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Abstract: Background: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with

diverse clinical manifestations. Although most of the SLE-associated loci are located in regulatory

regions, there is a lack of global information about transcription factor (TFs) activities, the mode of

regulation of the TFs, or the cell or sample-specific regulatory circuits. The aim of this work is to

decipher TFs implicated in SLE. Methods: In order to decipher regulatory mechanisms in SLE, we

have inferred TF activities from transcriptomic data for almost all human TFs, defined clusters of SLE

patients based on the estimated TF activities and analyzed the differential activity patterns among

SLE and healthy samples in two different cohorts. The Transcription Factor activity matrix was used

to stratify SLE patients and define sets of TFs with statistically significant differential activity among

the disease and control samples. Results: TF activities were able to identify two main subgroups of

patients characterized by distinct neutrophil-to-lymphocyte ratio (NLR), with consistent patterns

in two independent datasets—one from pediatric patients and other from adults. Furthermore,

after contrasting all subgroups of patients and controls, we obtained a significant and robust list

of 14 TFs implicated in the dysregulation of SLE by different mechanisms and pathways. Among

them, well-known regulators of SLE, such as STAT or IRF, were found, but others suggest new

pathways that might have important roles in SLE. Conclusions: These results provide a foundation

to comprehend the regulatory mechanism underlying SLE and the established regulatory factors

behind SLE heterogeneity that could be potential therapeutic targets.

Keywords: transcription factor activity inference; clustering analysis; systemic lupus erythematosus;

disease classification

1. Introduction

Systemic Lupus Erythematosus (SLE) is a complex and multisystemic autoimmune
disease characterized by the production of autoantibodies leading to chronic inflammation
and organ damage. SLE is very heterogeneous, with possible affliction in almost any organ
and diverse clinical manifestations including skin rashes, arthritis and renal failure [1].
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SLE is known to be much more prevalent in females than in males and when it does
occur in men tends to run a more severe course [2]. SLE patients usually suffer uncertain
courses of flares, improvement and remission of disease activity, which makes this disease
unpredictable. Disease activity can be measured by several indices, but one of the most
accepted is the SLE Disease Activity Index (SLEDAI). It is measured by 24 laboratory and
weighted clinical variables in nine organ systems including renal, skin and arthritis [3].
SLE is a challenge for researchers because of the difficulty of making an early diagnosis
and the fact that the available drugs do not have a therapeutic effect for all patients [4].

With the development of genomics technologies, our knowledge about the pathogene-
sis of SLE and the underlying molecular mechanisms has significantly increased. In this
context, Genome Wide Association Studies (GWAS) have been widely used to identify
novel susceptibility genes in SLE, with more than 60 loci found to be associated with the
disease [5], including, for example, alleles of genes located in the human leukocyte antigen
(HLA) region [6]. Gene expression signatures have been also largely analyzed across differ-
ent cohorts, leading to the uncovering of abnormal expression of interferon type I inducible
genes in SLE patients, which has been termed the interferon gene signature [7,8]. Recent
works have attempted to establish a molecular classification of SLE using omics data [9–11].
Banchereau et al. [9] established seven groups of SLE based on gene expression correlation
with disease activity. Toro-Dominguez et al. [10] described longitudinal SLE subgroups
that differ in clinical features, with two groups that showed high correlation with the per-
centage of neutrophils and lymphocytes. Finally, an integrative analysis of transcriptome
and methylation data stratified different systemic autoimmune diseases, including SLE,
into four groups defined by genetic, clinical, serological, and cellular features [11]. Despite
all these significant discoveries, we are still at an early stage in the understanding of the
mechanistic molecular networks that drive SLE. Besides, different studies have reported
that autoimmune disease-associated loci are enriched in transcription factor binding sites
and gene regulatory regions [12,13]. These findings are mainly based on the analysis of
sequence motifs in SLE-loci or physical interactions with transcription factors (TFs), which
do not provide information about TFs activities, the mode of regulation of the TFs, or cell
or sample-specific regulatory circuits.

Deciphering TF activity can provide models of regulatory mechanisms to explain the
observed changes in gene expression patterns. During the last few years, different studies
have shown that TF activity can be inferred from the expression levels of its targeted genes,
known as TF-regulon [14]. This approach has been successfully used for the analysis of
several types of cancer [15] or to evaluate drug sensitivity [16], among other applications.

In this work, we have systematically analyzed the TFs activity patterns of almost all
known human TF-regulons in two gene expression cohorts of SLE patients and control
samples. We first estimated the activity of TFs for each sample using DoRothEA [17], a
curated target gene database, and analyzed TFs that showed a marked differential activity
in SLE with respect to healthy samples. We also explored the stratification of SLE patients
based on TFs activity profiles in both SLE cohorts. We obtained consistent results from
the analysis of the two independent datasets, finding two main groups of SLE patients
based on TFs activity patterns, which were in agreement with previous evidence about
SLE stratification [10]. Moreover, we defined the set of TFs with differential activity in
SLE samples that provides evidence about the regulatory circuits associated with SLE and
disease manifestations.

2. Materials and Methods

2.1. Data Selection and Preprocessing

We used two independent gene expression datasets, one from adult and another from
pediatric SLE patients, as previously described [10]. The pediatric set is composed of
158 SLE patients and 46 healthy controls and the adult dataset comprises 301 SLE patients
and 20 healthy samples.
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Raw data files were downloaded from Gene Expression Omnibus (GEO) (GSE65391
and GSE121239). For the adult dataset, Affymetrix Cel files were used and background
correction and normalization were performed with rma function from affy R package.
Normalized values of the pediatric dataset were downloaded from GEO series GSE65391
using the R package GEOquery. Sample processing pipeline is described in the original
publication [9]. Array probes were annotated with gene symbols and duplicated genes
were merged to their median expression value. SLE samples with SLEDAI greater than
5 were selected first because a SLEDAI score > 5 is associated with a probability of ini-
tiating therapy in > 50% of cases [18]. Then, for each patient only the sample with the
highest score was used for further analysis. Table 1 shows a summary of the dataset
including clinical characteristics that were used in our analysis, such as total white blood
cell counts (WBC), erythrocyte sedimentation rate (ESR), levels of C3 and C4 in serum,
and percentages of lymphocytes, neutrophils and monocytes. Pediatric data was obtained
following the protocols approved by the Institutional Review Boards at the University of
Texas Southwestern Medical Center (092010-067) and Baylor University Medical Center
(011-200) and informed consent was obtained from adults and the parents or guardians of
those younger than 18 years of age according to [9]. Adult data from the SPARE [19] were
obtained following the protocol approved by Johns Hopkins University School of Medicine
Institutional Review Board. Patients were enrolled from the Hopkins Lupus Cohort after
informed consent was obtained and the studies were carried out in accordance with the
Helsinki Declaration.

Table 1. Clinical characterization of Systemic Lupus Erythematosus (SLE) patients.

Adult Pediatric

Gender 67 female and 2 male 102 female and 14 male
SLEDAI 8.493 ± 2.5 13.371 ± 6.6

% Neutrophil 67.289 ± 15.4 63.963 ± 14.8
% Lymphocyte 22.641 ± 12.9 24.808 ± 12.4

% Monocyte 7.68 ± 4.0 7.415 ± 3.8
C3 (mg/dL) 99.667 ± 39.0 78.645 ± 37.5
C4 (mg/dL) 17.87 ± 10.2 12.495 ± 9.5

WBC (K/cu mm) 6.396 ± 3.3 6.507 ± 2.9
ESR (mm/h) 41.765 ± 31.2 50.038 ± 37.0
Proteinuria 20 patients with proteinuria and 49 without 69 patients with proteinuria and 47 without

Pyuria 11 patients with pyuria and 58 without 41 patients with pyuria and 75 without

2.2. Inferring Transcription Factor Activities

Transcription factor activity from the two independent cohorts was estimated using
DoRothEA, a curated database of transcription factor-target gene interactions. The method-
ology is described in detail in [16,17]. Briefly, the normalized gene expression levels were
scaled and recentered and the transcription factor activity was calculated using aREA
(analytic rank-based enrichment analysis) algorithm from VIPER R package. Briefly, this
algorithm performs an enrichment analysis of the ranked gene expression signature for
each TF-regulon, inferring the TF activity of each TF using the expression of its target
genes in a sample-to-sample approach. We used the TF regulons from DoRotheA with the
highest confidence in order to avoid false positives. The final consensus transcription factor
regulons (CTFRs) consisted of 168 TFs and 2602 unique targets. This method allowed us to
build a transcription factor activity matrix with TFs in rows and samples in columns and
each entry of the matrix representing a normalized enriched score of transcription factor
activity in each sample.

2.3. Subgroup Identification

Hierarchical clustering analysis (using Euclidean distance and average agglomerative
method) and principal component analysis were applied to the TFs activity matrix in
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order to establish sets of samples with similar TF activity patterns. To define the number
of clusters for each dataset we used Calinski and Harabasz index implemented in the R
package NbClust.

2.4. Differential Activity and Statistical Analysis

The TFs activity matrix was also used to analyze differential activity between SLE and
healthy controls in each dataset. We performed this analysis using linear models imple-
mented in limma R package. Transcription factors with False Discovery Rate (FDR) < 0.05
were considered statistically significant for further analysis.

Gene Set Enrichment Analysis (GSEA) was applied with the list ranked by the t value
of the differentially expressed genes between SLE and healthy controls and the target
genes of each TF in order to obtain the leading-edge subsets for each TF. These subsets
are the gene lists that contribute the most to the enrichment score, and they are the most
differentially expressed target genes for every TF. Functional enrichment analysis was
performed using the Enrichr webtool. In order to identify drugs that target the significant
TFs we queried the CLUE database [20]. We downloaded the full drug information from
the Repurposing tool and selected those drugs whose targets are significant TFs.

For statistical analysis among clinical variables (SLEDAI, % Neutrophil, % Lympho-
cyte, % Monocyte, ESR, WBC, C3 and C4) between the SLE groups obtained by subgroup
identification the Mann–Whitney U test was used.

3. Results

3.1. Analysis of TF Activity Revealed Two Main Groups of SLE Patients

SLE is a very heterogeneous disease and there is consistent evidence about differences
in global gene expression programs among different SLE patients. In order to evaluate if
TFs activity patterns can reveal SLE subgroups, we first performed clustering analysis of
SLE samples in both datasets.

Unsupervised clustering analysis of SLE patients identified two main groups in
both datasets (Figure 1A). Cluster 1 in the adult cohort is composed of 47 samples (68%)
while cluster 2 included 22 samples (32%). In the pediatric cohort, cluster 1 consisted
of 62 samples (53%), whereas cluster 2 is composed of 54 samples (47%). The analysis
of clinical variables of samples from each cluster revealed a significant difference in the
proportion of samples that were enriched in lymphocyte (Adults: p =1.76 × 10−4 and
Pediatric: p < 0.0001 1.33 × 10−12) and neutrophil percentages (Adults: p = 1.96 × 10−4

and Pediatric: p < 0.0001) in each group (Figure 2A). While cluster 1 was enriched in
samples with higher neutrophil percentage, cluster 2 contained the most samples with a
higher percentage of lymphocytes. We also analyzed the distribution of the other cellular
proportions using cibersort, a deconvolution algorithm [21] and although differences in
other cell types were observed in one of the cohorts, we did not find significant differences
across clusters that were consistent in both datasets (See Figure S1). These findings were
consistent in both independent datasets, and they were in agreement with our previous
observations reported in [10] where we described a stratification of SLE patients into three
main groups, mainly associated with differences in the percentages of these cell populations
when disease activity increases.

Interestingly, principal component analysis of the SLE and healthy samples revealed
that healthy individuals were grouped together with the subset of SLE samples enriched
in lymphocytes (Figure 1B). Although information about the cell populations of healthy
samples was not available, we used a previously published dataset that evaluated the
normal value of the neutrophil-to-lymphocyte ratio (NLR) from 413 healthy samples [22]
to have a reference of the NLR values for healthy samples. Therefore, we compared the
NLR values from each cluster with the NLR values from the healthy set. In both datasets,
the NLR values of SLE samples in cluster 1 were significantly higher than in the healthy
samples (Adults: p < 0.0001 and Pediatric: p < 0.0001). On the other hand, the cluster
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2 samples showed similar NLR values to the healthy individuals (Adults: p = 0.6441 and
Pediatric: p = 0.8143) (Figure 2B).
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Figure 1. Clustering analysis of transcription factors (TFs) activity profiles in SLE. (A) Unsupervised hierarchical clustering

of lupus samples based on TFs activity patterns. Top color bars represent percentage of lymphocytes and neutrophils and

cluster group. (B) Plot showing projection in the two principal components of SLE samples from two clusters together with

healthy samples.

Taken together, these results show that activity patterns of TF-regulons can distin-
guish between two main groups of SLE patients that are characterized by differences in
neutrophil/lymphocyte proportions. In addition, there is clear evidence of the shared
transcription activity patterns between SLE patients enriched in lymphocyte proportions
and the healthy controls.

3.2. TFs with Differential Activity in SLE and Healthy Samples

In order to establish the set of TFs operating in SLE we first performed a differen-
tial activity analysis of all SLE against healthy samples. We found a set of 49 TFs that
showed significant differential activity between SLE and healthy samples in both datasets
(Figure S2). Nevertheless, there was intragroup heterogeneity in the activity value of these
TFs. For example, activity patterns for MYC, RFX5, RFXAP and RFXANK were clearly
different across the two clusters of SLE samples described previously. Interestingly, the
expression level of most of the target genes of these TFs varied within different cell types
collected by Expression Atlas (Figure S2B). For example, the expression of HLA genes,
regulated by RFXANK, RFXAP and RFX5, was much higher in B cell types and dendritic
with respect to the rest. On the other hand, there are some genes, such as BBC3, CXCL2,
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ICAM1, PTEN, EGR3, HBA2 or IMPA2, regulated by MYC, whose expression was higher
in neutrophil cell types. This fact might reflect the differences in cell proportions found in
the two SLE clusters.
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Figure 2. Clinical characterization of SLE clusters. (A) Representation of the differences between each SLE cluster in both

datasets for each of the clinical variables. Asterisks represent the significance and ‘ns’ the non-significance. (B) Depiction of

the changes of NLR between each cluster respect to healthy. Numbers represent the significance levels. Mann–Whitney U

test was used to compare among groups.

Therefore, we compared each SLE cluster independently against healthy samples in
order to identify TFs that consistently showed differential activity with respect to healthy
individuals. This analysis revealed a set of 96 and 60 TFs in cluster 1 and cluster 2,
respectively, for the adult dataset, and 135 and 57 TFs in cluster 1 and 2, respectively, for the
pediatric set. Sixty-nine TFs in cluster 1 overlapped in both sets (Figure S3A) while 21 TFs
in cluster 2 had significant differential activity between healthy samples and both datasets
(Figure S3B). From these results, 14 TFs were consistently activated or repressed across all
SLE samples, regardless of SLE subgroup (Figure 3A). Specifically, SMAD1, ARNTL, WT1,
RELB, SPIB and TCF7L2 had lower activity in SLE while GATA4, NFATC1, E2F2, PPARD,
IRF3, STAT2, IRF1, STAT1 were identified as TFs with greater activity.
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Figure 3. Robust Differential Activity Analysis across SLE and healthy samples. (A) Heatmaps show normalized activity

values of 14 transcription factors that were found consistently significant across SLE patient and healthy samples in the

two independent cohorts (B) Gene expression values of leading-edge subsets genes. On the left-hand side there is a

graph showing target genes for each TF. Blue and red colors indicate which TFs had lower activity and higher activity in

SLE with respect to healthy samples, respectively. Heatmaps on the right-hand side show gene expression values of the

corresponding genes (found in the leading-edge subset). Top bars indicate the cluster assignation for each SLE patient as

well as healthy samples.

We next evaluated which was the set of target genes whose expression contributed
more to the activity signal of the 14 TFs defined in the analysis. To this end, a GSEA was
carried out to identify the leading-edge subset of target genes most differentially expressed
between SLE clusters and healthy samples for each TF. This analysis yielded a total of
44 target genes (Figure 3B). In this figure it is shown that transcription factors with lower
activity in SLE with respect to the healthy controls were involved in the regulation of
the underexpressed genes, whilst the overexpressed genes were regulated mainly by the
transcription factors with higher activity. Not unexpectedly, most overexpressed genes
were involved in interferon signaling pathways and susceptibility to viral infection, which
are mainly the targets of STAT1. On the other hand, the few underexpressed genes are
related to photoperiodism and circadian clock activity. These biological processes have
been previously reported in SLE and other autoimmune diseases but the association has not
been well-studied [23,24]. To complete the analysis, we evaluated drugs that can potentially
target the set of significant TFs obtained using information from the CLUE database. To this
end, we defined the set of drugs that target directly these TFs (Table 2). From the 15 drugs
obtained, PPARD is the TF that is associated with 12 of these drugs, most of them related to
Perixosome proliferator receptor (PPAR), which has been described to be associated with
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Lupus-like autoimmunity development (see discussion). In addition, we found drugs that
target NFATC1, IRF3 and STAT1. Interestingly, all the discovered drugs’ target TFs had
higher activity in SLE compared to healthy controls.

Table 2. Information about significant TFs that are drugs-targets from the CLUE database.

Drug Mechanisms of Action (MoA) TF Target Indication Phase

Bezafibrate PPAR receptor agonist PPARD Cholesterol Launched
DG-172 PPAR receptor inverse agonist PPARD Preclinical

Elafibranor PPAR receptor agonist PPARD Phase 3

FH-535
PPAR receptor antagonist,
WNT signaling inhibitor

PPARD Preclinical

GSK-0660 PPAR receptor antagonist PPARD Preclinical
GSK3787 PPAR receptor antagonist PPARD Preclinical
GW-0742 PPAR receptor agonist PPARD Preclinical

GW-501516 PPAR receptor agonist PPARD Phase 2
Icosapent Platelet aggregation inhibitor PPARD Hypertriglyceridemia Launched
L-165041 PPAR receptor agonist PPARD Preclinical

Sulindac Cyclooxygenase inhibitor PPARD
Osteoarthritis, rheumatoid

arthritis, ankylosing spondylitis
Launched

Tretinoin
Retinoid receptor agonist,
retinoid receptor ligand

PPARD Leukemia Launched

INCA-6 Calcineurin inhibitor NFATC1 Preclinical
piceatannol SYK inhibitor IRF3 Preclinical

CKD-712 NFkB pathway inhibitor STAT1 Phase 1

4. Discussion

Systemic lupus erythematosus is a complex and heterogeneous disease with limited
diagnosis and treatment options. Despite research efforts and clinical trials that have
been conducted to establish new treatments, only belimumab, a monoclonal antibody
against B cell-activating factor (BAFF), has been approved in the last few decades [25].
Therefore, there is an urgent need to decipher the main biological mechanisms underlying
SLE to expand our knowledge about the disease and define new biomarkers, classification
schemes and treatment options. In the last few years, a large number of SLE biomarkers
have been described by GWAS and whole transcriptomics analysis. Interestingly, the
positional analysis of these SLE associated loci has revealed that most of them are located in
regulatory regions, but there is a lack of a global analysis of TFs activity patterns associated
with SLE disease.

In this work we have inferred the TF activities for most human TFs using gene
expression levels of SLE patients with active status of the disease in two different cohorts.
First, the unsupervised clustering analysis of the activity matrix revealed a two-cluster
structure in both datasets, characterized mainly by differences in the neutrophil and
lymphocyte proportions. Our molecular classification and clinical characterization are
coherent with previous works that stratified SLE or systemic autoimmune diseases in
which different proportions of neutrophils and lymphocytes were associated with different
groups [9–11]. In this context, there is recent evidence about the potential role of neutrophils’
and lymphocytes’ proportions as potential markers to stratify SLE patients into clinically
separate groups [26,27]. Indeed, the potential of the neutrophil-lymphocyte ratio (NLR) as
a cheap and effective biomarker of the activity or response to treatment in autoimmune
pathologies is being analyzed by different groups [28–30] and it has also been described that
alterations in the balance of neutrophils, monocytes and lymphocytes explain resistance to
treatments in patients with rheumatoid arthritis [31], although the molecular mechanisms
are not totally characterized

After comparing TF activities from SLE and healthy samples, we defined 49 TFs with
significant differential activity. A detailed analysis revealed that some of them could be
biased by the heterogeneity of cell population in SLE samples, which is remarkable for the
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TFs MYC, RFX5, RFXAP and RFXANK. RFX5, RFXANK and RFXAP, that act as enhancers
of the gene expression of the Major Histocompatibility Class II genes (MHC II) [32]. These
are expressed in professional antigen-presenting cells (APCs) [33] such as monocytes, B
cells and dendritic cells. This could explain the low activity of these TFs in cluster 1,
representing neutrophils. On the other hand, MYC regulates a large set of genes, but the
presence of ribosomal genes such as RPS15, RPL19, RPS19, RPS6, RPL3, RPL22, RPL6,
RPL32, RPL27A, RPL23 and RPS16 stands out. The expression of these genes in different
types of blood cells is very heterogeneous [34].

Due to the observed heterogeneity in TF activities of SLE patients, we decided to
compare TF activities of each cluster with healthy samples in order to obtain consistent and
unbiased regulation patterns across all SLE patients. From these analyses we established
14 TFs that were consistently activated or repressed in SLE.

Those with greater activity in SLE were STAT1, STAT2, IRF1, IRF3, NFATC1, PPARD,
E2F2 and GATA4. As expected, this set contains transcription factors that are well-known
in the context of SLE pathogenesis including STAT1, STAT2, IRF1 and IRF3 which are
activators of interferon genes [35,36]. The analysis of drug–TFs association revealed that
STAT1 is the target of CKD-712, which is an inhibitor of NF-κB pathway, a proinflammatory
mediator [37]. On the other hand, a SYK inhibitor acts on IRF3. This mechanism has been
shown to be effective in rheumatoid arthritis and lupus-prone MRL/lpr mice [38]. In fact,
the overexpression of Syk in healthy T cells leads to a SLE-like T cell phenotype, suggesting
that the inhibition of Syk gives the opposite effect. Syk has been proposed as a therapeutic
target [39].

NFATC1 is overexpressed in lupus-prone MRL/lpr mice activating the calcium/NF-
AT pathway [40]. Moreover, this TF is the target of a preclinical calcineurin inhibitor [41],
the inhibitory mechanism through which cyclosporine and tracolimus exert their effects
when used in SLE patients [42].

Mice deficient in Ppard develop Lupus-like autoimmunity with increased produc-
tion of autoantibodies and abnormal apoptotic cell clearance [43]. There are some drugs
whose target is PPARD (Table 2). One of the most noteworthy drugs that target PPARD,
tretinoin, is related to the mechanism of action (MoA) retinoid receptor agonist. The im-
provement of the inflammatory symptoms of SLE has been reported with retinoic acid
treatment in murine models and human disease [44]. SLE amelioration could be achieved
via retinoic acid treatment through three mechanisms [45]. One of these is by reversing
microbial dysbiosis [46]; secondly, by inhibiting the activity of Pin-1, which activates the
TLR-7/TLR-9/IRAK-1/IRF-7 signal that contributes to SLE phenotype [47]; and, thirdly,
by reestablishing the vitamin A levels in SLE patients, which improves the T helper 17
(Th17) and regulatory T cell (Treg) balance [44]. Additionally, PPARD is a target of sulin-
dac, which is a cyclooxygenase inhibitor launched in clinical trials of rheumatoid arthritis
or spondylitis.

The rest of the significant TFs had lower activity in SLE than in controls: SMAD1,
ARNTL, WT1, RELB, SPIB and TCF7L2. SMAD1, along with other genes involved in
the BMP/Smad signaling pathway, is repressed through NF-κB signaling pathway in
bone marrow-derived mesenchymal stem cells (BMMSCs) from SLE patients [48]. On the
other hand, RELB is a subunit of NF-κB and takes part in the development of dendritic
cells [49]. In the murine lupus model, Relb-modified dendritic cells decreased the interferon-
γ expression [50]. ARNTL is a TF that forms a core component of the circadian clock. This
system regulates the gene expression of genes involved in several biological processes
according to circadian rhythms. As we have described previously, there are studies that
correlated circadian clock dysregulation and SLE pathogenesis [23,24].

Lupus nephritis is one of the most severe manifestations of SLE, characterized by the
inflammation of the kidneys and the loss of podocytes [51]. WT1 is a well-known podocyte
marker [52] and in murine model its expression is decreased [53].

SPIB belongs to the ETS family of TFs and promotes the development of plasma-
cytoid dendritic cells (pDC), the major producers of type I interferon and is involved in
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the development of germinal center B cells [54]. However, SPIB has been shown to be
underexpressed in the B cells of SLE patients [55]. SPIB, as well as E2F2, GATA4 and
TCF7L2 have been associated with other autoimmune diseases through differential gene
expression and genetic polymorphisms, respectively [56–58].

Although many of the TFs associated with SLE patients have been previously de-
scribed, in this work we described the stratification of SLE patients into two subgroups
based on global TF activity profiles, which are characterized by differences in the neutrophil
and lymphocyte proportions. In addition, we identified 14 significant and robust TFs across
SLE patients. These results reveal regulation mechanisms regarding SLE heterogeneity,
which might be possible therapeutic targets. The groups observed here are consistent
with previous findings [10] and can link molecular heterogeneity to clinical manifestations
or response to therapies, providing opportunities for novel therapeutic developments or
better disease diagnosis.
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