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Abstract

T cell exhaustion plays a major role in failure to control chronic infections. High expression of 

inhibitory receptors, including PD-1, and the inability to sustain functional T cell responses 

contribute to exhaustion. However, the transcriptional control of these processes remains unclear. 

Here we demonstrate that the transcription factor T-bet regulates CD8+ T cell exhaustion and 

inhibitory receptor expression. T-bet directly repressed Pdcd1 transcription and decreased the 

expression of other inhibitory receptors. While elevated T-bet promoted terminal differentiation 

following acute infection, high T-bet expression sustained exhausted CD8+ T cells and repressed 

inhibitory receptor expression during chronic viral infection. Persisting antigenic stimulation 

caused T-bet downregulation, which resulted in more severe exhaustion of CD8+ T cells. These 

observations suggest therapeutic opportunities involving increasing T-bet expression during 

chronic infection.

The Introduction

CD8+ T cells play a crucial role in the eradication of many intracellular infections and can 

provide potent protective immunity. Following acute infection or vaccination, antigen-

specific effector CD8+ T cells acquire and maintain the potential to efficiently perform 
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functions including cytokine production and cytotoxicity, as well as the ability to rapidly 

proliferate and expand in number upon antigen re-exposure1. These memory CD8+ T cells 

are also maintained for long periods without antigen by interleukin 7 (IL-7) and IL-151. In 

contrast, during chronic infections, virus-specific CD8+ T cells become dysfunctional and 

fail to form optimal memory cells. These “exhausted” CD8+ T cells require antigen for 

survival and no longer use IL-7 or IL-15 efficiently2. The loss of CD8+ T cell function 

during chronic viral infection is a stepwise process, where the ability to make IL-2, TNF, 

IFN-γ and β-chemokines is progressively lost as the cells become more exhausted2. Defects 

in proliferation, cytotoxicity and survival are also characteristics of exhausted CD8+ T 

cells2. In the most severe instances of exhaustion, which occur when viral or antigen load is 

high, virus-specific CD8+ T cells can be physically deleted2. CD8+ T cell exhaustion is 

observed in mice during chronic lymphocytic choriomeningitis virus (LCMV) infection and 

other persisting viral infections, in primate models during SIV infections and in humans 

during chronic viral infections such as HIV, HCV and HBV or cancer2.

Cell surface inhibitory receptors have a major role in regulating T cell exhaustion during 

chronic infection. Expression of PD-1 (Pdcd1), an inhibitory receptor of the CD28-CTLA-4 

family, is dramatically upregulated and its high expression is sustained during chronic 

LCMV infection in mice3, 4. Blocking the PD-1 signaling pathway in vivo reinvigorates 

exhausted CD8+ T cell responses, leading to enhanced control of viral replication3. These 

LCMV mouse model observations were also confirmed in humans, where PD-1 pathway 

blockade enhanced HIV and HCV-specific T cell responses in vitro and improved the 

outcome of SIV infection in macaques by reducing viral burden and prolonging survival2. 

Recent studies also suggest an important role for the PD-1 pathway in tumors immunity5, 6 

and early clinical trials blocking the PD-1 pathway in cancer patients are showing promise7.

In addition to PD-1, exhausted CD8+ T cells upregulate many other inhibitory cell surface 

receptors, including LAG-3, CD244, CD160, CTLA-4, and Tim-34, 8, 9. These receptors 

have cooperative effects in mediating CD8+ T cell dysfunction. Simultaneous blockade of 

PD-1 with Lag-3 or Tim-3 is substantially better at reversing CD8+ T cell dysfunction and 

reducing viral burden than blocking each pathway alone during chronic infection in 

mice8, 10 and in vitro data from humans is consistent with these observations11. The 

underlying mechanisms controlling the expression of these inhibitory pathways during 

chronic viral infections, however, remain poorly understood.

Comparison of gene expression profiling in exhausted and effector or memory CD8+ T cells 

from mice revealed substantial changes in many pathways4. In addition to inhibitory 

receptors, exhausted CD8+ T cells have an altered expression of transcription factors and 

other genes involved in transcriptional regulation. Blimp-1 expression is especially high in 

exhausted CD8+ T cells12 and promotes expression of inhibitory receptors including PD-1, 

LAG-3, CD160 and CD244. During acute infection, Blimp-1 promotes terminal 

differentiation of effector CD8+ T cells towards the CD127LoKLRG-1Hi subset instead of 

CD127HiKLRG-1Lo memory precursors13, 14. Thus, Blimp-1 appears to repress memory 

CD8+ T cell formation and promote terminal differentiation during both acute and chronic 

viral infection.
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Like Blimp-1, high T-bet expression promotes formation of terminally differentiated 

CD127LoKLRG-1Hi effector CD8+ T cells, while the CD127HiKLRG-1Lo memory 

precursors express lower amounts of T-bet. Inflammation is an important factor driving high 

T-bet expression, and therefore T cell terminal differentiation, during acute infection15. In 

the absence of T-bet, effector CD8+ T cells are mostly CD127HiKLRG-1Lo and become 

memory CD8+ T cells with enhanced recall responses16. Thus, in acute infection, T-bet and 

Blimp-1 have similar (and perhaps partially overlapping) roles in promoting effector 

function and terminal differentiation of CD8+ T cells.

In this study we examined the role of T-bet in regulating virus-specific CD8+ T cell 

responses during chronic viral infection. We show a critical role for T-bet in CD8+ T cell 

exhaustion, which is distinctly different from its role in acute infection. T-bet expression 

was downregulated in exhausted CD8+ T cells in response to persisting antigen, and 

expression of T-bet was inversely correlated with expression of a subset of inhibitory 

receptors, including PD-1. Genetic ablation of T-bet exacerbated CD8+ T cell exhaustion 

and increased viral load. Conversely, overexpression of T-bet improved the fitness of 

exhausted CD8+ T cells and reduced the expression of PD-1 and other inhibitory receptors. 

T-bet bound directly to a regulatory region upstream of the Pdcd1 transcriptional start site. 

Thus, during chronic viral infection, T-bet regulates CD8+ T cell exhaustion by sustaining 

CD8+ T cell responses and by repressing the expression of PD-1 and other inhibitory 

receptors.

Results

T-bet expression in chronic and acute infection

To examine the role of T-bet in CD8+ T cells during chronic viral infection we compared T-

bet expression in mice infected with either LCMV Armstrong (Arm) that is cleared within 

8–10 days post-infection (p.i.), or LCMV clone 13, that induces 2–3 months of viremia and 

persists long-term in some tissues. One set of clone 13 infected mice was transiently 

depleted of CD4+ T cells prior to infection, a treatment that exacerbates viral load and CD8+ 

T cell exhaustion8. All CD44hi CD8+ T cells showed higher T-bet expression compared to 

CD44lo CD8+ T cells (Supplementary Fig. 1). No T-bet staining was detected in CD8+ T 

cells from T-bet knockout (KO) mice (Supplementary Fig. 1). T-bet expression was reduced 

in LCMV-tetramer+ CD8+ T cells from clone 13 compared to Arm infected mice (Fig. 1a). 

To determine whether this reduced T-bet expression was due to a defect in initial induction, 

we examined T-bet expression in antigen-specific CD8+ T cells on d1-3 p.i. using adoptively 

transferred TCR transgenic (P14) CD8+ T cells specific for the DbGP33 epitope. On d1 and 

d3 p.i., T-bet expression was similar during Arm and clone 13 infection (Supplementary Fig. 

2), suggesting that there were no gross differences in initial induction of T-bet in virus-

specific CD8+ T cells. However, on day 8 p.i., cells from clone 13 infected mice expressed 

significantly lower amounts of T-bet (Fig. 1b). By d16 p.i., two distinct subsets of T-bet 

expressing tetramer+ CD8+ T cells emerged during clone 13 infection, T-betBright and T-

betDim (Fig. 1b). The expression of T-bet in the T-betBright group was similar to that 

observed during acute infection (Fig. 1b). Notably, virus-specific CD8+ T cells in the CD4-

depleted mice, were predominantly T-betDim. Thus, T-bet was induced in virus-specific 
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CD8+ T cells during chronic LCMV infection, but persistence of the infection corresponded 

to a substantial reduction in T-bet expression in virus-specific CD8+ T cells compared to 

acute infection.

Higher viral load and reduced CD8+ T cell responses without T-bet

To examine the impact of reducing T-bet in T cells during chronic infection, we used mice 

in which one or both Tbx21 alleles were floxed and deleted in CD4+ and CD8+ T cells using 

CD4-Cre (cHet and cKO respectively). T-bet protein expression in CD8+ T cells from cKO 

mice was low or negative, intermediate in cHet mice and higher in CD8+ T cells from wild-

type mice (Supplementary Fig. 3). There was no difference in the frequency of antigen-

specific CD8+ T cells in the spleens from wild-type and cHet mice at d8 p.i. (Fig. 2a). The 

frequency of antigen-specific CD8+ T cells in the spleens of cKO mice was reduced 

compared to cHet and wild-type mice, resulting in a slight reduction in the absolute number 

on d8 p.i. in some (Fig. 2b), but not all (Supplementary Fig. 4) experiments. Overall, the 

breadth and immunodominance of the responses were similar between wild-type and cKO 

mice at d8 p.i. (Supplementary Fig. 4).

In T-bet-deficient mice, memory CD8+ T cells are maintained long-term following acute 

infection16. In contrast, by d30 of clone 13 infection there was a severe reduction in the 

numbers of T-bet cKO antigen-specific CD8+ T cells in the spleen (Fig. 2b) and other 

tissues (Fig. 2c). cHet mice also had a significant reduction of virus-specific CD8+ T cells in 

the bone marrow and blood at d30 following clone 13 infection (Fig. 2c). A distinct 

population of CD44hi CD8+ T cells was still present in cKO mice (Fig. 2a), suggesting that 

the loss of LCMV-specific CD8+ T cells did not result from a more general defect in all 

CD8+ T cells.

T-bet is not required for the clearance of LCMV Arm17. However, during clone 13 infection 

viremia was significantly elevated in cKO compared to wild-type mice, especially at later 

time points (Fig. 2d and e). Ablation of a single copy of T-bet also increased viral load, 

although this difference only became significant after ~2 months p.i. (Supplementary Fig. 

5). These data suggest that T-bet has a role in sustaining the virus-specific CD8+ T cell 

response during chronic LCMV infection.

We next examined the ability of CD8+ T cells to make cytokines upon antigen restimulation. 

While cKO antigen-specific CD8+ T cells were able to degranulate, ~20% fewer T-bet cKO 

CD8+ T cells expressed granzyme B (data not shown). On d8 p.i., the amount of the 

cytokines and chemokines produced per cell (i.e. MFI) was similar in wild-type and T-bet 

deficient CD8+ T cells (Fig. 3a,b, data not shown). The percentage of IFN-γ and MIP-1α co-

producers was also similar (~75%) in all groups (Fig. 3b). T-bet can repress TNF, IL-2 and 

IL-17 16, 17. Indeed, cKO CD8+ T cells produced more IL-2, TNF, and IL-17 on d8 p.i. 

(Supplementary Fig. 6). However, by d30 p.i., fewer T-bet cKO CD8+ T cells produced 

these cytokines upon restimulation compared to wild-type mice (Supplementary Fig. 6), 

suggesting that the reduction in virus-specific CD8+ T cells in cKO mice reflected loss of 

the cells rather than skewing towards an alternative lineage. Thus, T-bet appears to be 

required to sustain a virus-specific CD8+ T cell response during chronic viral infection.
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T-bet expression inversely correlates with PD-1 expression

PD-1 has a major role in regulating T cell exhaustion and repressing effective T cell 

responses during chronic infection2,3. PD-1 was highly upregulated on virus-specific CD8+ 

T cells from clone 13 compared to Arm-infected mice (Fig. 4a–c). An inverse correlation 

between T-bet and PD-1 was evident after d8 p.i. during clone 13 infection (e.g. at day 26 

p.i.; Fig. 4b). PD-1Int exhausted CD8+ T cells were predominantly T-betBright, while nearly 

all the PD-1Hi cells were T-betDim. In CD4-depleted, clone 13 infected mice, virus-specific 

CD8+ T cells were mostly PD-1Hi and T-betDim (Fig. 4b). These results indicate that 

downregulation of T-bet is associated with higher PD-1 expression by exhausted CD8+ T 

cells.

At d30 p.i., virus-specific CD8+ T cells from cHet and the few remaining virus-specific 

CD8+ T cells in cKO mice were almost exclusively PD-1Hi whereas wild-type cells 

contained both PD-1Int and PD-1Hi subsets (Fig. 4c). T-bet deficiency also increased PD-1 

expression in virus-specific CD4 T cells (Fig. 4c). These results suggest that T-bet can 

influence the expression of PD-1 and that this relationship between T-bet and PD-1 

expression is not restricted to CD8+ T cells.

Persisting antigen drives T-bet downregulation

The loss of T-bet expression during chronic LCMV infection was somewhat paradoxical 

since inflammation can increase T-bet expression15. Based on previous in vitro work18 we 

tested whether persisting TCR stimulation during chronic infection might negatively impact 

T-bet expression. The V35A clone 13 variant, which contains a point mutation in the 

immunodominant GP33–41 epitope19 causes a chronic infection and, while lacking the 

DbGP33 epitope, induces T cell responses to all other CD8+ T cell epitopes19. We infected 

mice with wild-type clone 13 and on d8 p.i. adoptively transferred CD8+ T cells from these 

mice into congenic mice infected 8 days previously with either wild-type or V35A clone 13 

(Fig. 5 and Supplementary Fig. 7a). T-bet expression in DbGP33-specific CD8+ T cells, 

which no longer received TCR stimulation, was significantly higher in V35A clone 13-

infected compared to wild-type clone 13-infected hosts (Fig. 5b). No significant changes in 

T-bet or PD-1 expression were observed in DbGP276-specific CD8+ T cells, which were 

subjected to persisting TCR stimulation, in wild-type or V35A infected recipients (Fig 5b). 

T-bet was also higher in DbGP33-specific CD8+ T cells compared to DbGP276-specific 

CD8+ T cells in V35A infected recipients, while in mice infected with wild-type clone 13 T-

bet expression was similar in these two populations. Failure of the DbGP33-specific CD8+ T 

cells to down-regulate T-bet in mice infected with the V35A variant virus indicates that 

persisting TCR stimulation was required for decreased T-bet expression during chronic 

LCMV infection.

Cell-intrinsic T-bet regulation of PD-1 expression

To determine whether T-bet had an intrinsic role in regulating PD-1, we used chimeric and 

adoptive transfer strategies where wild-type and T-bet deficient T cells were present in the 

same host and therefore subjected to the same viral load, inflammation or changes in other 

cell types such as CD4+ T cells or dendritic cells (Supplementary Fig. 7b–e).
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Polyclonal mixed peripheral chimeras were established by adoptive transfer of total CD8+ T 

cells from CD45.2+ T-bet cKO or cHet mice into CD45.1+ wild-type mice, followed by 

LCMV infection (Supplementary Fig. 7b, c and Fig. 6a, b). On d8 p.i., cKO virus-specific 

CD8+ T cells in clone 13 infected mice expressed significantly higher PD-1 than wild-type 

tetramer+ CD8+ T cells in the same mice. A difference in PD-1 was also apparent after acute 

infection although to a more modest extent (Fig. 6a). Antigen-specific cKO CD8+ T cells 

were nearly undetectable in the chimeric mice at later time points (data not shown; 

consistent with Fig. 2). To examine inhibitory receptor expression over time, we generated 

cHet chimeras, because cHet CD8+ T cells persisted longer than cKO CD8+ T cells during 

chronic LCMV infection. On ~d40 p.i., cHet tetramer+ CD8+ T cells were exclusively 

PD-1Hi, while the wild-type tetramer+ CD8+ T cells in the same animals contained both 

PD-1Hi and PD-1Int cells. These experiments suggest a cell-intrinsic role for T-bet in 

regulating PD-1 expression.

To address these questions in a setting where potential differences in precursor frequency or 

TCR repertoire were not a factor, equal numbers of wild-type and T-bet+/− P14 CD8+ T cells 

were co-transferred into wild-type mice (T-bet-deficient P14 failed to persist long term in 

clone 13 infected mice (data now shown)), followed by LCMV infection (Supplementary 

Fig. 7d). By d40 following clone 13 infection, nearly all T-bet+/− P14 were PD-1Hi, while 

the wild-type P14 population in the same hosts contained both PD-1Hi and PD-1Int cells 

(Fig. 6c). PD-1 expression was also slightly elevated in T-bet+/− P14 cells compared to wild-

type P14 cells even after Arm infection (Fig. 6c). Together, these experiments demonstrate a 

cell-intrinsic role for T-bet in regulating PD-1 expression in CD8+ T cells. The impact of T-

bet on PD-1 expression was modest during acute infection but it became more dramatic 

during chronic infection.

Overexpressed T-bet Sustains CD8+ Responses in Chronic Infection

During acute infection, T-bet promotes the formation of short-lived, terminally 

differentiated CD8+ T cells15. To test the impact of higher T-bet expression on CD8+ T cell 

responses during chronic infection, we retrovirally overexpressed T-bet in P14 CD8+ T cells 

(Supplementary Fig. 7e). T-bet-transduced P14 cells (marked by GFP expression (Fig. 7a)) 

were adoptively transferred into mice infected with either Arm or clone 13. During Arm 

infection, the percentage of terminally differentiated IL-7RLo CD8+ T cells was increased 

among GFP+ P14 cells transduced with T-bet RV compared to non-transduced (GFP−) cells 

in the same host or P14 cells transduced with empty RV (Fig. 7b). Consequently, GFP+, T-

bet-transduced P14 cells did not persist as well as the GFP+ P14 cells transduced with the 

empty vector (Fig. 7c), in agreement with previous work15.

During chronic infection, T-bet over-expression skewed GFP+ P14 cells towards the PD-1Int 

subset (Fig. 7b). Compared to the empty-vector control, T-bet overexpression also enhanced 

persistence of P14 cells during chronic infection and a higher percentage of GFP+ T-bet-

overexpressing compared to GFP− cells was present, especially at later time points (>day 20 

p.i.) (Fig. 7c). These results suggest that increasing T-bet expression reduced PD-1 and 

improved the persistence of exhausted CD8+ T cells during chronic infection.
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T-bet represses a set of inhibitory receptors

Exhausted CD8+ T cells upregulate a number of inhibitory receptors, which act 

synergistically with PD-1 to promote exhaustion4, 8, 11. To test whether T-bet might also 

impact expression of other inhibitory receptors we next examined the expression of Lag-3, 

BTLA, CD160, KLRG-1, CD244, and Tim-3 on virus-specific CD8+ T cells from wild-type 

and cHet mice at d40 following clone 13 infection (Fig. 8a). In cHet mice, exhausted 

tetramer+ CD8+ T cells were predominantly Lag-3Hi, CD160Hi, and BTLAHi, suggesting 

that T-bet coordinately repressed these receptors during chronic LCMV infection. In 

contrast, KLRG-1 expression was reduced in cHet mice, consistent with previous studies 

demonstrating a positive role of T-bet in KLRG1 expression during acute infections15. The 

effect of T-bet on CD244 and Tim-3 expression was more complex, since PD-1Hi cells in 

cHet mice showed heterogenous expression of these receptors. In addition, we observed 

changes in expression of a number of markers in T-bet-deficient antigen-specific CD8+ T 

cells during chronic infection (Supplementary Fig. 8).

Using the wild-type plus T-bet+/− P14 co-transfers strategy described above we also found 

that Lag-3, CD160, and BTLA expression was increased on T-bet+/− P14 cells (Fig. 8b). 

There was a slight shift towards increased CD244 expression, while Tim-3 expression was 

unchanged or slightly lower in T-bet+/− P14 cells. T-bet appeared to have a role in the early 

expression of Tim-3 since T-bet−/− P14 cells expressed less Tim-3 compared to wild-type 

P14 at d9 p.i. in during Arm or clone 13 infection, (Supplementary Fig. 9), consistent with a 

role for T-bet in the initial expression of Tim-320.

Increased T-bet expression using the retroviral overexpression approach in P14 cells 

increased KLRG-1 expression (Fig. 8c), but repressed Lag-3, CD160, and BTLA along with 

PD-1 during chronic LCMV infection. These results support a cell-intrinsic role for T-bet in 

regulating multiple inhibitory receptors and likely other genes in exhausted CD8+ T cells.

T-bet is a direct transcriptional repressor of PD-1

To address whether T-bet repressed Pdcd1 transcription directly we used EL4 cells that 

constitutively express PD-121 but minimal amounts of T-bet (Fig. 9a, b)22. Ectopic 

expression of T-bet in EL4 cells significantly downregulated PD-1 (Fig. 9b,c). To identify 

the regulatory elements of the Pdcd1 locus targeted by T-bet, we used a luciferase reporter 

construct containing two highly conserved regulatory regions (CR-B and CR-C) found in a 

~2300bp fragment upstream of Pdcd1. CR-C was reported to contain an NFAT site 

important for the transcriptional induction of Pdcd1 upon activation21, while the role of CR-

B remains unknown. Significant transcriptional activity was observed upon PMA and 

ionomycin activation with the full length construct (PD-1 B+C) but not with a version 

containing only the CR-B region (PD-1 B; Fig. 9d and Supplementary Fig. 10a), as 

previously reported21. T-bet inhibited the activity of the PD-1 B+C reporter by ~60–70% 

(Fig. 9d). A version of T-bet containing point mutations that abrogate DNA binding (T-bet 

D.B.M.)23 was expressed at similar levels to wild-type T-bet, but was unable to mediate 

repression of the reporter (Fig. 9d and Supplementary Fig. 10). Thus, T-bet repressed PD-1 

expression in a manner that required DNA binding.
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Consistent with the EL4 data, P14 cells retrovirally transduced with T-bet expressed less 

PD-1 than cells transduced with the empty vector after 3 days of culture (Fig. 9e,f), although 

the extent of PD-1 repression was less dramatic than observations made in vivo during 

chronic infection (Fig. 7b). Thus, genetic ablation in vivo as well as over-expression in vitro 

and in vivo all demonstrate repression of PD-1 expression by T-bet.

To test whether T-bet bound directly to regulatory elements of Pdcd1, we performed 

chromatin immunoprecipation (ChIP). Specific enrichment of T-bet at the Pdcd1 region was 

not detected following ChIP in exhausted CD8+ T cells isolated from clone 13-infected mice 

(Fig. 9g), though some binding to the Ifng locus was observed in these cells, likely due to a 

more optimal T-bet binding site in the regulatory region of this gene. In contrast, in CD8+ T 

cells activated in vitro or isolated from Arm immune mice, both cells that expressed less 

PD-1 than exhausted CD8+ T cells, T-bet physically associated with Pdcd1 within a region 

~500bp upstream of the transcriptional start site, near or within the “B” region (Fig. 9g). 

Binding to the Pdcd1 regulatory region was not detected in Tbx21−/− CD8+ T cells 

(Supplementary Fig. 11). T-bet binding to Pdcd1 was, however, also observed in in vitro 

activated, TH1 polarized CD4+ T cells (Fig. 9h). Together, these results demonstrate that T-

bet acts as a repressor of PD-1 expression via direct binding to upstream regulatory elements 

of Pdcd1.

Discussion

In this study, we demonstrate a critical role of T-bet in sustaining antiviral CD8+ T cell 

responses during chronic viral infection. In contrast to acute infection, high T-bet expression 

improved the long-term durability of antigen-specific CD8+ T cells during chronic infection. 

Sustained T-bet expression repressed inhibitory receptors, while low T-bet resulted in high 

expression of PD-1 and exacerbated CD8+ T cell exhaustion.

T-bet directly repressed PD-1 expression in LCMV-specific CD4+ and CD8+ T cells and 

bound to the regulatory region upstream of Pdcd1. A previously identified NFAT site 

critical for PD-1 expression21 is also located upstream of Pdcd1 suggesting potential 

transcription factor cooperation or antagonism in PD-1 expression. Indeed, T-bet can repress 

NFAT-mediated transactivation in other settings29, but the connection between T-bet and 

NFAT on Pdcd1 transcription will require further analysis. In addition to a possible 

relationship between NFAT and T-bet, Blimp-1 and T-bet have analogous roles during acute 

infection where high expression of these two transcription factors drives CD8+ T cells to 

become functional, terminally differentiated effectors14, 15. However, these two transcription 

factors seem to have opposing roles during chronic infection, where high Blimp-112 

promotes exhaustion and inhibitory receptor expression while T-bet is low in this setting. A 

tightly coupled reciprocal expression pattern is also observed between T-bet and 

Eomesodermin16, 17 and between Blimp-1 and Bcl630, suggesting a complex but 

coordinated transcriptional program. In addition, since T-bet (and Blimp-112) also regulated 

expression of LAG-3, BTLA and CD160, it will be important to further define how the 

constellation of key transcription factors expressed by exhausted T cells cooperates to guide 

this developmental program.

Kao et al. Page 8

Nat Immunol. Author manuscript; available in PMC 2012 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pdcd1 was not identified as a target for T-bet using either ChIP-Chip31 or ChIP-Seq 

(unpublished observations). The binding of T-bet to Pdcd1 appears to be weaker than for 

other canonical targets like Ifng, and typical dimeric T-bet sites were not identified in the 

Pdcd1 region where T-bet binds, suggesting that T-bet might interact with degenerate T-box 

half sites found in this region. It is possible that this T-bet-Pdcd1 interaction falls below the 

limit of detection of these genome-wide techniques. Such a model could also explain why in 

exhausted CD8+ T cells where T-bet expression is low, binding of T-bet to Pdcd1 is lost, but 

binding to more optimal sites like Ifng is preserved. In other settings such as memory or in 

vitro activated CD8+ T cells where T-bet levels are higher, there is likely sufficient T-bet 

protein to bind to weaker sites such as in Pdcd1. Thus, while large-scale screening 

approaches are invaluable, alternative methods might be required to identify other 

potentially important biological transcriptional targets.

The relationship between T-bet and PD-1 may differ depending on the context. For example, 

the inverse correlation between PD-1 and T-bet during chronic infection becomes apparent 

only after ~d15 p.i. In addition, genetic ablation of T-bet during acute infection slightly 

increased PD-1 expression on CD8+ T cells, but on its own was insufficient to drive PD-1 

expression to the extent observed during chronic infection. Therefore, persisting antigen 

signals or other transcription factors together with T-bet likely provide context-specific and 

temporal regulation of PD-1 and other inhibitory receptors. Importantly, virus-specific CD8+ 

T cells in chronically infected cKO and cHet mice express comparably high PD-1, but the 

defects in cKO CD8+ T cells are much more pronounced, suggesting a PD-1-independent 

role for residual T-bet in cHet mice. Nevertheless, T-bet is a critical transcriptional regulator 

of Pdcd1 and affects the expression of multiple inhibitory receptors, especially during later 

stages of chronic infection.

The distinct expression of T-bet during acute and chronic viral infection also has potential 

implications for understanding the molecular relationship between terminal differentiation 

and exhaustion. High T-bet expression promotes terminal differentiation15, 16 but represses 

certain features of exhaustion. Notably, phenotypic markers of terminal differentiation such 

KLRG-14, 8, or CD57 are not necessarily correlated with exhaustion or PD-1 

expression32, 33. These observations, including the distinct roles of T-bet during acute versus 

chronic infection, support the notion that terminal differentiation and exhaustion of CD8+ T 

cells follow distinct molecular paths, although further studies are clearly warranted.

Low T-bet expression during chronic compared to acute LCMV infection was unexpected, 

given the elevated antigen and inflammation associated with clone 13 infection. Increases in 

IFN-α, IFN-β24 and IFN-γ25 and of IFN responsive genes4 are observed during chronic 

LCMV infection. IFN-γ signaling reinforces T-bet expression during TH1 differentiation26, 

and type I IFN can induce IFN-γ production27 or might itself regulate T-bet28. While TCR 

signaling is necessary for initiating T-bet induction, we found that prolonged TCR 

stimulation led to T-bet downregulation in the presence of persisting inflammation. One 

possible mechanism based on in vitro data and modeling work18 as well as the in vivo 

studies presented here is that persisting TCR signaling decouples the ability of inflammation 

to increase or sustain T-bet expression. These observations suggest that there might be 
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opportunities to preserve T-bet expression during chronic infection if the intracellular 

regulatory mechanisms can be defined.

In humans, chronic infections can also lead to T cell exhaustion and upregulation of 

inhibitory receptors, such as PD-12. Given the potential relationship between antigen, 

inflammation, and T-bet it will be interesting to investigate T-bet and PD-1 co-expression in 

some of these settings. During chronic HCV infection, pegylated type I IFN therapy is 

effective in only a subset of patients and examining whether T-bet correlates with clinical 

outcome of HCV infection and/or IFN treatment could be informative. While the expression 

of T-bet in T cells responding to latent and/or reactivating viral infections could be different, 

for infections with sustained and high viral replication our data indicates that dysregulation 

of T-bet expression could underlie at least part of the defects in exhausted CD8+ T cells 

including high expression of inhibitory receptors and failure to sufficiently sustain T cell 

immunity. Future studies that aim to increase T-bet expression might have therapeutic 

benefits during chronic viral infections in humans.

Methods

Mice strains

C57BL/6 (B6) and congenic (CD45.1) B6 mice were purchased from NCI. Tbx21fl mice 

were used previously17; these mice were backcrossed to B6 for at least 10 generations, then 

crossed with CD4-Cre transgenic mice to produce F1 littermates that were intercrossed to 

generate mice with conditional deletion of T-bet at one (cHet) or both alleles (cKO). 

Germline T-bet knockouts (Tbx21−/−)34 were crossed with P14 TCR transgenics on a 

CD45.1 background; the littermates were intercrossed to produce P14 TCR transgenics on a 

mixed CD45.1/CD45.2 background with deletion of one or both alleles of T-bet. Mice were 

used between 5–20 weeks of age. All mice were age-matched in experiments comparing B6 

mice with T-bet cHet and cKO mice. All animal work was performed in accordance with the 

Institute Animal Care and Use Guidelines for the University of Pennsylvania, University of 

Washington, and the Wistar Institute.

Viral infections, plaque assays, and in vivo antibody treatments

LCMV strains were produced and titered35 as described. Mice were infected with LCMV 

Armstrong (2 × 105 PFU) by intraperitoneal (i.p.) injection or LCMV clone 13 (4 × 106 PFU 

for wild type and 2 × 106 PFU from V35A variant) intravenously (i.v.). The V35A variant 

strain of clone 13 was described previously19. For infections in CD4 depleted mice, 200 μg 

of anti-CD4 antibody (GK1.5; BioXcell) was injected twice i.p., one day before and one day 

after clone 13 infection.

Flow cytometry, antibodies, reagents, and peptide restimulations

Lymphocytes were isolated from blood, bone marrow, spleen, lymph node, brain, and liver 

as described36. Biotinylated H-2Db(gp33) or H-2Db(gp276) monomers were produced, 

refolded, biotinylated, and tetramerized with streptavidin-APC (Molecular Probes/

Invitrogen) as described36. I-AbGP66–77 tetramers were obtained from the NIH Tetramer 

Core (Atlanta, GA). Antibodies for flow cytometry are outlined in Supplementary Table 1. 
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Surface staining with antibodies and tetramers for flow cytometry was described36, and 

intracellular cytokine staining was performed using the Cytofix/Cytoperm kit according to 

the manufacturer’s instructions (BD Biosciences). Intracellular staining using T-bet antibody 

(4B10; Santa Cruz Biotechnology) conjugated to FITC or AlexaFluor488 was performed by 

fixation of cells in 1% formaldehyde in PBS, followed by permeabilization and staining for 

1–2 hours in 0.1% Triton X-100 and 1% FBS in PBS, then fixation again in 1% 

formaldehyde in PBS. Lymphocytes were restimulated with individual LCMV peptides 

(~200 nM) or a pool of 20 LCMV peptides37 for 5–7 h at 37°C in 5% CO2 incubator. Flow 

cytometry was performed using an LSR II (BD ImmunoCytometry Systems), and the data 

was analyzed with FlowJo 9.0.1 (Treestar).

Cell lines

The 293T cell line was provided by W. Pear (University of Pennsylvania). EL4 and A20 cell 

lines were obtained from ATCC.

Retroviral production, transduction, CFSE labeling, and adoptive transfer

T-bet cDNA was previously cloned into the MIG retrovirus38. Empty MIG or T-bet-MIG 

was retrovirus was produced in 293T cells using the calcium phosphate method as 

described39. Naive P14 cells were activated with GP33–41 peptide in vitro for 12–24 h, then 

transduced with retroviral supernatants by “spin-fection”: 1mL of retroviral supernatant 

containing 0.8 μg/mL polybrene mixed with ~1 × 106 activated P14 cells in 24-well plates 

and centrifuged 90 min, 1200 ×g, 20°C. P14 cells (5000 CD8+) were then immediately 

transferred i.v. into B6 hosts (infected 12–24 h previously with LCMV Arm or clone 13). 

Transduction was performed in EL4 without preactivation. For experiments assessing early 

T-bet expression in antigen-specific CD8+ T cells, P14 CD8+ splenocytes were labeled with 

CFSE as previously described36, and 1 × 106 labeled P14 CD8+ cells were transferred i.v. 

into congenic B6 hosts, infected with Arm or clone 13 the next day, then sacrificed on d1 or 

d3 p.i. to examine donor P14 in the spleen. For mixed P14 T-bet chimeras, equal numbers 

(1000) of WT and Tbx21+/− or Tbx21−/− CD8+ P14 splenocytes were co-transferred (i.v.) 

into congenic B6 hosts, then infected with Arm or clone 13 and analyzed on the days 

indicated. For adoptive transfer experiments of Tbx21fl CD4-Cre cells into B6 hosts, 

suspension of splenocytes containing 2 × 107 CD8+ T cells were transferred i.v. into each 

congenic B6 host, then infected with Arm or clone 13. For transfer experiments involving 

V35A variant clone 13 infection, donor mice were initially infected with WT clone 13; at d8 

p.i. splenocytes from donor mice were enriched for CD8+ T cells by negative selection using 

DynaBeads (Invitrogen), then ~1.5 × 106 gp33-specific CD8+ cells (and ~1.0 × 106 GP276-

specific CD8 T cells) were transferred i.v. into congenic hosts infected 8 days ago with WT 

clone 13 or V35A variant.

CD4+ and CD8+ T cell stimulations, chromatin immunoprecipitation, PCR

Chromatin immunoprecipitation (ChIP) of in vitro activated, TH1polarized WT or Tbx21−/− 

CD4+ T cells was performed as described22. WT or Tbx21−/− P14 splenocytes were 

stimulated with 50 nM of GP33–41 peptide and cultured in 100U/mL of IL-2 (NIH) for 5–6 

days. The culture was split every 2 days using media containing IL-2. P14 cells were 
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restimulated with PMA (50 ng/mL) and ionomycin (1 μM) for 5h before ChIP. For P14 

cells, sonication of fixed cells was performed using a Bioruptor (Diagenode), and ChIP was 

performed using the ChIP assay kit according to the manufacturer’s instructions (Millipore/

Upstate). Rabbit polyclonal anti-T-bet (H-210, Santa Cruz Biotechnology) or normal rabbit 

IgG was used for ChIP. Primers for amplifying the region upstream of Pdcd1 were: −0.5 kb 

region (forward) 5′-GGTGTCTGGAGAGGAAAGGC-3′ and (reverse) 5′-

CTACCTTGTCTGCCATGCGTG’3′; −1.5 kb region (forward) 5′-

CCTTGCTCCTCACCACACTGC-3′ and (reverse) 5′-

CAGAGCAGATCATGAGGACTG-3′. ChIP primers for Ifng and Hprt1 were described 

previously40

DNA constructs, EL4 restimulation, and luciferase assay

Construction of the PD-1 reporter containing either ~400bp (PD-1 B) or ~2300bp (PD-1 B

+C) of Pdcd1 upstream regulatory elements into the pGL3Basic vector (Promega) and pEF1 

(Invitrogen) with T-bet were previously described21, 29. T-bet DNA-binding mutant (DBM) 

contains double point mutations of arginies 163 and 164 as described previously23. 

Restimulation of EL4 cells with PMA and ionomycin and transfection using the 

Nucleofection kit (Amaxa/Lonza) was performed as described22. The dual luciferase assay 

was performed according to the manufacture’s instructions (Promega) and normalized to the 

expression of the renilla luciferase control vector, pRL (Promega).

Statistical analysis

P value for statistical significance was determined using paired or unpaired two-tailed 

Student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. T-bet is downregulated during chronic compared to acute LCMV infection
(a) Mean fluorescence intensity (MFI) of intracellular T-bet in CD8+ gp33-specific T cells 

from C57BL/6 (B6) mice or CD4-depleted B6 mice infected with LCMV Arm or clone 13 

and analyzed on the indicated days p.i.; top graph shows average MFI of each group for all 

time points measured, while bottom two graphs show MFI for individual animals at days 8 

(left) and 39 (right) p.i. Statistical analysis: *P < 0.05 or ***P < 0.001 (two-tailed unpaired 

Student’s t-test; error bars, s.e.m.) (b) Histograms from representative animals at each time 

point p.i. from each group; numbers indicate MFI (top) and percent reduction in MFI with 

respect to day 8 p.i. (bottom); grey-shaded histograms on d8 are from CD44Lo CD8+ cells. 

Data are representative of at least three independent experiments with at least 3 mice per 

group.
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Figure 2. T-bet ablation results in loss of antigen-specific CD8+ T cells and impairs viral control 
during chronic infection
(a) Frequency of H-2Db(gp33) (left) or H-2Db(gp276) (right) tetramer+ CD8+ T cells in 

spleens from wild-type, cHet, and cKO mice at days 9 and 37 following clone 13 infection. 

(b,c) Numbers of gp276-specific CD8+ T cells in wild-type, cHet, and cKO mice at days 8 

and 30 in spleens (b) and day 30 in indicated tissues (c) after clone 13 infection; numbers for 

bone marrow indicate gp276-specific CD8 T cells from one femur and for blood represent 

gp276-specific cells per million PBMC. (d) Longitudinal monitoring of viral titers from 

serum of wild-type, cHet, and cKO mice after clone 13 infection (error bars, S.E.M.). (e) 
Analysis of viral titers at day 30 p.i. Statistical analysis: NS, not significant (P > 0.05); *P < 

0.05, **P < 0.005, or ***P < 0.001 (two-tailed unpaired Student’s t-test.). LN, lymph node; 
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WT, wild-type (B6); cHet, Tbx21fl/+ CD4-Cre; cKO, Tbx21fl/fl/CD4-Cre. Data shown are 

representative of at least three independent experiments with at least 7 mice per group.
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Figure 3. T-bet ablation impairs antigen-specific CD8+ T cell function later but not early during 
chronic infection
(a) Representative dot plots showing IFN-γ and MIP-1α production in CD8+ splenocytes 

from wild-type, cHet, and cKO mice restimulated with a pool of 20 LCMV-specific peptides 

at days 8 and 30 p.i. (clone 13); the percentages in red indicate percent IFN-γ+ MIP-1α+ 

(top) and IFN-γ− MIP-1α+ (bottom) relative to total CD8+ cells. (b) Total antigen-specific 

(i.e. MIP-1α+) CD8+ T cells in spleen from wild-type, cHet, and cKO mice at day 8 (left) 

and day 30 (right) identified by peptide restimulation using gating strategy described in a 
(top graphs); percentages shown in bottom graphs indicate “polyfunctionality”, i.e. 

percentage of total antigen-specific cells (MIP-1α+) that are dual-positive (IFN-γ+/

MIP-1α+). Statistical analysis: NS, not significant (P > 0.05); *P < 0.05, **P < 0.005, or 

***P < 0.001 (two-tailed unpaired Student’s t-test.) WT, wild-type (B6); cHet, Tbx21fl/+ 

CD4-Cre; cKO, Tbx21fl/fl CD4-Cre. Data are representative of at least three independent 

experiments with at least 4 mice per group.
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Figure 4. T-bet and PD-1 expression inversely correlates during chronic infection
(a) Frequency of antigen-specific CD8+ cells within spleen of B6 mice infected with Arm or 

clone 13 (with or without CD4 depletion) on 26 p.i. (b) Costaining for intracellular T-bet 

and surface PD-1 in antigen-specific (DbGP33+) CD8+ T cells at days 8 and 26 p.i. (c) PD-1 

expression on antigen-specific CD8+ and CD4+ (I-Ab(gp66)+) T cells in spleen from wild-

type, cHet, and cKO mice at d30 p.i. (clone 13). WT, wild-type (B6); cHet, Tbx21fl/+ CD4-

Cre; cKO, Tbx21fl/fl CD4-Cre. Data shown are representative of at least three independent 

experiments with at least 3 mice per group.
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Figure 5. T-bet downregulation during chronic infection is due to persisting antigen
(a) CD8+ splenocytes from clone 13-infected donors (CD45.2+) were adoptively transferred 

into congenic hosts infected with either wild-type or the V35A strain of clone 13 at d8 p.i., 

and expression of PD-1 and T-bet in donor gp33-specific and gp276-specific CD8+ T cells 

in the spleen 8 days after transfer is shown. (b) Quantitative analyses of T-bet expression in 

donor gp33- and gp276-specific CD8+ cells from a are displayed, where each data point 

represents an individual host. Statistical analysis: NS, not significant (P > 0.05); **P < 

0.005 (two-tailed Student’s t test). WT, wild-type. Similar results were observed in two 

independent experiments with 4–6 mice per group.
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Figure 6. Peripheral chimeras and mixed P14 transfers demonstrate a cell-intrinic role for T-bet 
repression of PD-1
Chimeras were generated by transferring (i.v.) ~25 × 106 CD8+ T-bet cKO (a) or T-bet cHet 

(b) splenocytes into CD45.1+ wild-type hosts or transferring (i.v.) 1000 CD8+ wild-type 

(CD45.2+) and 1000 CD8+ Tbx21+/− (CD45.1+ CD45.2+) into CD45.1+ wild-type hosts then 

infecting with LCMV the following day (c). (a) Hosts were bled on d8 p.i. and PD-1 

expression on gated host and donor CD8+ gp33- or gp276-specific PBMCs were assessed. 

(b) T-bet and PD-1 expression of gated T-bet cHet donor (top panels) and wild-type host 

(bottom panels) antigen-specifc CD8+ splenocytes d42 p.i. (c) Overlay histograms showing 

PD-1 expression on donor wild-type and Tbx21+/− CD8+ P14 splenocytes d40 p.i. in one 

representative animal (among at least three animals per experimental group) infected with 

Arm (left) or clone 13 (right). Statistical analysis (a,c): NS, not significant (P > 0.05); *P < 

0.05, **P < 0.005, or ***P < 0.001 (two-tailed paired Student’s t-test.). WT, wild-type (B6); 
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cHet, Tbx21fl/+ CD4-Cre; cKO, Tbx21fl/fl CD4-Cre. Similar results were observed in 2–4 

independent experiments with at least 3 mice per group.
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Figure 7. T-bet overexpression downregulates PD-1 expression and improves durability of 
exhausted antigen-specific CD8+ T cells
Antigen-specific (P14 TCR transgenic) CD8+ T cells overexpressing T-bet (through 

retroviral transduction) were introduced into hosts infected with either LCMV Armstrong or 

clone 13. (a) Efficiency of transduction of CD8+ P14 cells was monitored in vitro 4 days 

post-activation (3 days post-transduction) when transduced with either empty (top) or T-bet 

expressing (bottom) retrovirus. (b) Splenocytes from Arm (top two rows) or clone 13 

(bottom two rows) infected hosts were harvested on days 41–43 p.i.; donor P14 cells 

(CD45.2+) were gated on GFP+ or GFP−, and IL-7Rα or PD-1 expression on GFP+ and 

GFP− P14 cells in Arm and clone 13 groups are shown; statistical analysis: NS, not 

significant (P > 0.05); *P < 0.05 or **P < 0.005 (two-tailed paired Student’s t-test.) (d) 
Percentage of GFP+ cells among transferred P14 population was tracked longitudinally from 

PBMC collected from Arm (left) or clone 13 infected hosts (error bars, s.e.m.). Similar 

results were observed in at least two independent experiments.
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Figure 8. T-bet regulates expression of multiple cell-surface inhibitory receptors during chronic 
infection
(a) Same experiment as described for Fig 4c, except inhibitory receptor expression for wild-

type (top row) and cHet (bottom row) are shown separately as dot plots in relation to PD-1. 

(b) Same P14 mixed adoptive transfer strategy and color scheme for histograms as described 

for Fig 5d to compare expression of indicated inhibitory receptors between wild-type and 

Tbx21+/− P14 in clone 13 infected hosts. (c) Same P14 retroviral overexpression and transfer 

strategy and gating strategy as described in Fig 6a,c; dot plots show inhibitory receptor 

expression on GFP+ (transduced) and GFP− (untransduced) P14 cells in clone 13 infected 

hosts; percentages reflect those expressing inhibitory receptors among transduced (top) and 

untransduced (bottom) cells. Similar results were observed in at least 3 independent 

experiments with at least 3 mice per group.
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Figure 9. T-bet is a direct transcriptional repressor of the Pdcd1
(a-d) EL4 in vitro assays: (a) PD-1 expression on EL4 and A20 cells; representative plots of 

T-bet (left) and PD-1 (right) expression, b, and statistical analysis of relative PD-1 

expression, c, after transduction with an empty retrovirus (top row) or T-bet retrovirus 

(bottom row); MFI was normalized to the untransduced (GFP-) population and indicated 

above the gates in b; (d) schematic of PD-1 regulatory region containing two highly 

conserved regions (B and C) cloned into pGL3 luciferase reporter and luciferase activity of 

the PD-1 reporter when co-transfected with empty construct (pEF1) or one containing wild-

type T-bet or T-bet DBM. (e,f) T-bet and PD-1 expession of CD8+ P14 cells activated in 
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vitro and transduced with empty or T-bet retrovirus; representative plots, normalized MFI, 

and statistical analysis as described for b and c. (g) T-bet ChIP of in vitro activated P14 

TCR transgenic CD8+ splenocytes, P14 CD8+ T splenocytes d24 p.i. (Arm), and 

CD44hiCD62Llo CD8+ splenocytes (all PD-1Int or PD-1Hi) d40 p.i. (clone 13). PCR 

amplification of −0.5 kb and −1.5 kb regions of Pdcd1 and promoter regions of Ifng and 

Hprt1. (h) T-bet ChIP of in vitro activated, TH1 polarized WT or Tbx21−/− CD4+ T cells and 

qPCR of Pdcd1. Statistical analysis: **P < 0.005 (error bars, S.E.M; two-tailed Student’s t 

test). WT, wild-type; ChIP, chromatin immunoprecipitation. Similar results were observed 

in at least 2–5 independent experiments.
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