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Transcription factor TFEB cell-
autonomously modulates 
susceptibility to intestinal epithelial 
cell injury in vivo
Tatsuro Murano1,3, Mehran Najibi1,5, Geraldine L. C. Paulus1,3, Fatemeh Adiliaghdam1,  
Aida Valencia-Guerrero2, Martin Selig4, Xiaofei Wang2, Kate Jeffrey1, Ramnik J. Xavier1,3,  
Kara G. Lassen1,3 & Javier E. Irazoqui  1,5

Understanding the transcription factors that modulate epithelial resistance to injury is necessary 

for understanding intestinal homeostasis and injury repair processes. Recently, transcription factor 
EB (TFEB) was implicated in expression of autophagy and host defense genes in nematodes and 

mammalian cells. However, the in vivo roles of TFEB in the mammalian intestinal epithelium were not 

known. Here, we used mice with a conditional deletion of Tfeb in the intestinal epithelium (Tfeb∆IEC) to 

examine its importance in defense against injury. Unperturbed Tfeb∆IEC mice exhibited grossly normal 

intestinal epithelia, except for a defect in Paneth cell granules. Tfeb∆IEC mice exhibited lower levels of 
lipoprotein ApoA1 expression, which is downregulated in Crohn’s disease patients and causally linked 
to colitis susceptibility. Upon environmental epithelial injury using dextran sodium sulfate (DSS), 
Tfeb∆IEC mice exhibited exaggerated colitis. Thus, our study reveals that TFEB is critical for resistance to 
intestinal epithelial cell injury, potentially mediated by APOA1.

The intestinal epithelium is the major site of interaction between the host and colonizing microbes. It is 
formed by one layer of intestinal epithelial cells, which include enterocytes, mucus-secreting goblet cells, 
antimicrobial-secreting Paneth cells, and hormone-secreting enteroendocrine (or chroma�n) cells. A major 
function is to provide a physical barrier to bacterial translocation into the host. An equally important function 
of intestinal epithelial cells is to secrete antimicrobial peptides and mucus that establish spatial segregation with 
the microbial population that resides in the lumen. A third important function is of surveillance of the lumen. 
Disruption of homeostasis in the lumen, by bacterial dysbiosis or chemical insult, results in the induction of genes 
that encode signaling molecules, which are secreted into the underlying stroma and recruit cells of the innate and 
adaptive immune systems1,2. Defective epithelial barrier function results in chronic activation of such responses, 
leading to in�ammatory bowel disease and malignancy3.

Intestinal epithelial cells sense damage to the epithelial barrier as well as microbial products, which triggers 
changes in gene expression resulting in activation of the downstream host response to restore homeostasis4,5. 
Although the regulation of intestinal epithelial gene expression by such stimuli is considered a key event to pre-
serve and restore homeostasis, it is poorly understood. Previous studies have found roles for the NF-κB family 
of transcription factors that are triggered by engagement of TLR and NLR pattern recognition receptors2,6–8. 
However, it is likely that more complex transcriptional networks are important for the regulation of gene expres-
sion in the intestinal epithelium in response to environmental cues9,10.
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To discover transcription factors that are important for host defense in the intestinal epithelium, we previously 
followed an unbiased approach in the model organism C. elegans. We discovered that transcription factor TFEB 
(called HLH-30 in nematodes) is important for the induction of host defense genes in C. elegans infected with 
pathogenic bacteria11. TFEB was previously discovered as a transcription factor binding to the Eµ heavy chain 
immunoglobulin enhancer12, and important for the induction of CD40 ligand in T cells13. More recently, TFEB 
was identi�ed as a key transcriptional activator of a large set of genes during cellular stress, including autophagy 
and lysosomal genes, known as the Coordinated Lysosomal Expression and Regulation (CLEAR) network14–16.

TFEB activity is regulated post-translationally. Phosphorylation of TFEB by mTORC1, ERK2, and GSK3 
results in its cytosolic retention16–18. Dephosphorylation of TFEB can be triggered by release of lysosomal Ca2+ 
and subsequent activation of protein phosphatase calcineurin, as well as by mTOR inhibition, causing its relo-
calization into the nucleus19. In our previous studies, we discovered that C. elegans HLH-30/TFEB controls the 
induction of genes with antimicrobial or cytoprotective functions, and that both classes of genes are required for 
host defense against infection. However, whether HLH-30/TFEB is required within the intestinal epithelium for 
this function is not known. We also showed that TFEB is required in murine macrophages for proper induction 
of several cytokines and chemokines a�er phagocytosis of Gram+ or Gram- bacterial pathogens, indicating that 
TFEB is a novel and evolutionarily conserved transcription factor in the host response to bacterial infection11,20. 
Based on this precedent, it is important to determine the functional importance of TFEB in barrier protection and 
repair in the mammalian intestinal epithelium.

To examine the biological roles of intestinal epithelial TFEB in vivo, we generated mice that lack intestinal 
epithelial TFEB. Conditional deletion of TFEB in the intestinal epithelium did not cause major abnormalities 
in ileal or colonic epithelium in unperturbed animals, except for abnormal Paneth cell secretory granules. In 
contrast, deletion of TFEB resulted in dramatically enhanced pathology during DSS-induced colitis, including 
increased local and systemic in�ammation and bacterial translocation to distal tissues, concomitant with large 
gene expression changes in the intestinal epithelium compared to wild type animals. �ese strong e�ects of TFEB 
deletion reveal an important and previously unknown function for TFEB in resistance to injury to the intestinal 
epithelium.

Results
Intestinal epithelial TFEB is dispensable for baseline homeostasis. To determine the pattern of 
expression of TFEB in unperturbed animals, we performed anti-TFEB immuno�uorescence in sections of the 
small intestine and colon of 8–12 week old mice of both sexes. We observed extensive TFEB expression through-
out both tissues (Fig. 1A). In the small intestine, TFEB expression was prominent in the epithelium proper along 
the crypt-villus axis, with higher expression in the crypts. TFEB was also expressed by unidenti�ed cells in the 
lamina propria. While TFEB expression was apparent in the submucosa and adventitia, it was absent from the 
muscularis propria. Similarly, in the colon TFEB expression was mostly epithelial, submucosal, and adventitial. 
Furthermore, qRT-PCR of Tfeb mRNA from colon revealed that Tfeb mRNA is enriched in the epithelial cells 
compared to whole tissue (Fig. S1). �ese observations show that in the intestine, TFEB is expressed mainly in 
the epithelium.

To investigate the biological importance of TFEB expression in the intestinal epithelium, we undertook loss of 
function studies. Tfeb-knockout mice exhibit embryonic lethality21. �erefore, to generate mice that lack intesti-
nal epithelial TFEB expression, we bred Tfeb�ox/�ox mice with mice that express the site-speci�c recombinase Cre 
from the villin promoter (villin-Cre mice)18. �e resulting Tfeb�ox/�ox homozygous, villin-Cre heterozygous double 
mutants (Tfeb∆IEC mice) lack detectable TFEB expression in the intestinal epithelium (Fig. 1B,C). In terms of 
growth, size, weight, external appearance, and behavior, Tfeb∆IEC mice were indistinguishable from their Tfeb�ox/

�ox littermates. Assessment of small intestine and colon from Tfeb∆IEC mice revealed normal histology compared 
to age-matched, Tfeb�ox/�ox littermates (Fig. 1D), regardless of sex. Furthermore, there were no obvious di�erences 
in cell proliferation in either small intestine (Fig. 1E,F) or colon (not shown), as measured by Ki-67 immuno-
�uorescence of tissue sections, nor in goblet cell numbers, as measured using Periodic-acid Schi� (PAS) stain 
(Fig. 1G,H). �us, we concluded that TFEB is dispensable for normal morphology, proliferation, and di�erenti-
ation in the intestinal epithelium.

Loss of epithelial TFEB exacerbates DSS-induced colitis. To investigate the importance of epithelial 
TFEB during intestinal distress, we used DSS as a method to perturb homeostasis22. In this method, we induced 
chemical injury to the epithelium in gender-matched littermate mice with low-dose DSS for 5 days, followed 
by a recovery period of 6 days. We monitored body weight and disease activity index, a quantitative measure of 
colitis, over the entire time course (see Methods). Tfeb∆IEC mice exhibited dramatically enhanced body weight loss 
(Fig. 2A) and disease activity index (Fig. 2B), suggesting that DSS treatment caused much greater in�ammation 
in Tfeb∆IEC animals than in Tfeb�ox/�ox controls. Consistent with this interpretation, the colons of Tfeb∆IEC animals 
were much shorter than those from control mice a�er completion of the time course (Fig. 2C,D). Fecal Lipocalin 
2 is a sensitive biomarker for intestinal in�ammation in in�ammatory bowel diseases23 and rapidly increases a�er 
DSS treatment in mouse models24. We observed a signi�cantly greater increase in fecal Lipocalin 2 in Tfeb∆IEC 
animals compared to Tfeb�ox/�ox controls at 3 and 7 days a�er DSS treatment (Fig. 2E). Furthermore, even a�er 
the recovery phase, Tfeb∆IEC mice exhibited profound epithelial damage in colonic tissue, with a marked decrease 
in the number of crypts, severe in�ltration of immune cells, and a much greater histological pathology score 
(Fig. 2F,G). �ese observations con�rmed that in�ammation a�er injury in animals that lacked TFEB in the intes-
tinal epithelium was enhanced and persistent, suggesting that TFEB plays a critical role in the protection and/or 
recovery of intestinal epithelial cells from injury.
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Epithelial TFEB is required for restoration of the epithelial barrier. To gain further insight into the 
consequences of TFEB deletion, we examined the expression of pro-in�ammatory cytokines in colon tissue of 
animals at the end of the recovery phase (day 11). Using qRT-PCR, we observed increased expression of genes 
Il1b and Il6, which encode IL-1β and IL-6, respectively, in Tfeb∆IEC colons (Fig. 3A,B). In contrast, the expression 
of Ifng (IFN-γ) and Il17 (IL-17) remained una�ected by TFEB status (Fig. 3C,D). �ese results suggested that 
Tfeb∆IEC animals speci�cally exhibit greater expression of pro-in�ammatory mediators IL-1β and IL-6. We also 
detected higher IL-1β protein levels in spleens of Tfeb∆IEC animals (Fig. 3E), suggesting that they develop greater 
systemic as well as local in�ammation. Consistent with this idea, Tfeb∆IEC animals displayed enlarged spleens a�er 
recovery from DSS (Fig. 3F). Collectively, these data support a role for TFEB expressed in IECs to limit in�amma-
tion, and thus to a�ect the healing of the intestinal epithelial barrier a�er injury.

A�er the recovery phase, we measured bacterial endotoxin in the serum, which provides a quantitative meas-
ure of impaired intestinal barrier integrity and translocation of microbial products into the bloodstream. Serum 
endotoxin levels in untreated Tfeb∆IEC and Tfeb�ox/�ox animals were not signi�cantly di�erent, indicating the 
absence of major defects in intestinal permeability at baseline (Fig. 3G). During DSS administration, serum LPS 
levels increase22. As previously shown in wild type mice25, serum endotoxin levels returned to normal in Tfeb�ox/

�ox control mice a�er the recovery phase (Fig. 3G). In contrast, Tfeb∆IEC animals still exhibited three times the 
normal level of endotoxin during the recovery phase, suggesting that barrier function had not been fully restored 
(Fig. 3G). Consistent with this result, commensal bacterial translocation to the spleen and the mesenteric lymph 
nodes remained almost 2 logs higher in the Tfeb∆IEC animals compared to Tfeb�ox/�ox controls (Fig. 3H,I). �ese 
mice also exhibited signi�cantly increased levels of FITC-dextran in the serum a�er gavage, consistent with a per-
sistent disruption of the intestinal epithelial barrier of Tfeb∆IEC mice a�er recovery from DSS treatment (Fig. 3J). 
�ese results indicate that epithelial TFEB is critical for barrier restoration a�er epithelial injury.

Defective Paneth cells in Tfeb∆IEC animals. Intestinal immune homeostasis is maintained in part by 
specialized secretory epithelial cells that reside in the crypts of the small intestine, known as Paneth cells26. A 
major function of Paneth cell is to secrete antimicrobial peptides, including α defensins (or cryptdins), lysozyme, 
and phospholipase A1. α defensins are mostly expressed in the small intestine27, but are functional in the 
colon28. Paneth cell defects and reduced α defensin expression have been linked to in�ammatory bowel disease 

Figure 1. Tfeb∆IEC animals exhibit normal gut morphology. (A) Anti-TFEB immuno�uorescence of small 
intestine (Top) or colon (Bottom). (B) Anti-TFEB immunoblot of whole cell extracts showing undetectable 
levels of TFEB in the enterocytes of Tfeb∆IEC animals. (C) Anti-TFEB immuno�uorescence of colonic crypts. 
(D) H&E staining of sections of small intestine (Top) and colon (Bottom) of Tfeb∆IEC and Tfeb�ox/�ox animals. 
Scale bars represent 100 µm. (E) Anti-Ki-67 immuno�uorescence of small intestine of Tfeb∆IEC and Tfeb�ox/�ox 
animals. Scale bars represent 100 µm. (F) Quanti�cation of Ki-67 immuno�uorescence. N = 4 each. Data are 
means, error bars are S.E.M. ns, not signi�cant (Student’s t-test). (G) PAS staining of small intestine sections of 
Tfeb∆IEC and Tfeb�ox/�ox animals. Scale bars represent 100 µm. (H) Quanti�cation of goblet cells per ileal crypt. 
N = 3 mice per genotype and at least 20 crytps were scored for each mouse. Data are means, error bars are 
S.E.M. ns, not signi�cant (Student’s t test).
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in humans29–33 and to enhanced susceptibility to DSS-induced colitis in mice34,35. �erefore, we examined the 
phenotype of Paneth cells in Tfeb∆IEC animals. Lysozyme immuno�uorescence staining revealed no gross dif-
ferences in Paneth cell number, organization, or morphology between Tfeb∆IEC and Tfeb�ox/�ox animals at base-
line (Fig. 4A,B). In contrast, ultrastructural examination of intracellular secretory granules using transmission 
electron microscopy revealed a defect in Tfeb∆IEC Paneth cells. While the granules in Tfeb�ox/�ox Paneth cells pre-
sented the expected electron-dense material tightly surrounded by membrane, Tfeb∆IEC Paneth cells presented 
abnormal granule morphology, characterized by partial �lling of the membrane-bound compartment, suggestive 
of a granule biogenesis defect (Fig. 4C,D). Similar Paneth cell granule defects had been previously observed in 
Atg4B-de�cient mice34, suggesting that deletion of TFEB in IECs may a�ect a related mechanism at baseline. 
�ese results indicate that epithelial expression of TFEB is required for proper assembly of Paneth cell secretory 
granules.

Based on these �ndings in Paneth cells, we examined the distal small intestine tissue a�er recovery from DSS 
injury. Histologic assessment con�rmed more severe histopathology in distal small intestine of Tfeb∆IEC mice at 
day 11 (Fig. 4E,F). At baseline and a�er the recovery phase of DSS colitis, Tfeb�ox/�ox animals had similar numbers 
of lysozyme+ Paneth cells in the ileum, as evidenced by anti-lysozyme staining. In contrast, Tfeb∆IEC animals 
lacked lysozyme+ Paneth cells in the ileum a�er the recovery phase (Fig. 4G,H), suggesting that epithelial TFEB 
is essential for Paneth cell survival and restitution a�er intestinal injury.

Loss of epithelial TFEB results in minor transcriptional defects at baseline, major changes 
during injury. To determine the transcriptional e�ects of loss of TFEB function, we characterized the tran-
scriptomes of colonic epithelial cells from Tfeb�ox/�ox and Tfeb∆IEC animals by RNA-seq. At the end of the DSS 
administration (Day 4) and a�er the recovery period (Day 11), a large set (360 genes) were signi�cantly down-
regulated in Tfeb∆IEC animals compared to Tfeb�ox/�ox controls (Fig. 5A, Table S1). �e majority of these transcrip-
tomic di�erences between Tfeb∆IEC and Tfeb�ox/�ox animals persisted a�er the recovery phase (Day 11), consistent 

Figure 2. Epithelial deletion of TFEB results in greatly enhanced susceptibility to DSS-induced colitis. (A) Body 
weight and (B). Disease activity index as a function of time. Tfeb�ox/�ox mice N = 8, Tfeb∆IEC mice N = 5. Data are 
means, error bars are S.E.M. **p < 0.01, ***p < 0.001, ****p < 0.0001 (two-way ANOVA test). Representative 
of two independent trials. (C) Colonic lengths and spleen sizes of representative Tfeb∆IEC and Tfeb�ox/�ox animals 
at Day 11. (D) Quanti�cation of colon length. Tfeb�ox/�ox mice N = 8, Tfeb∆IEC mice N = 5. Data are means, error 
bars are S.E.M. ***p < 0.001 (two-sample t test). (E) Stool Lipocalin 2 (LCN2) as a function of time. Tfeb�ox/�ox 
mice N = 8, Tfeb∆IEC mice N = 5. Data are means, error bars are S.E.M. **p < 0.01, ****p < 0.0001 (two-way 
ANOVA test). (F) H&E staining of colonic sections of representative Tfeb∆IEC and Tfeb�ox/�ox animals at Day 11. 
Scale bars represent 50 µm. (G) Colon histology score at Day 11. Tfeb�ox/�ox mice N = 12, Tfeb∆IEC mice N = 10. 
Data are means, error bars are S.E.M. **p < 0.01 (two-sample t test).
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with our observation of the large recovery defect in the Tfeb∆IEC animals. Hierarchical clustering analysis segre-
gated the downregulated genes into two main clusters. �e �rst cluster contained 296 genes downregulated in the 
4-fold to 500-fold range. Gene ontology annotations related to Mitochondria, Ribosome, and Translation were 
signi�cantly enriched in this cluster (Table S2). �e second cluster contained 64 genes that were not detected in 
the Tfeb∆IEC animals. �ese included α defensin genes Defa21, Defa25, and Defa26, in addition to Tfeb. As men-
tioned, defensins are antimicrobial peptides mostly secreted by Paneth cells that play a critical role in shaping the 
microbiome. Proper expression of defensins is required for intestinal homeostasis, and their disruption is linked 
to dysbiosis36. qRT-PCR con�rmed lower Defa25 and Defa26 expression in epithelial cells of Tfeb∆IEC animals 
compared to Tfeb�ox/�ox animals at Day 11 a�er DSS treatment (Fig. 5B,C). �ese results support the hypothesis 
that TFEB is required for proper defensin gene expression a�er epithelial injury, and are consistent with the 
observed secretory granule defect at baseline and absence of Paneth cells a�er recovery in Tfeb∆IEC animals.

Conversely, 564 genes were signi�cantly upregulated in Tfeb∆IEC animals compared with Tfeb�ox/�ox controls, 
during DSS induction and recovery (Fig. 5A, Table S1). �ese segregated into two clusters as well; 217 genes that 
were not detected in the Tfeb�ox/�ox animals, and 347 that were upregulated in Tfeb∆IEC animals in the 4 to 500-fold 
range. In the latter category, we identi�ed genes involved in autophagy (Irgm1, Sqstm1), in the endoplasmic 
reticulum unfolded protein response (Xbp1), and in lysosomal function (Cathepsin genes Ctsa, Ctsb, and Ctsc, 
mannose-6-phosphate receptor M6pr, and β-hexosaminidase subunit β Hexb). Only the latter cluster exhibited 
enrichment of gene ontology annotation categories, which were related to adherens junctions, vesicle/vacuole/
lysosome, mitochondria, and the endoplasmic reticulum (Table S2). Taken together, these �ndings surprisingly 
showed no defect in the expression of lysosomal and autophagy genes in Tfeb∆IEC animals, and suggested that 
unknown cellular mechanisms may be activated to compensate for the loss of TFEB within intestinal epithelial 
cells. �ese putative compensatory mechanisms may induce the expression of innate immunity, cell adhesion, and 
organelle genes in an attempt to restore tissue homeostasis. Alternatively, the observed gene induction could be 
secondary to the enhanced in�ammatory in�ltration caused by loss of TFEB.

In contrast to these large di�erences during and a�er DSS treatment, there were few di�erentially expressed 
genes between unperturbed Tfeb�ox/�ox and Tfeb∆IEC animals (Fig. 6A, Table S1). Just 21 genes were signi�cantly 
downregulated in Tfeb∆IEC animals compared to Tfeb�ox/�ox controls, yet none of these were known autophagy or 
lysosomal biogenesis genes. �is suggested the unexpected conclusion that TFEB is dispensable in the colonic 
epithelium for autophagy and lysosomal gene expression at baseline.

ApoA1 encodes apolipoprotein A1, which is the major constituent of high density lipoprotein (HDL)37. 
APOA1 in HDL is important for the transport of cholesterol and phospholipids from the periphery to the 
liver. Importantly, de�ciency in human APOA1 expression has been linked to susceptibility to in�ammatory 
bowel disease in humans38,39. Furthermore, loss of intestinal ApoA1 results in greatly enhanced susceptibility to 
DSS-induced colitis and malignant transformation in mice40. In fact, overexpression of human APOA1 protects 
mice from DSS colitis41. �ese previous studies establish causality between APOA1 expression and intestinal 

Figure 3. Increased in�ammation and bacterial translocation in Tfeb∆IEC animals. (A–D) qRT-PCR from 
colonic tissue of genes Il1b (a), Il6 (b), Ifng (c), and Il17 (d) relative to reference gene Hprt. Data are means of 
three biological replicates, error bars are S.E.M. *p < 0.05 (two-sample t test). (E) Il-1β ELISA using splenic 
extracts from Tfeb∆IEC and Tfeb�ox/�ox animals. Tfeb�ox/�ox mice N = 8, Tfeb∆IEC mice N = 5. Data are means, 
error bars are S.E.M. **p < 0.01 (two-sample t test). (F) Splenic weights from Tfeb∆IEC and Tfeb�ox/�ox animals. 
Data are means, error bars are S.E.M. **p < 0.01 (two-sample t test). (G) Baseline and day 11 serum endotoxin 
levels. Data are means, error bars are S.E.M. **p < 0.01 (two-sample t test). (H,I) Bacterial colony-forming 
units (CFU) per g of tissue in spleens (H) and mesenteric lymph nodes (I). Tfeb�ox/�ox mice N = 7, Tfeb∆IEC mice 
N = 5 (H). Tfeb�ox/�ox mice N = 8, Tfeb∆IEC mice N = 5 (I). Data are means, error bars are S.E.M. **p < 0.01 (two-
sample t test). (J) Intestinal permeability measured by FITC dextran in serum. Tfeb�ox/�ox mice N = 7, Tfeb∆IEC 
mice N = 5. Data are means, error bars are S.E.M. **p < 0.01 (two-sample t test).
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in�ammation. Strikingly, ApoA1 was strongly downregulated in Tfeb∆IEC animals (Fig. 6A), suggesting that 
APOA1 could contribute to TFEB-mediated epithelial protection.

Defective APOA1 expression in Tfeb∆IEC animals. Using qRT-PCR, we confirmed that intestinal 
epithelial cells from unperturbed Tfeb∆IEC animals express much lower ApoA1 mRNA than Tfeb�ox/�ox animals 
(Fig. 6B). Immuno�uorescence staining for APOA1 revealed a major reduction in epithelial APOA1 in unper-
turbed animals (Fig. 6C,D). A�er recovery from DSS colitis, while Tfeb�ox/�ox animals exhibited reduced but 
detectable APOA1 expression, APOA1 expression in Tfeb∆IEC animals was lost (Fig. 6C,D). �ese results demon-
strate a severe reduction in APOA1 expression caused by TFEB de�ciency in the intestinal epithelium at baseline 
and a�er recovery from injury. Such defects in APOA1 expression could provide a mechanistic basis for the 
greatly enhanced susceptibility of Tfeb∆IEC animals to chemically-induced colitis.

Figure 4. Paneth cell abnormalities in Tfeb∆IEC animals. (A) Lysozyme staining by immuno�uorescence in 
small intestine of representative Tfeb∆IEC and Tfeb�ox/�ox animals at baseline. Scale bars represent 100 µm. (B) 
Quanti�cation of Paneth cells per crypt. Data are means, error bars are S.E.M. (C) Transmission electron 
microscopy of representative Paneth cells in Tfeb∆IEC and Tfeb�ox/�ox animals. Scale bars: 5 µm (Top), 1 µm 
(Bottom). (D) Quanti�cation of Paneth cell granule abnormality. N = 12 cells per genotype. Data are means, 
error bars are S.E.M. (E) H&E staining of small intestine sections from representative Tfeb∆IEC and Tfeb�ox/

�ox animals at day 11. Scale bars, 100 µm. (F) Ileal histology score at day 11. Tfeb�ox/�ox mice N = 7, Tfeb∆IEC 
mice N = 5. Data are means, error bars are S.E.M. (G) Lysozyme immuno�uorescence in small intestine of 
representative Tfeb∆IEC and Tfeb�ox/�ox animals at baseline and Day 11. Scale bars, 100 µm. (H) Quanti�cation of 
lysozyme staining in Tfeb∆IEC and Tfeb�ox/�ox animals as shown in f. Data are means, error bars are S.E.M. ns, not 
signi�cant, *p < 0.05, ***p < 0.001, ****p < 0.0001 (two-sample t test).
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Figure 5. Transcriptional defects in enterocytes from DSS-treated Tfeb∆IEC animals. (A) Di�erentially 
expressed genes at days 4 and 11. Over-represented GO annotations are indicated to the right of the respective 
clusters. (B,C) qRT-PCR of Defa25 (c) and Defa26 (d) relative to reference gene Gapdh in Tfeb∆IEC and 
Tfeb�ox/�ox animals at day 11. Tfeb�ox/�ox mice N = 7, Tfeb∆IEC mice N = 5. Data are means, error bars are S.E.M. 
**p < 0.01, (two-sample t test).



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS | 7: 13938  | DOI:10.1038/s41598-017-14370-4

Figure 6. Transcriptional defects in enterocytes from unperturbed Tfeb∆IEC animals. (A) Di�erentially 
expressed genes at day 0 (untreated), comparing Tfeb∆IEC to Tfeb�ox/�ox animals as reference. (B) qRT-PCR 
of ApoA1 relative to reference gene Gapdh in Tfeb∆IEC and Tfeb�ox/�ox animals at baseline. Tfeb�ox/�ox mice 
N = 6, Tfeb∆IEC mice N = 6. ****p < 0.0001 (two-sample t test). (C) Anti-APOA1 immuno�uorescence in 
representative Tfeb∆IEC and Tfeb�ox/�ox animals at baseline and day 11. Scale bars, 100 µm. (D) Quanti�cation of 
anti-APOA1 immuno�uorescence. ***p < 0.001, ****p < 0.0001 (two-way ANOVA test). (E) Working model 
for the observed TFEB-dependent decreased transcription of genes at baseline (le�) and during colitis (right). 
�e arrows connecting TFEB to each gene/category are not meant to imply direct regulation.
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Discussion
We report here the �rst functional analysis of TFEB in the intestinal epithelium, and identify TFEB as a critical 
determinant of susceptibility to epithelial injury. We found that TFEB is constitutively expressed in intestinal epi-
thelial cells in healthy animals. Conditional deletion of TFEB in the intestinal epithelium resulted in alterations to 
the Paneth cell compartment of the small intestine, and in minor transcriptional changes in colonic epithelial cells 
at baseline. Of note, ApoA1 expression was signi�cantly downregulated at baseline in Tfeb∆IEC animals (Fig. 5H). 
�e lack of a major transcriptional e�ect of TFEB deletion on the expression of genes in intestinal epithelial cells 
of unperturbed animals suggests that TFEB is not strongly engaged under baseline homeostatic conditions. �is is 
consistent with our �nding that TFEB localizes primarily to the cytosol of the intestinal epithelial cells in healthy 
animals, because cytosolic retention of TFEB is a major mode of its regulation42.

Animals lacking TFEB in the intestinal epithelium were much more susceptible to intestinal injury compared 
to control animals. Conditional deletion of epithelial TFEB resulted in greatly enhanced pathology through-
out the entire intestine a�er DSS treatment, as measured by several parameters, including cytokine expression, 
body weight loss, disease severity, and markers of in�ammation in stool. �e epithelial barrier exhibited more 
severe breakdown, as evidenced by increased permeability and bacterial translocation to distal organs. During 
the recovery phase, wild type mice were able to recover and repair the damage to the epithelium while condition-
ally deleted animals were unable to do so. �ese observations reveal a key role for TFEB deletion in the ability to 
protect the epithelium from chemical injury, and to repair the damage caused by the resulting exuberant in�am-
matory response.

Transcriptional pro�ling revealed a profound e�ect of TFEB deletion on the transcriptome of colonic entero-
cytes in DSS-treated animals (Fig. 6E). Among the downregulated genes, the notable absence of autophagy or 
lysosomal genes indicates that TFEB is not required for their expression in the intestinal epithelium, which is 
in stark contrast to other cell types, including HeLa cells and hepatocytes16. In contrast, the α defensin genes 
Defa25 and Defa26 were strongly dependent on TFEB. Defensins are antimicrobial peptides expressed by the 
intestinal epithelium, and are known to play important roles in intestinal homeostasis and host defense against 
infection43. Our results suggested that Tfeb is required for the expression of a subset of α defensin genes. �ese 
results are consistent with the striking defect in Paneth cell secretory granule morphology, and collectively sug-
gest an important role for Tfeb in secretory cells of the ileum and colon.

Interestingly, the expression of trefoil-factor 3 (T�3), which is important for intestinal tissue repair44, and of 
Peptide YY, which is expressed by enteroendocrine cells and mediates communication with the central nerv-
ous system to induce satiety45, were also reduced in the knockout. For the most part, genes that participate 
in autophagy or lysosomal biogenesis appeared to be una�ected, which could be a result of the action of the 
TFEB-related transcription factor Tfe346. Whether Tfe3 is capable of compensating for the loss of TFEB in the 
intestinal epithelium for the expression of autophagy and lysosomal genes is an important question that requires 
further examination. Overall, these results show that TFEB is required in the intestine for the expression of genes 
that participate in antimicrobial defense, tissue repair, and appetite control.

�e loss of APOA1 expression that we observed in unperturbed Tfeb∆IEC mice could explain, at least par-
tially, their enhanced susceptibility to epithelial injury and colitis. In humans, loss of APOA1 causes familial 
HDL de�ciency, Tangier disease, and familial visceral amyloidosis47. APOA1 expression is reduced in Crohn’s 
disease patients, and APOA1 levels inversely correlate with disease activity38,48. Furthermore, APOA1 transcrip-
tion is reduced in the ileal intestinal epithelium of pediatric CD patients, and is part of a speci�c transcriptional 
signature for that population38,39. Recent studies showed that APOA1-de�cient mice exhibit greatly enhanced 
susceptibility to DSS colitis and colitis associated carcinoma, establishing a causal link between APOA1 status 
and intestinal in�ammation in mammals40. Furthermore, overexpression of human APOA1 is su�cient to pro-
tect mice from DSS colitis41. �e exact molecular mechanism by which APOA1 protects against epithelial injury 
and malignancy is unknown. One proposed mechanism involves sequestration of LPS by HDL, thus reducing 
pro-in�ammatory signaling through TLR449. Because Tfeb∆IEC mice express greatly reduced levels of APOA1 in 
their intestinal epithelium, it is possible that their lack of APOA1 results in higher levels of LPS leakage during the 
initial stages of DSS induction, resulting in more severe in�ammation and non-resolving tissue damage. �us, we 
document a novel role for TFEB in the expression of APOA1, a known protective factor against epithelial injury 
and colitis in rodents and humans.

�e importance of TFEB and related transcription factors in in�ammation and immunity is emerging. Both 
TFEB and TFE3 were shown to be activated by LPS in macrophages, and to directly trigger a sizable portion of the 
downstream transcriptional response46. Among the genes that are a�ected by TFEB and TFE3 deletion are IL-6 
and TNFα, which are major contributors to intestinal in�ammation in vivo11,46. In addition, TFEB was shown to 
be activated in macrophages during Fc receptor-mediated phagocytosis, and in dendritic cells during treatment 
with LPS50,51. In this context, TFEB is important for antigen cross-presentation with important consequences for 
the adaptive immune response. Finally, TFEB was shown to be involved in a lysosomal homeostatic mechanism 
mediated by Cathepsin B during F. novicida infection in macrophages52. It is important to determine the contri-
bution of TFEB to immune homeostasis and host defense against diverse challenges, including epithelial injury, 
in vivo. From the present study, it is apparent that TFEB exerts an important function in intestinal epithelial cells 
to ensure proper Paneth cell function and protect the intestinal epithelium from injury.

Experimental Procedures
Mice. Mice were bred in speci�c-pathogen-free facilities at Massachusetts General Hospital. All experi-
ments were conducted following protocols approved by the animal ethics committees at Massachusetts General 
Hospital. Mice expressing cre recombinase under control of the villin promoter (Villin-cre) were purchased from 
Jackson Laboratory. Tfeb�ox/�ox mice18 were obtained from Telethon Institute of Genetic Medicine in Naples, Italy. 
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�ese mice were bred with Villin-cre mice to create mice with conditional targeted deletion of Tfeb gene. All the 
mice were 8–12 weeks old at the time of all the experiments.

Tissue preparation for immunofluorescence. Mice were sacri�ced by CO2 asphyxiation. Pieces of small 
intestine and colon were quickly dissected, opened longitudinally and washed in PBS. 4% paraformaldehyde 
(WAKO) was used for �xation. Fixed tissues were immersed in PBS containing 30% sucrose (Sigma-Aldrich) for 
overnight, embedded in OCT compound (Sakura Finetek USA) and frozen at −80 °C. 8 µm sections were cut 
using Leica CM3050 cryostat (Leica Microsystems) and mounted on microscope slides.

Immunofluorescence staining. Sections were air-dried and microwaved for 10 min in 10 mM citrate 
bu�er. 10% donkey serum was used for blocking during staining. Sections were then incubated with diluted 
primary antibody as described below for 18 hours at 4 °C. Slides were washed 3 times in PBS for 5 min and then 
incubated with diluted secondary antibody for 1 h at room temperature. Slides were washed in PBS again and 
mounted in Vectashield medium with DAPI (Vector Laboratories). �e primary antibodies used were rabbit 
anti-TFEB (1:250, Bethyl Laboratories), mouse anti-Ki-67 (1:1000, EBIOSCIENCE), rabbit anti-lysozyme 
(1:1000, DACO) and rabbit anti-apolipoprotein A1 Antibody (1 ug/ml, Invitrogen). �e secondary antibodies 
used were donkey anti-Rabbit Alexa488 (1:200, Jackson Immunoresearch), donkey anti-Mouse Alexa488 (1:200, 
Jackson Immunoresearch), and donkey anti-Rabbit Alexa 594 (1:200, Jackson Immunoresearch). Images were 
collected using a confocal �uorescent microscope (Nikon, Melville, NY).

IEC isolation. IEC isolation was performed as previously described31. Briefly, ileum and colon were 
removed and separated, opened longitudinally, washed with PBS and further minced into pieces. Tissues were 
treated with 1 mM DTT in PBS for 10 min and further treated with 30 mM EDTA (Boston BioProduct) in PBS 
for 30 min at room temperature. Isolated IECs were collected by centrifuge and used for Western blot or RNA 
analysis.

HE/PAS staining. A piece of small intestine and colon were harvested and quickly �xed in 10% formalin 
overnight at 4 °C. Fixed tissues were embedded in para�n and 5 µm section was stained with Hematoxylin/Eosin 
(HE) or Periodic acid Schi� (PAS). �e number of goblet cells was quanti�ed by counting PAS-positive cells of at 
least 20 villi from 3 individual mice.

Quantification of Immunofluorescence staining. Number of positive staining cells was counted by 
analyzing randomly selected 20 crypts from at least 3 independent mice. Analyzer was blinded to the origin of 
tissues. Fluorescence intensity measurement was done using ImageJ so�ware (NIH) thresholding tool in region 
of interest with the help of ROI Manager. Staining and image acquisition performed in parallel for the entire set 
with identical image acquisition settings and exposure times.

Electron microscopy. Area of electron-dense core (ED) and an electron-lucent peripheral halo (EL) 
in each secretory granule was measured using ImageJ so�ware (NIH). �e percentage of granules with EL/
ED + EL ≥ 40% was reported as abnormal granule percentage.

DSS treatment. Littermates with gender matched controls were used for all DSS experiments. Mice were 
fed 2.25% DSS (MW = 40000) dissolved in sterile water for 5 consecutive days, followed by being fed with sterile 
water for 6 additional consecutive days. Body weight of each mouse was measured daily. Disease activity indices 
were measured daily. �e following scoring system was used for the daily activity index: Stool consistency: 0; 
normal stool, 1; so� stool, 2; very so� stool, 3; diarrhea, Stool blood content: 0; negative hemoccult: 1; positive 
hemoccult: 2; traces of blood: 3; visible rectal bleeding. Stool consistency and blood content scores were then 
combined. On day 11 a�er initial treatment of DSS, mice were sacri�ced and colon length was measured. Distal 
colon was dissected for HE staining and RNA isolation. Colon histology was scored based on scoring system as 
previously described22. Brie�y, severity of in�ammation (0–3), depth of injury (0–3), and crypt damage (0–4) 
were estimated, then total scores were multiplied by a factor representing the percentage of tissue involvement: 
×1 (0–25%), ×2 (26–50%), ×3 (51–75%), ×4 (76–100%).

Western blot analysis. Cells were lysed in RIPA bu�er (Boston BioProduct) with Complete protease inhib-
itor (Roche) and Phosphatase inhibitor cocktail (Cell Signaling) for 15 min on ice. Lysates were pelleted and used 
for western blotting. �e antibodies used were rabbit anti-TFEB (1:1000, Bethyl Laboratories), mouse anti-β-actin 
(1:5000, SIGMA).

Real-time Quantitative PCR. RNA isolation was performed using the RNeasy kit (Qiagen). 
cDNA was synthesized using iScript cDNA Synthesis Kit (BioRad). Quantitative PCR reaction was run 
using the iQ SYBR Green Supermix (BioRad) and the CFX384 Touch Real-Time PCR Detection System 
(BioRad). Relative quantification was performed by normalizing to the expression of reference genes 
Hprt or Gapdh. Primers used were as follows: mouse Tfeb Fwd: TGAGATGCAGATGCCTAACACGCT, 
Rev: TTGTCTTTCTTCTGCCGCTCCTTG, mouse Il1b  Fwd: ACCTCACAAGCAGAGCACAA, 
Rev :  T TGGCCGAGGACTAAGGAGT, mouse I l6  Fwd:  TAGCTATGGTACTCCAGAAGAC, 
Rev :  ACGATGATGCACT TGCAGAA, mouse  Ifng  Fwd:  ATGAACGCTACACACTGCATC,  
Rev: CCATCCTTTTGCCAGTTCCTC, mouse Il17 Fwd: TTTAACTCCCTTGGCGCAAAA, Rev: CTTTCCCTCCGC 
ATTGACAC, mouse Hprt Fwd: AGTCCCAGCGTCGTGATTAG, Rev: TGATGGCCTCCCATCTCCTT, 
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mouse Gapdh Fwd: CATCACTGCCACCCAGAAGACTG, Rev: ATGCCAGTGAGCTTCCCGTTCAG. 
Apoa1 Fwd: GGCAGAGACTATGTGTCCCAGT, Rev: GCTGACTAACGGTTGAACCCAG. Defa25 
Fwd: GTGAAGATCTGATATGCTATTG, Rev: ACCAGAGCATGTACATTAAATG. Defa26  Fwd: 
TACTGAGGTGCAGCCACAGGAA, Rev: GCCTCTTTTTCTACAATAGCATCC.

RNAseq. Intestinal epithelial cells were isolated from the colons of 8–12 week old mice at 0, 4, and 11 days 
post-DSS treatment. For each timepoint, 2 Tfeb∆IEC and 2 Tfeb�ox/�ox animals were used as biological replicates. 
RNA was extracted by tissuelyzer treatment followed by RNeasy (Qiagen). Full length cDNA libraries were pre-
pared using template switching and whole transcriptome ampli�cation in a slight variation of the SmartSeq. 
2 protocol described in53. Libraries were sequenced on a MiSeq machine (Illumina). Paired-end reads were 
mapped to the mm10 reference genome using Tophat2+ Bowtie. Di�erential gene expression was determined 
using Cu�di�54. A corrected p-value (q-value) of 0.05 was considered signi�cant. Mapped reads were deposited in 
GEO with accession number GSE98266. Clustering analysis of di�erentially expressed genes was performed using 
Pearson correlation implemented in Morpheus (so�ware.broadinstitute.org/morpheus). GO enrichment analysis 
was performed for each gene cluster using g:pro�ler55.

Measurement of inflammation markers by ELISA and LAL assay. Spleen was homogenized in 
homogenizing bu�er (100 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% Triton X-100, 0.5% 
Sodium deoxycholate), the homogenate was centrifuged and supernatants were used for cytokine measurements 
using mouse IL-1β ELISA kit (eBioscience, 88-7013-22) according to the manufacturer’s protocols, and read 
on a Luminex machine. In order to assess intestinal in�ammation, fecal samples from day 1, 4, and 7 post-DSS 
treatment were homogenized in homogenizing bu�er, spun down and supernatants were collected and assayed 
for Lipocalin-2 by ELISA according to manufacturer’s instructions (R&D, MLCN20). Serum endotoxin level was 
measured using ToxinSensor Chromogenic Endotoxin Assay Kit (GenScript, L00350). Brie�y, diluted plasma 
was incubated with Limulus amoebocyte lysate (LAL) and a�er performing several reactions under endotoxin 
free condition; samples were read spectrophotometrically at 545 nm. �e plasma endotoxin levels were calcu-
lated against a standard curve of endotoxin (E. coli 0113:H10) concentrations of 0.1, 0.05, 0.025, 0.0125 and 0 
EU/ml.

Measurement of CFU in organs. Mesenteric lymph nodes (MLNs) and spleen were aseptically retrieved 
from mice at day 11. Tissue was homogenized in sterile PBS and plated onto LB agar plates a�er serial dilution, 
then incubated at 37 °C for 24 h before colony forming unit (CFU) quanti�cation.

FITC dextran permeability. Mice were given FITC-dextran tracer (Sigma, 4 kDa, 0.6 mg/g body weight 
in 0.2 mL PBS) via intragastric administration using a ball tip needle and FITC levels were measured 4 h later in 
hemolysis-free serum using a Fluorescence Spectrophotometer.
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