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Abstract

De novo generation of human hematopoietic stem cells (HSCs)
from renewable cell types has been a long sought-after but elusive
goal in regenerative medicine. Paralleling efforts to guide pluripo-
tent stem cell differentiation by manipulating developmental cues,
substantial progress has been made recently toward HSC genera-
tion via combinatorial transcription factor (TF)-mediated fate
conversion, a paradigm established by Yamanaka’s induction of
pluripotency in somatic cells by mere four TFs. This review will
integrate the recently reported strategies to directly convert a
variety of starting cell types toward HSCs in the context of hema-
topoietic transcriptional regulation and discuss how these findings
could be further developed toward the ultimate generation of
therapeutic human HSCs.
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Introduction

The process by which differentiated cell types arise from more prim-

itive stem and progenitor cells generally proceeds down a strict

lineal hierarchy defined by progressive functional specialization

concomitant with restriction of lineage potential. From embryogene-

sis initiated by a single totipotent zygote to the lifelong homeostasis

of organ parenchyma by tissue-specific stem cells, physiological

differentiation of progenitor cells largely proceeds both unidirection-

ally and irreversibly, with differentiated cell types and even inter-

mediate progenitors being remarkably fixed with respect to their

cellular identity and functional potential. This paradigm, however,

was challenged by the seminal works of Gurdon and others that

demonstrated the sufficiency of factors present in oocyte cytoplasm

to reverse differentiation of somatic nuclei and allow cloning of

whole animals (Briggs & King, 1952; Gurdon, 1962; Wilmut et al,

1997). Subsequent efforts to identify the trans-acting factors capable

of altering cell fate revealed the central role of transcription factors

(TFs) in determining cellular identity. This was first demonstrated

by the ability of a single TF MyoD to imbue myogenic identity on

fibroblasts (Davis et al, 1987), which then established the founda-

tion for the landmark discovery by Yamanaka that mere four TFs

are sufficient to induce pluripotency in somatic cells (Takahashi &

Yamanaka, 2006; Takahashi et al, 2007). These and other studies

galvanized numerous investigators to harness the power of TFs in

directly respecifying multiple cell fates: hepatocytes (Huang et al,

2011; Sekiya & Suzuki, 2011) cardiomyocytes (Ieda et al, 2010),

cardiac pacemaker cells (Kapoor et al, 2013), oligodendrocytes

(Najm et al, 2013; Yang et al, 2013), various types of neurons

(Vierbuchen et al, 2010; Son et al, 2011; Liu et al, 2013), neural

stem cells (Han et al, 2012), pancreatic beta cells (Zhou et al,

2008), sertoli cells (Buganim et al, 2012), thymic epithelium

(Bredenkamp et al, 2014), endothelial cells (Han et al, 2014), and

intestinal progenitors (Morris et al, 2014).

Studies of the hematopoietic system have borne profound

insights into the transcriptional regulation of cellular identity. The

ability to prospectively isolate hematopoietic stem, progenitor, and

effector cells with defined lineage potentials has allowed dissection

of molecular mechanisms underlying blood differentiation as well

as identification of characteristic TFs governing diverse hemato-

poietic lineages (Orkin, 1995). However, the wave of breakthroughs

from cell fate conversion studies transformed the hematopoietic

system from a subject of scrutiny to a destination to be reached from

alternative cell types. Initial studies focused on manipulating lineage

potential by means of oncogenic transformation (Beug et al, 1979;

Graf et al, 1992), lineage switching of hematopoietic progenitors

(Heyworth et al, 2002), and direct cell fate conversion toward non-

progenitor blood cells such as macrophages (Xie et al, 2004; Laiosa

et al, 2006; Feng et al, 2008); however, substantial progress has

been made recently toward de novo generation of hematopoietic

stem cells (HSCs) (Szabo et al, 2010; Doulatov et al, 2013; Pereira

et al, 2013; Batta et al, 2014; Pulecio et al, 2014; Riddell et al, 2014;

Sandler et al, 2014). HSCs reside at the apex of the hematopoietic

hierarchy and serve as the lifelong reservoir for all downstream

blood cells. Their remarkable regenerative capacity to durably

restore the entire hematopoietic system in transplant recipients has

been harnessed as the standard of care for treatment of a number of
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morbid conditions including hematological malignancies, bone

marrow failure syndromes, and immunodeficiency syndromes with

~50,000 allogeneic or autologous transplants performed each year

(Gratwohl et al, 2010). Many factors contribute to transplantation

outcomes including relapse of primary disease, graft failure, and

opportunistic infection. Moreover, in addition to the challenge of

identifying histocompatible donors, allogeneic transplantation is

further complicated by graft-versus-host disease (GVHD), which

remains a significant cause of morbidity and mortality for a large

number of patients who undergo allogeneic transplantation despite

the use of prophylactic immunosuppressants (Petersdorf, 2013).

Another major factor contributing to transplant success is the

number of stem cells transplanted, with an increased number of

CD34+ HSPCs being the strongest predictor of transplantation

success as measured by rapid and durable hematopoietic recovery

(Siena et al, 2000). Transplants that contain too few HSCs either fail

to engraft altogether or result in delayed blood reconstitution post-

transplantation that is associated increased morbidity and mortality.

This is particularly clinically challenging for the 10–30% of patients

from whom sufficient numbers of autologous stem cells cannot be

harvested due to poor responsiveness to mobilizing agents such as

GCSF (Bakanay & Demirer, 2012). Therefore, an ability to produce

an inexhaustible supply of autologous HSCs from relatively dispens-

able and potentially expandable cell types via cell fate conversion

represents an attractive solution to these challenges. This review

will discuss the critical roles played by TFs in hematopoietic cell fate

regulation and how this knowledge has propelled efforts to convert

alternative cell types toward fully functional HSCs.

Transcriptional regulation of cellular identity

TFs dictate the specific gene expression pattern necessary for a cell

to perform its unique functions. Mechanistically, TFs directly impact

chromatin state by recruiting epigenetic modifiers to specific DNA

sequence motifs present in gene regulatory regions such as promot-

ers and enhancers (Rosenfeld et al, 2006). Depending on whether a

TF recruits transcriptional coactivators or corepressors, it may either

promote or suppress gene expression, respectively. Consequently, a

TF may contribute to enforcing a particular cell fate by simulta-

neously activating genes required for maintaining the function and

identity of that cell while antagonizing lineage inappropriate genes

(Cantor et al, 2008; Pongubala et al, 2008; Schaffer et al, 2010; Qi

et al, 2013). In addition to recruiting cofactors, TFs often bind coop-

eratively to DNA as components of multiprotein complexes (Huang

et al, 2009; Ravasi et al, 2010; Kazemian et al, 2013). Thus, the

same TF may exhibit completely different genome-wide binding

patterns and regulate non-overlapping sets of target genes in differ-

ent cell types (Hoffman et al, 2010; Pimkin et al, 2014). Indeed, cell

fate and function is invariably the result of the combinatorial action

of TF complexes that form interdependent nodes that comprise

larger regulatory networks. The wiring of cell-type-specific TFs as

self-reinforcing circuits allows robust, stable sustenance of specific

transcriptional landscapes (Rao et al, 2002; Chew et al, 2005;

Bonzanni et al, 2013). On the other hand, antagonistic relationships

between TF sets governing alternate cell fates serve as barriers to

cellular plasticity and thus provide a basis for their mutual exclusiv-

ity (Graf & Enver, 2009).

TFs exert differential spheres of influence over cell fate depend-

ing on their connectivity within gene regulatory networks. Some

TFs function as critical hubs, and their loss may lead to the collapse

of network integrity (Albert et al, 2000). The potency of TFs may

also derive from their ability to act as pioneering factors that can

directly trigger nucleosomal remodeling to grant chromatin access

to additional TFs (Zaret & Carroll, 2011). Some of these factors can

be so potent that they can single handedly convert cell fate as is the

case for MyoD in establishing the myogenic transcriptome, Cebpa in

activating the myeloid program (Xie et al, 2004), and Runx1 in coor-

dinating the endothelial-to-hematopoietic transition during develop-

ment (Feng et al, 2008). More often, however, multiple TFs must

act in concert to access and activate cell-type-specific gene regula-

tory networks (Wilson et al, 2010a).

Reprogramming and cell fate conversion take advantage of the

connectedness and interdependencies of TFs in orchestrating cell

fate programs (Buganim et al, 2013). Ectopic expression of a subset

of TFs enriched in a destination cell type can be sufficient to actuate

the destination gene regulatory network in an alternate starting cell

type. The destination cell gene regulatory network may then

predominate over that of the starting cell type, thus altering its iden-

tity. This process depends on extensive chromatin reconfiguration

including reversal of chromatin inaccessibility, installation of desti-

nation cell specific enhancers, and shutdown of regulatory elements

specific to the starting cell type, the carryover of which could lead

to retention of what has been termed ‘epigenetic memory’ (Hu et al,

2010; Kim et al, 2010; Apostolou & Hochedlinger, 2013; Vaskova

et al, 2013).

The self-reinforcing nature of gene regulatory networks implies

that a small number of TFs may be sufficient to trigger their estab-

lishment and maintenance of destination cell regulatory networks.

Moreover, recent evidence has demonstrated that regulatory

networks governing cell identity could potentially be seeded by

multiple distinct combinations of TFs. Indeed, extensive studies of

TFs regulating embryonic stem cells have yielded multiple TF

combinations capable of iPS cell generation that are different and

even completely distinct from that originally reported by Yamanaka

(Montserrat et al, 2013; Shu et al, 2013; Buganim et al, 2014;

Takashima et al, 2014).

Transcriptional regulation of hematopoietic cell fates

The hematopoietic system has been studied extensively as a model

tissue hierarchy for dissecting transcriptional regulation of cellular

identity and cell fate transitions. As cells descend from HSCs, they

are subjected to tiers of decisions that successively commit them to

their final effector function. The molecular events underlying devel-

opmental cell fate decisions have been attributed in part to cross-

antagonism between lineage-specific TFs, perhaps best illustrated

by the activities of Gata1 and Pu.1 in promoting erythroid and

myeloid differentiation programs, respectively (Arinobu et al,

2007). Physical interaction between Gata1 and Pu.1 leads to mutual

extinction of transcriptional activity (Nerlov et al, 2000; Zhang et al,

2000). While they are both expressed in multipotent progenitors,

offset in their relative levels, modulated by parameters such as cell

cycle length (Kueh et al, 2013) and instructive cytokine signaling

(Sarrazin et al, 2009), allows the higher expressed factor to
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dominate cell fate decisions and hence tip the balance toward the

respective lineage (Huang et al, 2007). Multiple such mutually

antagonistic interactions could be assembled to form a greater land-

scape of attractors and transitional states that models multilineage

differentiation (Krumsiek et al, 2011).

Pax5 is another TF whose role in hematopoietic lineage commit-

ment has been studied extensively (Urbanek et al, 1994). Pax5 is

essential in B-cell commitment, the lack of which arrests differentia-

tion at the early pro-B stage (Nutt et al, 1999). Mechanistically,

Pax5 locks progenitors into B-cell fate by both activating B cell

promoting signaling pathways while silencing those important for

the development of alternative lineages. Intriguingly, Pax5 null pro-

B cells retain not only self-renewal potential but also multilineage

differentiation potential spanning myeloid lineages and T cells

(Mikkola et al, 2002) though Pax5-deficient progenitors do not give

rise to B cells (Urbanek et al, 1994) and have very limited potential

to give rise to erythrocytes or platelets (Nutt et al, 1999; Schaniel

et al, 2002). The importance of Pax5 for limiting self-renewal and

locking in B-cell fate is further illustrated by experiments in which

deletion in CD19-positive B cells results in an aggressive and highly

penetrant lymphoma in vivo (Cobaleda et al, 2007).

In addition to regulating developmental lineage commitment,

TFs may impact subtype specification within hematopoietic

lineages. For example, peripheral CD4 T-helper cells can develop

into induced regulatory T cells (iTregs) with appropriate immu-

nosuppressive functions upon induction of Foxp3, a TF critical

for all regulatory T-cell development (Rudensky, 2011). However,

inflammatory signals can extinguish Foxp3 expression in iTregs

and convert them back to effector CD4 T-helper cells (Zhou

et al, 2009). Furthermore, diverse subsets of macrophages are

specified by the integration of Pu.1, a macrophage lineage deter-

mining TF, with transcriptional regulators downstream of tissue-

specific environmental signals (Gosselin et al, 2014). These

examples suggest that cellular identity can be a composite of

multiple transcriptional modules each presided over by unique

TFs or their combinations.

Artificial hematopoietic lineage conversions toward
therapeutic application

Artificial manipulation of TFs has yielded important insights into

the molecular underpinnings of lineage choice (Iwasaki et al, 2006).

Overexpression together with the loss of function experiments has

been used to confirm the nature of interaction between TFs and led

to surprising discoveries on cellular plasticity. In addition to obtain-

ing valuable mechanistic information, excitement in cell fate conver-

sion research has been fueled by its enormous clinical potential.

Cell fate conversion has the potential to generate patient-specific

cells that are rare, inaccessible, or clinically useful from relatively

dispensable autologous cells. If realized, such procedures could be

applied to supplying cells for human disease modeling, therapeutic

screening, and cell replacement therapy (Robinton & Daley, 2012;

Cherry & Daley, 2013; Kamao et al, 2014; Nakamura et al, 2014;

Stewart, 2014; Wainger et al, 2014). Thus, this strategy represents

an attractive means to address both patient specificity and overcom-

ing the rarity, and lack of means for expansion that currently limits

the therapeutic use of HSCs.

A parallel strategy toward generating HSCs has been via stepwise

differentiation of pluripotent stem cells such as embryonic stem cells

or induced pluripotent stem cells (Sturgeon et al, 2013). However,

attempts to direct differentiation of pluripotent stem cells toward

HSCs by recapitulating the embryonic developmental trajectory in

vitro has seen limited success. Simulating the temporal (Tober et al,

2013), spatial (Peeters et al, 2009; Wilkinson et al, 2009), mechani-

cal (North et al, 2009), and cellular (Clements et al, 2011; Espin-

Palazon et al, 2014) complexity of the embryonic milieu has proved

technically challenging. Moreover, since the precise developmental

intermediates en route to HSCs are only recently becoming eluci-

dated (Rybtsov et al, 2011, 2014), the directed differentiation

approach has thus far suffered from paucity of reliable developmen-

tal guideposts. For example, induction of T lymphoid potential has

been used to guide directed differentiation as it correlates with

definitive hematopoiesis, a temporal wave of embryonic hematopoi-

esis during which HSCs are specified (Kennedy et al, 2012).

However, it is still unknown whether the in vitro derivatives with T

lymphoid potential indeed possess the eventual capacity to produce

HSCs or whether they might represent a developmental intermediate

similar to embryonic T-cell progenitors that arise independently of

HSCs (Yoshimoto et al, 2012). Due to such state of the field, little is

known about the functional and molecular correlation between the

developmental intermediates obtained in vitro and in vivo, and the

knowledge is particularly lacking in the context of human HSC

ontogeny (Ivanovs et al, 2014). Furthermore, the necessity to transit

through multiple distinct intermediate cell types to reach HSCs

means that culture conditions may need to be optimized for every

intermediate and that deviation in any one step may extinguish the

eventual potential to develop HSCs. Therefore, in spite of ‘forceful’

nature of TF manipulations, TF-mediated cell fate conversion may

be a relatively simpler, direct, and even more tractable of a strategy

for deriving HSCs as it only requires knowledge of the properties of

the destination cell type.

Generation of hematopoietic stem cells via direct cell
fate conversion

HSCs are functionally defined as cells capable of engrafting condi-

tioned recipients and giving rise to all blood lineages (i.e., myeloid,

thrombo-erythroid, and lymphoid), for an extended period (at least

4 months in mice). These functional hallmarks of HSCs, namely

multilineage differentiation potential and extensive self-renewal

capacity, are embodied at the clonal level such that only few HSCs

are required to durably sustain the entire hematopoietic system

(Holstege et al, 2014). Although fully functional human HSCs meet-

ing the aforementioned criteria have yet to be produced in vitro,

several strategies have recently been described that bring the goal of

deriving fully function HSCs from alternative cell types within reach

(Table 1).

Szabo et al (2010) and Pulecio et al (2014) converted human

fibroblasts to hematopoietic cells possessing multilineage myeloid

potential aided by pluripotency-associated TFs, namely OCT4 and

SOX2, respectively. The latter study also showed improved hemato-

poietic conversion with the addition of mir125b, a microRNA

enriched in human hematopoietic progenitors. Since transient

expression of pluripotency factors or OCT4 is sufficient to confer
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tri-germ layer differentiation potential on fibroblasts, fate conver-

sion specifically to the blood lineage with OCT4 or SOX2 was likely

mediated by the inductive effects of hematopoietic cytokines

(Mitchell et al, 2014), which has previously been shown to be able

to reprogram blood cell identity (Kondo et al, 2000). Although the

resulting cells were able to engraft in vivo, the majority of them

expressed low levels of the pan-hematopoietic antigen, CD45, and

did not peripheralize, possibly suggesting incomplete hematopoietic

conversion.

Instead of transitioning through a developmentally plastic state,

a more direct, autonomous fate transition could be achieved by

overexpressing lineage-specifying TFs enriched in destination cells.

Toward this, Pereira et al (2013) screened 18 candidate TFs

enriched in quiescent mouse HSCs that could activate exogenous

human CD34 promoter inserted into mouse fibroblasts. The screen

identified transient expression of Gata2, Gfi1b, cFos, and Etv6 to be

sufficient for generating hematopoietic cells from fibroblasts via an

intermediate cell type that coexpressed both endothelial and hema-

topoietic markers. Although the converted hematopoietic cells were

similar to mouse hematopoietic stem/progenitor cells with respect

to gene expression, they were devoid of in vitro clonogenic potential

unless cocultured with placental stroma, suggesting that maturation

into progenitor-like blood cells required additional signals. Clonal

multilineage potential or in vivo functionality was not assayed. A

similar fate conversion strategy from fibroblasts was employed by

Batta et al (2014) who screened a curated set of 19 hematopoietic

TFs for morphological change of murine fibroblasts to round hema-

topoietic cells. Five TFs, Erg, Gata2, Lmo2, Runx1c, and Scl, were

found to robustly induce hematopoietic colonies from both embry-

onic and adult fibroblasts, and the reprogrammed cells were shown

to possess erythroid, megakaryocytic, granulocytic, and macrophage

differentiation potentials. Similar to Pereira et al, Batta et al also

observed that fibroblasts converted to hematopoietic cells via an

endothelial intermediate. In vitro clonogenic assays confirmed the

presence of cells possessing multilineage potential; upon trans-

plantation, however, these cells only gave rise to very short-term

(2 weeks) erythroid chimerism. Interestingly, p53 nullizygosity not

only enhanced the efficiency of reprogramming but also increased

erythroid differentiation potential in addition to permitting produc-

tion of receptor rearranged B and T lineage cells.

Although iPS cells have the developmental potential to be differ-

entiated toward potentially transplantable autologous tissues, their

hematopoietic differentiation has yielded progenitors with greatly

restricted self-renewal and differentiation potentials quite unlike

those of true HSCs. Doulatov et al (2013) sought to respecify iPS

cell-derived myeloid restricted progenitors toward HSCs using TFs

enriched in both human and mouse HSCs that appeared underex-

pressed in the blood progenitors cells derived from pluripotent cells.

Table 1. Summary of studies using transcription factor-mediated reprogramming to derive primitive blood progenitors.

Szabo
et al (2010)

Pulecio
et al (2014)

Pereira
et al (2013)

Batta
et al (2014)

Doulatov
et al (2013)

Riddell
et al (2014)

Sandler
et al (2014)

Species Human Human Mouse Mouse Human Mouse Human

Starting
cell type

Fibroblast Fibroblast Fibroblast Fibroblast ES cell-derived
myeloid restricted
progenitor

B-cell progenitor,
myeloid progenitor,
bone marrow
myeloid effector

Umbilical vein
endothelial cells,
microvascular
endothelial cells

Transcription
factors

OCT4 SOX2, mir125b Gata2, Gfi1b,
cFos, Etv6

Erg, Gata2,
Runx1c,
Scl, Lmo2

ERG, HOXA9,
RORA, SOX4, MYB

Runx1t1, Hlf, Lmo2,
Pbx1, Zfp37, Prdm5,
Mycn, Meis1

FOSB, GFI1,
RUNX1, SPI1

Factor
inducibility

Constitutive Constitutive Inducible Constitutive Inducible Inducible Constitutive

Medium In vitro In vitro In vitro In vitro In vitro In vivo In vitro with
endothelial
stroma

In vitro colony
formation

+ + + + + + +

Erythroid + + Not shown + + + +

Myeloid + + + + + + +

B � � � �a � + +

T � � � �a +b + +c

Engraftment +d +d � +e + + +

Serial
Transplantation

� � � � � + +

HSC? No No No No No Yes Nof

aLymphoid differentiation potential acquired with p53 deletion.
bAlthough modest T-cell differentiation potential was confirmed in vitro, no T cells were detected in vivo.
cMinimal in vitro T-cell differentiation possible when TFs are expressed using inducible system.
dEngrafted cells express low levels of CD45, a pan-lympho-myeloid hematopoietic marker.
eVery short-term (2 week), primarily erythroid engraftment.
fIn vivo function not assayed with cells derived using inducible system.
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Screening nine candidate TFs and using serial plating as a readout,

ectopic expressions of ERG, HOXA9, and RORA were found to instill

robust in vitro clonogenic potential but not multilineage potential or

engraftment capacity. However, additional ectopic expression of

SOX4 and MYB enabled the acquisition of myelo-erythroid differen-

tiation potential as well as short-term myeloid engraftment capacity

in immunocompromised mice. Although modest T lineage potential

was confirmed in vitro, the grafts failed to produce lymphoid lineage

in vivo. Long-term engraftment was not achieved.

As opposed to respecifying embryonic-like hematopoietic cells

derived from pluripotent stem cells, Riddell et al (2014) undertook

reprogramming of primary adult lineage committed murine hemato-

poietic progenitors and effectors using gene regulatory factors exhib-

iting restricted expression in mouse HSCs relative to the majority of

their differentiated progeny. An unbiased screen of 36 factors, which

included 33 TFs and three translational regulators, was performed

in the transplantation setting to take advantage of the sensitivity of

the assay in reading out HSC activity at the single-cell level, and

potentially co-opt signals present in the in vivo environment that

might facilitate cell conversion. The screen identified six genes Hlf,

Runx1t1, Pbx1, Lmo2, Prdm5, and Zfp37 whose transient ectopic

expression was sufficient for instilling multilineage reconstituting

potential on otherwise lineage committed hematopoietic cells. Inclu-

sion of Meis1 and Mycn was found to improve reprogramming

efficiency. Long-term multilineage reconstitution, serial transplant-

ability, reconstitution of bone marrow progenitor compartments and

secondary hematopoietic organs, and single-cell gene expression

profiling confirmed that the reprogrammed cells possessed the func-

tional and molecular properties of endogenous HSCs and thus were

termed ‘induced HSCs’ (iHSCs).

HSCs and endothelial cells share an intimate ontological relation-

ship as HSCs are specified from hemogenic endothelial-like inter-

mediates during embryogenesis via endothelial-to-hematopoietic

transition (EHT). Sandler et al hypothesized that EHT may be reca-

pitulated in mature, non-hemogenic endothelial cells by ectopic

expression of key TFs and provision of an inductive environment

(Zovein et al, 2008; Bertrand et al, 2010; Boisset et al, 2010;

Gordon-Keylock & Medvinsky, 2011; Sandler et al, 2014). Screening

25 TFs expressed at a higher level in human cord blood HSPCs rela-

tive to human umbilical vein endothelial cells (HUVECs) identified

the minimal set of FOSB, GFI1, RUNX1, and SPI1 to be sufficient

and necessary for robustly generating hematopoietic colonies from

HUVECs and human adult dermal microvascular endothelial cells.

The reprogramming was found to strictly depend on an endothelial

stroma previously developed by the authors’ group for maintaining

human cord blood HSPCs (Butler et al, 2012). The reprogrammed

cells possessed both in vitro and in vivo multilineage differentiation

potential, long-term reconstitution potential, in vivo homing/

engraftment capacity, and serial transplantability, only with the

caveat of defective T-cell differentiation potential, thus earning the

label of multipotent progenitors (MPPs).

Despite sharing the same destination identity, the studies

summarized above show striking diversity with respect to experi-

mental design and the TF combinations identified (Fig 1). However,

in totality, the reported TFs are highly enriched for both develop-

mental genes involved in embryonic specification of hematopoiesis

and those implicated in leukemogenesis. Classical developmental

hematopoiesis genes such as Scl, Gata2, Gfi1, Runx1, and Spi1

(Pu.1) (Wilson et al, 2010b) appear to be important in fate conver-

sions that involve lineage switching, such as from fibroblasts or

endothelial cells, whereas they do not appear to be important in

reprogramming or respecification within the blood lineage. This

could reflect that even post-embryogenesis, the same small set of

TFs that specified hematopoiesis earlier in life can pioneer the estab-

lishment of hematopoietic program in non-hematopoietic adult cell

types, though such activity may be redundant in conversions within

hematopoietic lineage. The requirement for TFs such as HOXA9,

MYB, Lmo2, Pbx1, Mycn, and Meis1 in reprogramming of commit-

ted blood cells is consistent with their classical roles in tumor devel-

opment (Thorsteinsdottir et al, 2001; Kawagoe et al, 2007; Jin et al,

2010; McCormack et al, 2010). In particular, components of Hox

effectors, namely HOXA9, Pbx1, and Meis1, are found in TF sets

reported by both Doulatov et al and Riddell et al. This particular set

of TFs has been shown to function as a heterotrimeric complex

(Shen et al, 1997) and is frequently represented in regenerative

processes (Mercader et al, 2005; Capellini et al, 2006; Chen et al,

2013; Roensch et al, 2013) and across multiple types of cancers

(Morgan et al, 2007; Shears et al, 2008; Plowright et al, 2009; Sun

et al, 2013), suggesting that it may regulate generic properties of

stem/progenitors such as self-renewal, anti-apoptosis, and differen-

tiation arrest. In spite of the apparently central role played by the

Hox complex in regulating stemness, it is intriguing that ectopic

stimulation of this pathway was not required to generate progenitor

cells as highly functional as the MPPs directly from endothelial cells

(Sandler et al, 2014). However, this could be explained by the fact

that endothelial cells exhibit intrinsic HoxA cluster activity, which is

integral to vascular development and function (Rössig et al, 2005;

Bandyopadhyay et al, 2012).

Species-specific differences may also contribute to the identifica-

tion of distinct HSPC–inducing TF combinations. It is possible,

though not rigorously studied, that divergent gene regulatory

networks may govern mouse and human HSCs. For example,

although constitutive ectopic expression of Hoxb4 allows the gener-

ation of engraftable mouse HSPCs from mouse embryonic stem cells

(Wang et al, 2005b; Matsumoto et al, 2009), the same robust effect

was not seen using human cells (Wang et al, 2005a). In the

erythroid lineage, noticeable transcriptional divergence was found

between mouse and human cells isolated from comparative stages

of differentiation (Pishesha et al, 2014). Furthermore, overexpres-

sion of a dominant-negative isoform of IKAROS (IKZF1) was

recently found to impart diametric effects on mouse and human

HSPCs (Beer et al, 2014). Whereas IKZF1 overexpression in mouse

HSPCs suppressed B but enhanced T lineage outputs, the same

manipulation in human cord blood HSPCs significantly increased B

lineage cell production without affecting T lineage. Therefore,

although the majority of TFs discovered in the studies using murine

cells (Pereira et al, 2013; Riddell et al, 2014) are highly homologous

between mouse and human, it is uncertain whether the same set of

factors capable of inducing mouse HSPCs would also be sufficient

for inducing human HSCs.

Another major variable among the studies is the system used for

ectopic expression of TFs. An important criterion for complete

cell fate conversion is transgene-independent sustenance of destina-

tion cell gene regulatory networks. Although transduction with

viruses encoding TFs under constitutive promoters may become

passively silenced over time, the use of an inducible transgene
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system (i.e., doxycycline inducible) can give better temporal control

over TF expression as well as ensure that the ectopic genes are

turned off upon completion of cell fate conversion. Importantly,

continued ectopic expression of TFs involved in ‘respecification/

reprogramming’ may also interfere with the function of the destina-

tion cells. For example, continued ectopic expression of SPI1 in

endothelial cell-derived multipotent progenitors (MPPs) was shown

to block T-cell differentiation potential (Sandler et al, 2014). In the

same study, as only MPPs obtained using constitutive expression

vectors were assayed in vivo, it remains to be shown definitively

whether the MPPs can stably maintain their identity independent of

residual transgene expression.

Since environmental responsiveness and developmental plastic-

ity represent cardinal properties of HSCs, it is conceivable that envi-

ronmental cues may strongly influence cell fate conversion toward

HSCs. Reasoning that reprogramming in the context of the native

HSC niche (Morrison & Scadden, 2014) may facilitate the acquisition

of HSC identity, Riddell et al (2014) conducted reprogramming

experiments in vivo. Similarly, Sandler et al took advantage of an

endothelial stromal coculture system developed for ex vivo mainte-

nance of human HSCs to provide an inductive environment for de

novo HSC generation (Butler et al, 2012; Sandler et al, 2014).

Intriguingly, both of these studies gave rise to serially transplantable

cells possessing lympho-myeloid multilineage potential, a feat unat-

tained by any of the other cell fate conversion strategies, which

were all conducted in the absence of HSC supportive milieu.

Although Riddell et al did not show the absolute requirement of

the in vivo environment for HSC induction, an HSC supportive

environment was shown to be a necessity in the conversion of endo-

thelial cells to MPPs by Sandler et al Insights from other cell fate

conversion systems also point to the importance of the environ-

ment. In particular, STAT3, a transcription factor directly activated

by growth factor signaling, has been shown to play an central role

in embryonic stem cells as well as in induction of pluripotency

(Niwa et al, 1998; Raz et al, 1999; Yang et al, 2010; van Oosten

et al, 2012), thus emphasizing that cell extrinsic cues can be as

important as the intrinsic ones.

Toward understanding the transcriptional regulation of
HSC identity

In spite of enormous progress, the era of HSC induction has only

dawned. With little consensus on the optimal combination of TFs

and/or environmental cues for inducing HSCs, it may be necessary

to perform comparative studies or even ‘mix and match’ findings

from hitherto studies for even better results. With respect to reeval-

uating TF combinations for human HSC induction, it may be worth

noting the heterogeneity of primary human HSCs. Although immu-

nophenotypically defined single human HSC has been successfully

isolated (Notta et al, 2011), a number of studies show that the

human HSC compartment can still be fractionated into subpopula-

tions with distinct functional potentials (Anjos-Afonso et al, 2013;

Chitteti et al, 2014) similar to the HSC subfractionation that has

been demonstrated in the mouse (Dykstra et al, 2007; Beerman

et al, 2010; Morita et al, 2010; Babovic & Eaves, 2014). Therefore,
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TFs enriched in each of these subpopulations may differentially

impact HSC induction.

Understanding the function of individual TFs in HSCs constitutes

an important step toward elucidating the mechanism of HSC induc-

tion. Consistent with the ability to access the HSC gene regulatory

program, many of the TFs identified by the studies highlighted in

this review have been previously implicated in HSC and progenitor

biology. Individual loss of function of Hoxa9 (Lawrence et al, 2005),

Gata2 (Lim et al, 2012), Pbx1 (Ficara et al, 2008), Meis1 (Unnisa

et al, 2012), Gfi1 (Hock et al, 2004; Zeng et al, 2004), Etv6 (Wang

et al, 1998), SPI1 (Pu.1) (Staber et al, 2013), Myb (Lieu & Reddy,

2009), or Erg (Ng et al, 2011) in HSCs has each been shown to

compromise their homeostatic maintenance and/or competitive

repopulation potential. Although direct loss of function of Lmo2 in

HSCs has not been conducted, its critical role in hematopoiesis is

underscored by the inability of Lmo2 null ES cells to contribute to

postnatal hematopoiesis in chimeric blastocysts (Yamada et al,

1998). Similarly, Runx1 null ES cells cannot contribute to adult

hematopoiesis (Okuda et al, 1996) due to impairment of EHT (Chen

et al, 2009). Intriguingly, however, conditional loss of Runx1 in the

adult hematopoietic system only impairs megakaryocytic and

lymphoid differentiation with minimal impact on HSC activity

(Ichikawa et al, 2004; Cai et al, 2011). Although the consequence of

loss of function of Sox4, Rora, Runx1t1, Zfp37, Prdm5, or Hlf in

HSCs has yet to be reported, overexpression and leukemia studies

have implicated some of these factors in HSC function. For example,

Sox4 has been implicated in self-renewal of leukemic cells (Zhang

et al, 2013) and ectopic expression of Hlf, a leukemia-associated TF

(Hunger et al, 1992), has been shown to enhance repopulation

potential of human HSCs (Shojaei et al, 2005) and allows mainte-

nance of in vitro multilineage differentiation potential and serial

plating capacity of murine HSCs and progenitors (Gazit et al, 2013).

Also of note, many of these understudied factors, namely Runx1t1

(Lindberg et al, 2003), Zfp37 (Dreyer et al, 1998), and Prdm5 (Duan

et al, 2007), identified by Riddell et al (Riddell et al, 2014) function

as transcriptional repressors, suggesting that active repression of

differentiation-associated genes may be an important component of

reprogramming differentiated blood cells back to HSCs. Finally, loss

of function of some TFs may not result in HSC defects due to func-

tional redundancies with other TFs. For example, Mycn deletion in

HSCs is compensated by the presence of c-Myc (Laurenti et al,

2008). However, combined deletion of Mycn and c-Myc demon-

strated the requirement of the Myc genes in the exit from stem cell

state as well as preventing apoptosis of HSCs. Similarly, Scl nullizyg-

osity has no effect on HSCs due to its functional redundancy with

Lyl1, but their combined ablation leads to loss of HSCs via apoptosis

(Souroullas et al, 2009).

Detailing the interactions between the TFs used in HSC induction

may provide deeper insights into the gene regulatory network

governing HSC identity, which could lend to discoveries of more

efficient or alternative TF combinations for inducing HSCs. Many of

the reported TFs have already been shown to interact physically

and/or at the transcriptional level. As mentioned previously, Hoxa9,

Meis1, and Pbx1 directly interact to coregulate transcription (Shen

et al, 1997), although they may also function independently as their

individual deletions result in differential HSC phenotypes (Lawrence

et al, 2005; Ficara et al, 2008; Unnisa et al, 2012). The Hox complex

cannot only autoregulate Hox gene expression (Trivedi et al, 2008;

Horman et al, 2009) but also enhance the expression of a number of

other reprogramming TFs such as Erg, Myb, Sox4, Lmo2, Etv6,

Mycn, and Hlf in blood cells (Palmqvist et al, 2007; Nagel et al,

2011; Huang et al, 2012) although there also appears to be redun-

dancies among these targets such as the cross-regulation between

Lmo2 and Erg (Oram et al, 2010) and induction of Lmo2 by Hlf (de

Boer et al, 2011). However, the diverse and wide-ranging targets of

the Hox complex combined with the fact that it regulates distinct

processes in non-hematopoietic tissues (i.e., body segmentation,

blastema formation, and non-hematopoietic cancers, mentioned

previously) suggests that the complex may require interaction with

lineage-restricted TFs to exert tissue-specific functions. In support of

this, Hoxa9/Meis1 has been shown to specifically bind and activate

myeloid enhancers in cooperation with hematopoietic TFs such as

SPI1(Pu.1), and Runx1 (Huang et al, 2012). This model implies that

HSC specification by the Hox complex requires either a priori

patterning of relevant enhancers or coexpression of hematopoietic-

specific TFs that can pioneer enhancer establishment. Following this

logic, under certain circumstances, overexpression of the Hox

complex may impede cell fate conversion by promoting mainte-

nance of enhancers specific to the starting cell type, akin to the

antagonism of EHT by Hoxa3 during embryogenesis (Iacovino et al,

2011).

Extensive interactions have also been reported between TFs

classically associated with hematopoiesis such as Scl, Runx1,

Gata2, Gfi1, and SPI1(Pu.1) that appear in the reprogramming TF

cocktails. For example, a heptad of TFs regulating HSPCs, SCL,

LYL1, LMO2, GATA2, RUNX1, ERG, and FLI1 have been shown

to directly bind each other and cooperatively regulate hematopoi-

etic genes (Wilson et al, 2010a) as well as autoregulate their own

expression (Grass et al, 2003; Pimanda et al, 2007; Diffner et al,

2013). While the majority of these TFs is implicated in both

hematopoietic and endothelial development (De Val & Black,

2009), Runx1 has received much attention for its specific and crit-

ical role in embryonic HSC specification (North et al, 2002).

During mid-gestation, Runx1 specifies HSCs by acting as a

pioneering TF that initiates expression of hematopoietic genes

such as SPI1(Pu.1) in an endothelial-like cell (Huang et al, 2008;

Chen et al, 2009; Lichtinger et al, 2012; Tanaka et al, 2012). The

activity of Runx1 is modulated not only by its obligate binding

partner Cbfb and other members of the heptad TFs but also by

the AP1 complex, whose motifs are highly enriched at genomic

Runx1 binding peaks (Pencovich et al, 2011; Lie et al, 2014). AP1

complex has been shown to physically interact with Runx1 (Hess

et al, 2001; D’Alonzo et al, 2002) and is itself a heterodimer of

JUN and FOS family proteins, the latter of which were found to

be necessary to induce hematopoiesis from non-hematopoietic

cells in the studies by Pereira et al (2013) and Sandler et al

(2014). The same studies also identified Gfi1/Gfi1b and SPI1

(Pu.1), direct targets of Runx1 that promote the loss of endothelial

identity associated with EHT (Lancrin et al, 2012; Pereira et al,

2013; Sandler et al, 2014; Wilkinson et al, 2014). Interestingly,

Gfi1 has been shown to directly repress Hoxa9, Pbx1, and Meis1

(Horman et al, 2009), which could support the aforementioned

notion that suppression of Hox complex may be important to

facilitate lineage switching toward blood. Ultimately, the kinetics

and expression levels of TFs may need to be regulated for optimal

HSC induction.
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TFs mediate cell fate conversion by rewriting epigenetic informa-

tion, which has been shown to be facilitated by directly modulating

nuclear enzymes responsible for chromatin modifications. A

number of small molecules that increase chromatin accessibility

have been shown to enhance the efficiency of iPSC generation

(Federation et al, 2014). One study even demonstrated that a G9a

histone methyltransferase inhibitor was able to replace Oct4 in

inducing pluripotency from mouse fetal neural progenitors (Shi

et al, 2008). Although the mechanisms governing induction of pluri-

potency or HSCs may differ, barriers to accessing the HSC program

may be similarly lowered by the use of such small molecules. Epige-

netics has also been shown to underlie functional heterogeneity

within the HSC compartment, especially with respect to aging-

induced increase in self-renewal and myeloid lineage bias (Beerman

et al, 2013; Sun et al, 2014a). Although reprogramming to pluripo-

tency has been demonstrated to be sufficient in reversing epigenetic

components of HSC aging (Wahlestedt et al, 2013), other studies

have shown functional and molecular heterogeneity of iPSCs that

originate from retention of epigenetic information associated with

the starting cell type (Hu et al, 2010; Kim et al, 2010; Vaskova et al,

2013). Therefore, an intriguing question would be to determine

whether the starting cell age is reset upon direct cell fate conversion

to HSCs and whether HSCs induced from committed blood cell

lineages exhibit differentiation bias toward the respective lineages.

This latter point was not however evident in iHSCs generated in the

Riddell et al (2014) study as iHSCs derived from either B-cell

progenitors or myeloid progenitor or effector cells appeared compa-

rable in their capacity to give rise to lymphoid and myeloid effector

cells in vivo.

Complementary to overexpressing HSC-specific TFs, direct

extinction of gene regulatory networks governing starting cell types

may further augment cell fate transition. Since deletion of Pax5 has

already been shown to be sufficient for liberation from B lineage fate

(Nutt et al, 1999), such manipulation may enhance HSC induction

from B-cell progenitors. The use of RUNX1 and GFI1 by Sandler

et al in inducing hematopoiesis from endothelial cells indeed

follows the logic of their developmental role in extinguishing the

endothelial program (Iacovino et al, 2011; Lancrin et al, 2012).

Toward human HSCs

Given the rapid progress in the field, derivation of the first human

HSCs via cell fate conversion appears increasingly attainable. The

diverse strategies presented thus far provide lessons that may help

refine the approach to generating human HSCs as well as gain

deeper insights into the mechanism of HSC induction.

Though already mentioned earlier, the importance of using

inducible expression vectors should be reemphasized. Inducibility is

critical to ensure transient ectopic expression of TFs in order to

demonstrate that resulting HSCs possess self-sustaining and stable

identity. Another advantage of this system is the re-inducibility of

the TFs, which can be exploited for secondary reprogramming

experiments (Wernig et al, 2008; Riddell et al, 2014).

To accelerate the study of HSC induction, it would be critical to

perform experiments in defined media. Although the endothelial

stromal system used by Sandler et al appears to provide a powerful

inductive milieu, it remains to be seen whether it is generally

applicable. Nonetheless, it is also possible that a special environ-

ment may not be necessary for certain starting cell types and/or TF

combinations. In either case, with an ability to perform the entirety

of cell fate conversion in vitro, it should be possible to gain finer

control over experimental parameters as well as to obtain kinetic

information on the induction of HSC identity.

The crux of HSC induction is the functional evaluation of test

cells. Rigorous assays should be employed to confirm the in vivo

potential of induced HSCs to self-renew and generate multilineage

progeny at the clonal level. Long-term reconstitution and serial

transplantation are commonly employed to assess the in vivo self-

renewal potential of HSCs. These assays also indirectly provide indi-

cations on the ability of test cells to properly home to and engraft in

the niches. In vivo functionality of HSCs is contingent upon their

successful engraftment. To arrive at bone marrow niches, HSCs

must home to the correct vasculature, extravasate, and then migrate

to gain contact with the niche components (Lapidot et al, 2005).

The surface molecules and signal transduction components neces-

sary for orchestrating this process are thus integral to HSC function.

Although it is possible that this facet of HSC identity is within the

domains governed by HSC-specific TFs, it could represent a generic

functional module shared with other bone marrow resident cell

types. In the latter scenario, orthogonally acting TFs or specific envi-

ronmental signals may be required in addition to ectopic expression

of HSC-enriched TFs to induce engraftable HSCs. For instance, it has

been shown that expression of Cxcr4, an essential chemokine recep-

tor for HSC migration, is regulated by Hif1a, suggesting that Cxcr4

induction may dependent on hypoxia rather than HSC-specific TFs

(Speth et al, 2014).

The prerequisite for homing and engraftment complicates func-

tional assessment of human HSCs in the setting of xenotransplanta-

tion experiments. To circumvent graft rejection, immunodeficient

mice that lack B, T, and NK cells are used as hosts for human HSCs

(Shultz et al, 2012). Even then, the engraftment potential of human

HSC in murine hosts is inferior to that of mouse HSCs, likely due to

cross-species differences between cytokines and signaling/homing

receptors or even due to the incompatibility of human CD47, a

‘don’t eat me’ signal, with host phagocytes (Jaiswal et al, 2009;

Kwong et al, 2014). To obtain robust chimerism, human HSCs may

need to be injected directly into the bone marrow cavity via intrafe-

moral injection, thus bypassing the complex orchestration of cellu-

lar maneuvers leading to engraftment. The caveat, however, is that

lowering the hurdle to engraftment or differences in transplantation

procedures may result in incongruous definitions for human HSCs.

Although intrafemoral injection of induced HSCs could be justified if

one were to claim the necessity of the in vivo environment in induc-

ing proper homing/engraftment capacity, this needs to be confirmed

with secondary transplantation via intravenous route of injection.

The difference in the rigor of in vivo assays used to define HSCs as

well as cross-species mismatches in signaling may also underlie

molecular differences between mouse and human HSCs, and it is

unknown whether experimentally derived cells tested in xenograft

models will ultimately function effectively in human patients. An

important step, therefore, is to develop better models for native

engraftment of human HSCs, such as better humanized mice or

reconstituted human bone marrow, so that their functional defini-

tion could be refined (Drake et al, 2012; Scotti et al, 2013; Cosgun

et al, 2014; Torisawa et al, 2014).

ª 2015 The Authors The EMBO Journal Vol 34 | No 6 | 2015

Wataru Ebina & Derrick J Rossi De novo generation of HSCs The EMBO Journal

701



The question of in vivo clonal multilineage differentiation

potential, though challenging, can potentially be addressed using

two molecular approaches. First, if HSCs can be induced from B

or T lineage cells that have undergone receptor rearrangement, it

would be possible to use the unique sequences of the recombined

loci as a bar code to track the clonal progenitor cell origin of

effector cell progeny as was done by Riddell et al (2014). Receptor

rearrangement also provides direct evidence for the cell of origin

of the reprogrammed cells, an important consideration given that

even a single contaminating HSC inadvertently introduced during

transplantation experiments has the potential to confound inter-

pretations. The second approach is viral integration analysis that

takes advantage of viral insertion sites that can serve as cellular

barcodes. Finally, single-cell transplantation experiments can be

used to assure clonal multilineage potential in vivo—though this

is a very high bar to surmount, especially if cell fate conversion

efficacy is low.

Toward clinical translation

Despite the progress, a number of challenges must be met before de

novo generated human HSCs can reach clinical translation (Fig 2).

Despite the diversity of TF combinations hitherto used for hemato-

poietic induction, a commonality among most of them is their

proto-oncogenicity. Although no tumors have thus far been reported

by hematopoietic cell fate conversion studies, the potential dangers

of these potent TFs combined with the risks of insertional mutagen-

esis by lentiviral vectors cannot be tolerated for use in generating

clinical-grade human HSCs. Therefore, the current lentiviral meth-

ods for HSC induction may be most applicable for such uses as

disease modeling.

Given the risks associated with lentiviral transduction, non-

integrating approaches will need to be considered toward clinical

translation. A number of such methods developed for generating

integration-free iPSCs including protein transduction, non-integrat-

ing viruses, and mRNA based transient protein expression systems

could potentially be applied to HSC induction (Fusaki et al, 2009;

Warren et al, 2010; Zhang et al, 2012; Mandal & Rossi, 2013;

Yoshioka et al, 2013; Elcheva et al, 2014). However, as the non-

integrating approaches are highly variable with respect to the dura-

tion of ectopic factor expression, the kinetics of respecification/

reprogramming will need to be investigated in parallel to optimize

the generation of integration-free HSCs. Furthermore, the level of TF

induction may also need to be controlled since the stoichiometry of

TFs may impact reprogramming efficiency as well as the functional-

ity of reprogrammed cells as has been reported in other systems

(Carey et al, 2011).

In addition to guaranteeing safety, it will be necessary to increase

the efficiency of HSC induction to obtain sufficient numbers for

transplantation. Although the efficiency of generating iPSCs has

increased dramatically, their utility is augmented by their limitless

self-renewal potential and well-defined culture conditions that

support it. Since it is unclear whether HSCs could ever be expanded

to the same extent as iPSCs while avoiding functional decline as

seen with aging (Rossi et al, 2005; Beerman et al, 2013; Beerman &

Rossi, 2014; Sun et al, 2014a), an ideal solution would entail near

deterministic induction of HSCs from readily available somatic cells

such as peripheral blood or fibroblasts. Until such efficiency can be

reached, robust, defined means for ex vivo HSC expansion should be

pursued.

Finally, the assays used to confirm HSC identity should be

reevaluated. Currently, the only reliable, accepted method for

assessing HSC function is competitive transplantation, a resource

and time draining procedure incompatible with routine quality

control of patient-derived HSCs. Therefore, a bioinformatic metric,

like those developed for iPSC quality control (Nestor & Noggle,

2013), predictive of HSC functionality will not only benefit clini-

cal translation but also accelerate the pace of HSC induction

research.
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Figure 2. Road map to clinical translation of human induced HSCs.
Upon establishment of a method for generating human HSCs from patient-derived cells, a number of critical steps must be taken en route to clinical translation. Although the
initial, suboptimal method may be sufficient for initiating patient-specific disease modeling research, substantial improvements in the efficiency of HSC generation
must be made to obtain sufficient numbers of HSCs toward therapeutic screening and for use in reconstituting adult patients. Prior to preclinical testing, a non-integrating
approach to generating HSCs must be established in order to eliminate the risks associated with insertional mutagenesis and accidental re-induction of reprogramming
TFs, many of which are potently oncogenic. During the preclinical phase, quality control and safety testing should be performed at molecular and functional levels.
Functional testing should involve the best methods for modeling human HSC engraftment such as humanized immunodeficient animal recipients.
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Conclusion

“What I cannot create, I do not understand.”

Richard Feynman

HSCs have captivated generations of researchers not only because of

their clinical importance but also for their intriguing yet elusive

biological properties. Arguably, a major contributor to this allure

has been the challenges associated with the seemingly simple task

of obtaining more HSCs. Even while the biology of HSCs continues

to be elucidated in staggering resolution with the advent of increas-

ingly sensitive and high throughput methods (Lu et al, 2011; Gazit

et al, 2013; Cabezas-Wallscheid et al, 2014; Lara-Astiaso et al,

2014; Sun et al, 2014a,b; Wu et al, 2014) as well as more accurate

description of the HSC niche (Morrison & Scadden, 2014), robust ex

vivo expansion or de novo generation of human HSCs still remains

elusive. However, major strides made by the recent cohort of fate

conversion studies have introduced new hope and perspectives to a

field historically reigned by attempts to mimic the natural processes

that regulate and specify HSCs. Despite having to induce non-

physiologic cell fate transitions, fate conversion toward HSC has

begun to yield relevant insights into HSC biology that may synergize

with preexisting paradigms to better understand the ontogeny,

maintenance, dysregulation, and therapeutic potential of HSCs.
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