’s MIT. A 

normalized quantitative value was then calculated as follows: LOESS regression normalization 

was applied across replicates and median absolute deviation regression (MAD) (Callister et al., 

2006) and central tendency (mean) was applied across the sample set. A final protein abundance 

was determined using the Qrollup approach in InfernoRDN software by using the top 33% 

normalized peptide intensities for each protein (Polpitiya et al., 2008). As shown in Supplemental 

Figure 5B, when using MIT, we observed fluctuation in the abundance of PEPC1 across the 24-hr 

period, with this protein predominately abundant at the end of the photoperiod. 

Malic acid accumulates as a consequence of nocturnal carboxylation and can be 

subsequently remobilized the following day to release CO2 for the Calvin-Benson cycle plus 

pyruvate, which is recycled by gluconeogenesis via pyruvate orthophosphate dikinase (PPDK) 



(Aam010102). Therefore, we sought to analyze proteins related to this crucial transition in diel 

carbon metabolism in Agave. We observed that the expression of the PPDK transcript and PPDK 

protein were largely coincident with one another while peaking in the morning, consistent with a 

role in the decarboxylation of malic acid during the early morning hours in Agave (Supplemental 

Figure 5C). As anticipated, the protein responsible for down-regulating the activity of PPDK, 

PPDK-regulatory protein (RP1) (Aam051010), reaches peak abundance at night in Agave, yet has 

an abundance profile reciprocal to that of its transcript (Supplemental Figure 5D). 

 

Chloroplast- and Mitochondrial-related transcript and protein abundance relationships—

Because respiration and photosynthesis are intimately linked, manipulation of one must be 

undertaken with consideration of the effects on the relative activity of the other. Therefore, we 

highlighted temporal abundance relationships of transcripts and proteins for several key genes in 

the mitochondria and chloroplast (Supplemental Figure 6). In plant tissues, particularly leaves, 

mitochondria exhibit extensive flexibility for modulating cellular redox and carbohydrate 

homeostasis. In CAM plants, as alluded to above, the mitochondria accommodate high C fluxes 

and electron transport at night. The core elements of the TCA are present in plant mitochondria. 

Although the protein abundances of the enzymes controlling two key TCA reactions (i.e., 

isocitrate dehydrogenase (IDH) (Aam010083) and fumarase) are in phase in Agave, these 

enzymes differ in their transcript and protein abundance relationships. For example, the 

abundances of two unambiguously identified fumarase proteins encoded by FUM1 (Aam085348) 

and FUM2 (Aam045332) are both in opposite phase to those of their transcripts. Interestingly, 

reducing the activity of the TCA cycle enzyme fumarase via anti-sense technology had more 

dramatic and detrimental effects on photosynthesis (Nunes-Nesi et al., 2007) than did reducing 

malate dehydrogenase activity in the same manner (Nunes-Nesi et al., 2005). Therefore, fumarase 

along with several other TCA enzymes are highly regulated and play key roles in modulating 

respiratory carbon flux (Araujo et al., 2012). Fluctuating in parallel with the abundance profiles of 

the TCA cycle enzymes are those of proteins involved in respiration, which generates ATP by 

using the reducing equivalents derived from the operation of the TCA cycle. The respiratory 

pathway is extremely sensitive to redox changes and we observed parallel increases in the 

abundances of major intracellular antioxidant enzymes in Agave, such as monothiol glutaredoxin 

(GRX4) (Aam313181), which decreases the concentration of detrimental reactive oxygen species 



(ROS) (Cheng, 2008). Given its important protein-protective role (Herrero and de la Torre-Ruiz, 

2007), the aligned transcript and protein phases for GRX4 suggest a rapid response mechanism. 

Interestingly, in the present study, the abundance of the GRX4 protein was found to be temporally 

associated with the protein abundance of BolA4 (Aam075423), which physically interacts with 

monothiol GRXs in C3 plants and is regulated in a redox-controlled manner (Couturier et al., 2014). 

The substantial reciprocal relationship between the daily transfer of carbon between acids 

and carbohydrates that defines CAM involves extensive and regulated transport of metabolites 

between chloroplasts, vacuoles, the cytosol and mitochondria. We observed similar protein 

abundance phases for the major mitochondrial trafficking proteins ADP/ATP carrier 1 (AAC1) 

(Aam043344) and mitochondrial pyruvate carrier (MPC1) (Aam302119) with greater protein 

abundance of both during the light or early evening period in Agave. Pyruvate occupies a pivotal 

role in the regulation of CAM and the abundance of MPC1 appears to be regulated at the post-

transcriptional level or beyond. 

 Chloroplasts carry out photosynthesis, as well as a multitude of other functions. The 

primary light-driven reactions of photosynthesis occur in the thylakoid membranes and are 

mediated by the multi-component protein complexes, photosystem II (PSII) and photosystem I 

(PSI). PSI utilizes light for electron transport through a series of redox centers to reduce ferredoxin, 

and provides electrons in a variety of chloroplast reactions, whereas PSII harvests and transfers 

light energy while concomitantly converting water to molecular oxygen. Given their importance, 

we investigated the temporal dynamics of the transcripts and proteins associated with PSI and PSII. 

The accumulation of PSII and PSI light-driven subunits coincides with the light period. During the 

light and early dark period, we observed peak abundance of transcripts encoding a light harvesting 

complex photosystem ii subunit 6 (Lhcb6) (Aam047736) and a gene encoding the protein reaction 

center of PSI (PsaA) (Aam004267). Most interestingly, we observed nocturnal phase abundance 

increases for two extrinsic proteins related to the oxygen evolving complex of PSII: one gene 

encoding a member of the photosystem ii reaction center family (PsbP) (Aam075610) and the 

other gene encoding part of the oxygen-evolving complex, photosystem ii subunit q (PsbQ) 

(Aam038462). In Arabidopsis, these extrinsic proteins are categorized into one of the three groups: 

the oxygen evolving complex group for water splitting, the group involved in cyclic electron 

transport around PSI, and a stress-responsive group. Based on their protein abundance profiles, we 

suspect that these two highlighted proteins could belong to the latter two groups. 



The ATP and NADPH subsequently generated from these light-driven reactions are 

consumed by the Calvin-Benson cycle in a series of enzyme-driven reactions to transform CO2 

into organic compounds that are compatible with the needs of the cell. In all plants, the first step 

of the Calvin-Benson cycle is catalyzed by RuBisCO. In Supplemental Figure 6, the abundance 

phases of transcripts and protein in Agave for RuBisCO activase (RCA) (Aam041100), which 

helps convert RuBisCO from its inactive to its active conformational state by reducing RuBisCO’s 

binding affinity for sugar phosphates, is shown. Rather than being transcribed at dawn as in 

Arabidopsis (Pilgrim and McClung, 1993), the transcript and protein abundances for RuBisCO 

activase start to increase during the middle of the light period, and peak during the dark period. 

The offset abundance of RuBisCO activase abundance relative to Arabidopsis could be attributed 

to CAM-specific phase-dependent changes in the intracellular CO2 concentration as reported 

elsewhere (Maxwell et al., 1999). 

 

7. Tests for differential transcript and protein abundance  

Given the number of post-processing steps for identified transcripts and proteins prior to 

testing for differential abundance, we provide a brief summary and discussion of the rational for 

each step. After identifying transcript and proteins, both datasets experience several post-

processing steps prior to testing for differential abundances (Supplemental Figure 8; this workflow 

covers post-raw data processing for the transcript and protein identifications, which were covered 

in Supplemental Notes 5 and 6, respectively). Normalization is a well-known, regularly utilized 

and critical step prior to differential analysis to mitigate the potential bias that may confound the 

results. For in-depth quantification, the transcript and protein abundances were normalized to 

regularly utilized RPKM and NSAF values, respectively. Next, care was taken to remove 

transcripts and proteins that are below a limit of quantification (i.e., prevalence value), which was 

calculated by averaging the normalized values across all samples, plotting a histogram to 

graphically capture the distribution of abundances, and assessing the cumulative abundances 

assigned at varying prevalence value cutoffs. An inflection point was identified for both datasets, 

as is noted in the above sections. Given the dynamic range of both datasets, quantitative values 

were then log2-transformed. For the purposes of the tests for differential abundance, missing 

values were imputed by drawing random numbers from a normal distribution to simulate signals 

from low-abundance transcripts or proteins, using the freely available software Perseus 



(http://www.perseus-framework.org). The width parameter of this normal distribution was chosen 

as 0.3 of the standard deviation of all measured values and the center was shifted towards low 

abundance by 1.8 times this standard deviation.  

For this study, we performed pair-wise comparisons of time points as our hypothesis is 

concerned with the among different time-points and not the overall change in transcripts and 

proteins. To this end, we employed two approaches for each dataset. First, a paired t-test was 

utilized to identify differences in quantitative abundances between time points using JMP 

Genomics software v. 6.0 (SAS Institute). Moreover, to assess statistical confidence based on the 

28 pair-wise comparisons, the Benjamini-Hochberg method was applied to provided adjusted p-

values (Supplemental Table 5 and Supplemental Table 14). To provide a more robust statistical 

assessment and another perspective of the statistical confidence, the differential analysis of the 

transcripts and proteins above the limits of quantification was also assessed using the ranked fold 

change method as described in (Dembele and Kastner, 2014), and implemented in R. Again, fold 

changes were determined by pairwise comparisons among all time points. For the transcript data, 

instead of using RPKM normalized values, the voom method (Law et al., 2014) was used to 

account for the mean-variance relationship of the transcript count data, while requiring at least 3 

non-zero counts per transcript. For the protein data, instead of using NSAF values, the protein data 

was quantile normalized prior to calculating the fold change rank estimates, requiring at least 3 

non-zero counts per protein. For both datasets, the family wise error rate was controlled with the 

use of the Bonferroni correction in order to adjust for multiple hypothesis bias across the intervals 

compared (α = 0.001) and the statistical confidences have been noted in Supplemental Table 5 and 

Supplemental Table 14. 

To identify and illustrate intensity-independent patterns, quantitative values across 

biological replicates were averaged and then transformed to a z-score: standard deviations from 

the mean expression [(abundance - mean)/ SD] were calculated for each transcript and protein. To 

capture general patterns without considering absolute expression levels, z-scores were then loaded 

into Multi Experiment Viewer software (MeV v. 4.9) (Saeed et al., 2003) and the Figure of Merit 

(FOM) algorithm was used to estimate an appropriate number of clusters (Yeung et al., 2001)for 

the transcript and protein of interest. K-means support using Pearson’s correlation was then used 

to separate groups of co-abundant transcripts/proteins.  

 



8. Gene Ontology enrichment 

Whole genome gene ontology (GO) term annotation was performed using Blast2GO 

(Conesa et al., 2005) with a blastp E-value hit filter of 1 × 10-6, an annotation cutoff value of 55 

and a GO weight of 5. Using ClueGO (Bindea et al., 2009), observed GO biological process were 

subjected to the right-sided hypergeometric enrichment test at medium network specificity 

selection and p-value correction was performed using the Holm-Bonferroni step-down method 

(Holm, 1979). There were a minimum of 3 and a maximum of 8 selected GO tree levels, while 

each cluster was set to include a minimum of between 3% and 4% of genes associated with each 

term. GO term fusion and grouping settings were selected to minimize GO term redundancy and 

the term enriched at the highest level of significance was used as the representative term for each 

functional cluster. The GO terms with p-values less than or equal to 0.05 were considered 

significantly enriched. 
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