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Abstract
AIM: Thyroid hormone (TH) has an especially strong impact on central nervous system development and TH 
deficiency has been shown to result in severe mental retardation. It is crucial to identify compensatory mechanisms 
that can be involved in improving cognitive function and the quality of life of patients with hypothyroidism.

METHODS: We used the pathway-specific PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, 
QIAGEN, Germany) to identify and validate neurotrophins genes and their receptors expression in patients with 
thyroid pathology and control group.

RESULTS: The analysis of gene expression of neurotrophins and their receptors showed that CRHBP, FRS2, 
FRS3, GFRA1, GFRA2, Glial maturation factor-beta (GMFB), nerve growth factor (NGF), NRG2, NRG4, NTF4, 
TRO, and VGF significantly decreased their expression in Group 3, which includes the patients with post-operative 
hypothyroidism. The patients with primary hypothyroidism stemming from AIT had significantly reduced expression 
of CRHBP, GFRA1, GFRA2, GMFB, NGF, PTGER2, and VGF, while the expression of NRG4 and TRO increased. In 
Group 3, which includes the patients with AIT and elevated serum anti-Tg and anti-TPO autoantibodies, the mRNA 
levels of GFRA2, NGF, NRG2, NTF4, NGF, and PTGER were reduced, and the expression of CRHBP, FRS2, FRS3 
GFRA1, GMFB, NRG4, TRO, and VGF significantly increased.

CONCLUSION: These results indicate significant variability in the transcriptional activity of the genes of encoding for 
neurotrophins and their receptors in the peripheral blood in people with thyroid diseases.
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Introduction

Hypothyroidism is a common condition with 
an incidence of 8% in the adult population [1]. Its 
clinical picture includes cognitive, attention, and mental 
disorders such as depression, suggesting hippocampal 
alterations [2]. Most symptoms usually recede 
following thyroid hormone (TH) replacement therapy, 
but some persist, especially in the cases of long-term 
hypothyroidism. TH has an especially strong impact on 
central nervous system (CNS) development, and TH 
deficiency has been shown to result in severe mental 
retardation [3]. While early identification and treatment 
using replacement therapy can prevent or ameliorate 
developmental defects, there is evidence that certain 
neurocognitive impairments may still persist [4]. Although 
acute effects of TH deficiency have been extensively 
studied, little is known about its long-term consequences 
on the cellular function or the capacity of the brain for 
complete recovery from postnatal hypothyroidism.

In previous studies, we demonstrated that 
autoimmune thyroiditis (AIT) and hypothyroidism can 

affect the transcription of mRNA for the genes involved 
in nerve impulse transmission and cell cycle in a gene-
specific manner [5], [6], [7]. These changes in gene 
expression can also play a role in the development 
of neurological complications related to thyroid 
pathology, but the model of neurotrophin expression 
and its regulation under pathological conditions is 
not yet complete. Therefore, it is crucial to identify 
compensatory mechanisms that can be involved in 
improving cognitive function and the quality of life of 
patients with hypothyroidism.

While neurotrophins were initially described 
as modulators of cell growth and maintenance in the 
nervous and immune systems, their role in various 
pathophysiological conditions is now receiving 
considerable interest. Changes in neurotrophin expression 
within a tissue can indicate an ongoing pathophysiological 
process. Many genes for neurotrophins and their 
receptors are not only transcribed but also translated in 
blood cells (https://www.proteinatlas.org). Consequently, 
neurotrophins detected in the blood circulation system, 
and in their local expression, are assumed to reflect 
systemic neurotrophin levels. Transcriptional induction or 
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gene repression is an important indicator of the severity 
of pathological changes in tissues [8], [9], [10], [11]. This 
study aims to analyze the transcriptional activity of genes 
for neurotrophins and their receptors in peripheral blood 
cells in patients with thyroid gland diseases. Neurotrophin-
specific biomarkers in the blood can be then used as a 
prognostic marker for the risk of developing neurological 
and psychological complications comorbid with thyroid 
pathology. We are using PCR arrays to determine 
the effect of TH and serum autoantibodies, such as 
anti-thyroglobulin (anti-TG) antibody and anti-thyroid 
peroxidase antibody (anti-TPO), on the transcription of 
genes encoding neurotrophins and their receptors in 
the patients with primary hypothyroidism stemming from 
AIT and post-operative hypothyroidism as well as the 
patients with AIT and elevated serum autoantibodies, 
such as anti-Tg and anti-TPO.

Methods

One hundred fifty-three patients with thyroid 
pathology were enrolled in the study. They were divided 
into 3 groups: Group 1 included 16 patients with post-
operative hypothyroidism; group 2 included 65 patients 
with hypothyroidism resulting from AIT; and group 3 
included 72 patients with AIT and elevated serum an 
anti-Tg and anti-TPO antibodies. Control group included 
25 healthy individuals, which were recruited randomly, 
without matching for age or sex. Clinical characteristics 
of the subjects are shown in Table 1.

Hypothyroidism was diagnosed following 
the recommendations of the American Association 
of Clinical Endocrinologists 2012. The diagnosis of 
AIT was based on detected circulating antibodies to 
thyroid antigens (anti-TPO and anti-TG) and reduced 
echogenicity on thyroid sonogram in a patient with 
relevant clinical features [12].

Blood specimens were collected between 
8 and 10 AM after an overnight fast. Free thyroxine 
(fT4) (normal range 6.0–13.0 pmol/L for males and 
7.0–13.5 pmol/L for females), thyroid-stimulating 
hormone (normal range 0.3–4.0 mIU/mL), anti-TPO 
(normal range 0–30 IU/mL), and anti-TG (normal 
range 0–65 IU/mL) antibody levels were determined 
in every individual using STAT FAX303/Plus analyzer 
(Awareness Technology Inc, USA).

Patients under the age of 18 or those suffering 
from malignancy, inflammation associated rheumatic 
diseases or acute/chronic infection, diabetes mellitus, 
cardiovascular or cerebrovascular diseases, chronic 
hepatic or renal diseases, as well as pregnant women 
and those using any drugs that could interfere with 
thyroid function, were excluded from the study.

We used a pathway-specific PCR array 
(Neurotrophins and Receptors RT2 Profiler PCR Array, 
QIAGEN, Germany) to identify and verify cytokines 
and receptor pathways-associated gene expression in 
randomly selected 12 individuals from each group using 
real-time PCR due to the procedure described below. 

Experimental procedures

RNA isolation

Total RNA was isolated from white blood 
cells using NucleoZOL (Macherey-Nagel, Germany) 
according to the manufacturer’s instructions. 
NucleoZOL is designed for the isolation of total 
RNA (small and large RNA) in a single or separate 
fraction from a variety of sample materials, such as 
cells, tissue, and liquids of human or animal origin. 
White blood cells were lysed and homogenized in 
NucleoZOL reagent based on guanidinium thiocyanate 
and phenol.

cDNA synthesis

The RNA quality was determined and it was 
reverse transcribed. The concentration and quality of 
the isolated total RNA were determined on a NanoDrop 
spectrophotometer (Thermo Scientific™, USA). For the 
reverse transcription procedure with a cDNA conversion 
RT² First Strand Kit (QIAGEN, Germany, Cat. no. 
330401), RNA samples with the following parameters 
were selected: Ratio А260/А280 within the range of 
1.8-2.2.

The RT2 HT First Strand Kit procedure 
comprises two steps: Elimination of genomic DNA 
contamination and reverse transcription, which 
enable fast and easy handling of 96 RNA samples 
simultaneously. After genomic DNA elimination, the 
RNA sample undergoes reverse transcription with 
an RT master mix, as well as random hexamers and 
oligo-dT prime reverse transcription to capture more 
difficult-to-detect genes. 

Table 1: Clinical characteristics of the subjects
Variable Сontrol group 

(n = 25)
Patients with post-operative 
hypothyroidism (Group 1) (n= 16 )

Patients with hypothyroidism as 
a result of AIT (Group 2) (n = 65)

Patients with AIT with rising serum anti-Tg and 
anti-TPO autoantibodies (Group 3) (n = 72)

The age (years) 46.08 ± 14.58 47.30 ± 12.27 46.72 ± 15.49 45.02 ± 13.65
fT4 (pmol/L) 8.91 ± 0.97 3.44 ± 0.31 4.13 ± 0.52 8.51 ± 0.82
Thyroid-stimulating hormone (mIU/mL) 2.67 ± 0.52 8.61 ± 0.84 7.09 ± 0.50 2.38 ± 0.62
Anti-TPO (IU/mL) 34.04 ± 3.70 36.13 ± 2.78 380.62 ± 73.42 330.36 ± 50.23
Anti-TG (IU/mL) 15.32 ± 1.97 15.50 ± 1.90 32.97 ± 4.27 36.38 ± 7.70
Current dose of L-thyroxine (μg/day) None 110.95 ± 5.25 88.46 ± 1.55 None
Data are expressed as mean ± standard deviation
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PCR array

The cDNA was then used with RTІ Profiler PCR 
Array (QIAGEN, Cat. no. PAHS-031Z) in combination 
with RTІ SYBR® Green qPCR Mastermix (QIAGEN, 
Cat. no. 330504), following the complete RT2 Profiler 
PCR Array procedure (www.qiagen.com). Samples 
were assigned to control and study groups. CT values 
were normalized based on the automatic selection from 
the full panel of reference genes. Any Ct value >35 
was considered to be a negative call. The RT2 Profiler, 
PCR Array data analysis software, calculates the fold 
change based on the widely used and agreed upon 
ΔΔCt method. The data analysis web portal calculates 
fold change/regulation using delta-delta CT method, 
in which delta CT is calculated between the gene of 
interest (GOI) and an average of reference genes 
(HKG), followed by delta-delta CT calculations (delta CT 
[Test Group]-delta CT [Control Group]). Fold change is 
then calculated using 2^ (-delta-delta CT) formula. This 
data analysis report was exported from the QIAGEN 
web portal at GeneGlobe. The software allows defining 
the best reference genes for normalization.

A list of neurotrophin and receptor pathway-
focused genes selected for this research is given in 
Table 2.

Table 2: Neurotrophins and receptors pathway‑focused genes
UniGene RefSeq Symbol Description
Hs. 377783 NM_001118 ADCYAP1R1 Adenylate cyclase activating polypeptide 1 

(pituitary) receptor type I
Hs. 115617 NM_001882 CRHBP Corticotropin-releasing hormone-binding 

protein
Hs. 417628 NM_004382 CRHR1 Corticotropin-releasing hormone receptor 1
Hs. 729970 NM_001883 CRHR2 Corticotropin-releasing hormone receptor 2
Hs. 593446 NM_006654 FRS2 Fibroblast growth factor receptor substrate 2
Hs. 194208 NM_006653 FRS3 Fibroblast growth factor receptor substrate 3
Hs. 46894 NM_004960 FUS Fused in sarcoma
Hs. 388347 NM_005264 GFRA1 GDNF family receptor alpha 1
Hs. 441202 NM_001495 GFRA2 GDNF family receptor alpha 2
Hs. 151413 NM_004124 GMFB Glia maturation factor, beta
Hs. 5210 NM_004877 GMFG Glia maturation factor, gamma
Hs. 5258 NM_006986 MAGED1 Melanoma antigen family D, 1
Hs. 2561 NM_002506 NGF Nerve growth factor (beta polypeptide)
Hs. 7303 NM_022002 NR1I2 Nuclear receptor subfamily 1, group I, 

member 2
Hs. 408515 NM_013982 NRG2 Neuregulin 2
Hs. 732438 NM_138573 NRG4 Neuregulin 4
Hs. 266902 NM_006179 NTF4 Neurotrophin 4
Hs. 2090 NM_000956 PTGER2 Prostaglandin E receptor 2 (subtype EP2), 

53kDa
Hs. 633653 NM_016157 TRO Trophinin
Hs. 587325 NM_003378 VGF VGF nerve growth factor inducible

Statistical analysis of PCR array data

The RT2 Profiler PCR Array Data Analysis 
software does not perform any statistical analysis 
beyond the calculation of p-values using a Student’s 
t-test (two-tail distribution and equal variances between 
the two samples) based on the triplicate 2^(–ΔCT) 
values for each gene in the experimental group 
compared to the control group. The Microarray Quality 
Control published results indicate that a ranked list of 
genes based on fold-change and associated p-value 
calculation was sufficient to demonstrate reproducible 
results across multiple microarrays and PCR Arrays, 
including the RT2 Profiler PCR arrays.

Ethical approval

The ethical principles contained in the 
Declaration of Human Rights adopted in Helsinki in 
1975, and revised in 2008, were fully respected in our 
study. The subjects enrolled voluntarily participated in 
this study and completed and signed written informed 
consent. The protocol of study was approved by the 
local ethics committees of I. Horbachevsky Ternopil 
National Medical University and Chernivtsi Regional 
Endocrinology Center.

Results

Using the Pathway-Focused PCR Array 
Profiling (Neurotrophins and Receptors RT2 Profiler 
PCR Array), we examined the neurotrophins and 
receptors pathway-focused genes expression of 
patients with primary hypothyroidism as a result of AIT 
and post-operative hypothyroidism and patients with 
AIT with rising serum autoantibodies, such as anti-Tg 
and anti-TPO. 

The results from RT2 Profiler neurotrophins and 
receptors pathway-focused genes expression analysis 
indicated that in Group 1, which includes patients with 
post-operative hypothyroidism, the expression of a lot 
of genes was decreased compared with other groups 
of patients (Table 3). Reductions in CRHBP (5.03-
fold), FRS2 (3.3-fold), FRS3 (2.7-fold), GFRA1 (5.5-
fold), and GFRA2 (4.3-fold) mRNAs were found in 
Group 1 (Figure 1). The expression of glial maturation 
factor-beta (GMFB) (4.6-fold), nerve growth factor 
(NGF) (7.8-fold), and NRG2 (4.6-fold) were markedly 
decreased too in Group 3 (Table 3). As it is shown in 
Table 3, reductions in NRG4 (3.8-fold), NTF4 (3.6-fold), 
TRO (6.9- fold), and VGF (5.03-fold) were also found in 
Group 1. In contrast, the expression of PTGER2 (2.9-
fold) was increased (Figure 1).

Table  3:  Differential  expression  of mRNA  neurotrophins  and 
receptors  pathway‑focused  genes  in  patients  with  different 
thyroid pathology
Symbol Up-down regulation (comparing to control group)

Group 1 Group 2 Group 3
Fold regulation Fold regulation Fold regulation

ADCYAP1R1 – 1.2988 (p = 0.19) 1.0694 (p = 0.74) 1.03 (p = 0.88)
CRHBP – 5.0298 (p = 0.000153) – 4.5416 (p = 0.000089) 7.0422 (p = 0.005)
CRHR1 – 1.0525 (p = 0.204006) – 1.052 (p = 0.435348) – 1.0772 (p = 0.061173)
CRHR2 – 1.05 (p = 0.204) – 1.05 (p = 0.435) – 1.08 (p = 0.06)
FRS2 – 3.29 (p = 0.01) – 1.25 (p = 0.288) 12.17 (p = 0.025)
FRS3 – 2.733 (p = 0.008) – 1.248 (p = 0.099) 7.742 (p = 0.04)
FUS 1.0789 (p = 0.648) 1.1702 (p = 0.324) – 1.4647 (p = 0.198)
GFRA1 – 5.49 (p = 0.0002) – 5.92 (p = 0.0015) 3.45 (p = 0.012)
GFRA2 – 4.32 (p = 0.00038) – 3.94 (p = 0.0016) – 3.66 (p = 0.0017)
GMFB – 4.63 (p = 0.0145) – 5.96 (p = 0.0036) 13.42 (p = 0.0126)
GMFG – 1.14 (p = 0.343075) – 1.59 (p = 0.298804) – 1.32 (p = 0.096805)
MAGED1 – 1.05 (p = 0.204006) – 1.05 (p = 0.435348) – 1.077 (p = 0.061173)
NGF – 7.84 (p = 0.0007) – 3.83 (p = 0.001) – 4.076 (p = 0.0009)
NRG2 – 4.63 (p = 0.001) – 1.127 (p = 0.365) – 4.65 (p = 0.002)
NRG4 – 3.847 (p = 0.007) 8.92 (p = 0.004) 14.41 (p = 0.003)
NTF4 – 3.58 (p = 0.0036) – 1.089 (p = 0.875) – 3.78 (p = 0.0038)
PTGER2 2.94 (p = 0.0059) – 5.72 (p = 0.001) – 6.15 (p = 0.0005)
TRO – 6.95 (p = 0.002) 6.44 (p = 0.0008) 7.37 (p = 0.0001)
VGF – 5.03 (p = 0.0004) – 4.73 (p = 0.0003) 6.03 (p = 0.002)
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In patients with hypothyroidism as a result of 
AIT (Group 2), the expression of neurotrophins and 
receptors pathway-focused genes changed as follows: 
The decrease in the expressions of CRHBP (4.5-
fold), GFRA1 (5.9-fold), GFRA2 (3.9-fold), and GMFB 
(5.9-fold) were observed. As it is shown in Table 3, 
reductions in NGF (3.8-fold), PTGER2 (5.7-fold), and 
VGF (4.7-fold) mRNAs were also found in Group 2, 
whereas the expressions of TRO (6.4-fold) and NRG4 
(8.9-fold) were increased (Figure 1).

We noted that in Group 3 which includes 
patients with AIT with rising serum anti-Tg and anti-TPO 
autoantibodies that mRNA level of CRHBP (7.04-fold), 
FRS2 (12.2-fold), and FRS3 (7.7-fold) were significantly 
increased (Figure 1). Reductions in GFRA2 (3.7-fold), 
NGF (4.1-fold), NRG2 (4.7-fold), NTF4 (3.8-fold), and 
NGF (4.1-fold) PTGER (6.1-fold) mRNAs were found in 
Group 3. The expression of GFRA1 (3.5-fold), GMFB 
(13.4-fold), and NRG4 (14.4-fold) were markedly 
increased in Group 3 (Figure 1). What is more, the 
expression of TRO (7.4-fold) and VGF (6.03-fold) was 
increased too (Figure 1).

Besides, we found that ADCYAP1R1, CRHR1, 
CRHR2, FUS, GMFG, and MAGED1 did not change 
their expression in all groups of patients.

The p-values are calculated based on a 
Student’s t-test of the replicate 2^(- Delta CT) values 
for each gene in the control group and patients groups.

Discussion

Neurotrophins are a family of neurotrophic 
factors essential for the development of the vertebrate 
nervous system. They regulate neuron differentiation, 
survival, or death during embryonic and postnatal 
development and are involved in neuronal maintenance 
later in life [13]. The first such substance to be identified, 
and the prototype of the class was NGF [14]. The 
neurotrophins are expressed in a broad array of tissues, 
consistent with the view that they mainly function as 
target-derived survival factors [15].

Although the developmental effects of TH 
have been well established, its impacts on the adult 
brain are relatively poorly understood [16]. While the 
adult mammalian brain does not exhibit the severe 
morphological defects associated with developmental 
hypothyroidism, TH deficiency in adulthood has 

Figure 1: Clustergram expression of mRNA Neurotrophins & receptors pathway-focused genes in patients with different thyroid pathology
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been linked to cognitive dysfunction and depressed 
mood [17]. For example, adult-onset hypothyroidism in 
humans is linked to impaired learning, verbal fluency, 
and spatial tasks [18], as well as an increased risk of 
depression [19]. This suggests that thyroid dysfunction 
in adulthood may result in morphological changes to 
the brain regions associated with learning, memory, 
and mood, such as the hippocampus.

In many body tissues, neurotrophins are 
produced by a variety of non-neuronal cell types such 
as immune cells, adipocytes, endothelia, epithelia, 
fibroblasts, keratinocytes, and endocrine cells [20]. 
Variations in neurotrophin concentrations found in the 
systemic blood circulation indicate their both vascular and 
peripheral production. Neurotrophins can cross through 
blood-brain barrier [21], [22], although the peripheral 
expression of neurotrophic factors in different tissues 
(the thymus, heart, liver, pancreas, spleen, kidney, and 
adrenal glands) has been also reported [23], [24]. It has 
been suggested that altered RNA and protein expression 
of the neurotrophic factors in the peripheral tissues can 
indicate brain disorders [25].

Corticotropin-releasing hormone (CRH) is a 
key regulator of the stress response [26]. This peptide 
controls the hypothalamic-pituitary-adrenal axis as 
well as a variety of behavioral and autonomic stress 
responses. The CRH system in vertebrates includes two 
receptors (CRH-R1 and CRH-R2), which show dissimilar 
expression patterns in the brain and periphery [27]. We 
found that CRH-R1 and CRH-R2 expressions did not 
significantly change in all groups of patients.

The CRH system also involves an evolutionarily 
conserved corticotropin-releasing factor-binding protein 
(CRHBP), a high-affinity binding protein that modulates 
CRH-mediated activation of CRH receptors in the 
brain and periphery and the primary mediator of the 
mammalian neuroendocrine and behavioral response 
to stress [28], encoded by CRHBP gene. In humans, 
CRHBP is widely distributed throughout the body and 
is found in several brain regions, including the cerebral 
cortex, the hippocampus, amygdala, lateral septal 
nucleus, and a variety of midbrain structures [29]. Early 
studies indicated that approximately 40–60% of CRH 
in the human brain is bound by CRHBP, suggesting its 
role in limiting the bioavailability of CRH and reducing 
CRH receptor activation [30]. One study found that 
CRHBP plasma levels were elevated in inflammatory 
conditions such as rheumatoid arthritis and septicemia, 
indicating that CRHBP may be positively regulated by 
inflammatory stressors [26]. In this study, we found a 
significant decrease in the expression of CRHBP in 
Groups 1 and 2. On the other hand, in Group 3, the 
expression of CRHBP was increased. This suggests 
suppression of CRHBP expression in the cases of 
TH deficiency resulting from AIT and post-operative 
hypothyroidism.

Fibroblast growth factor (FGF) receptor 
substrates 2 and 3 (FRS2 and FRS3) are two related 

adapter proteins, sharing 49% sequence identity and 
activated by the FGF and NTRK1 receptors [31]. 
Studies suggest that FRS2 and FRS3 transducers 
are involved in the thyroid tumorigenesis induced by 
TRK oncogenes and thus might represent targets for 
treatment approaches aimed at blocking oncoprotein 
signaling [32]. Certain factors such as neurotrophins 
and FGFs can play both neurogenic and synaptic 
roles [33], [34], [35]. Neurotrophins and FGFs promote 
postnatal dentate neurogenesis by signaling through 
their specific receptor subtypes, FGF Receptor 1 
(FGFR1), and Neurotrophic Tyrosine Kinase Receptor 
type 2 (NTRK2 or TrkB) [36]. Specific FGF receptor 
isoforms (FGFR1b and FGFR2b) are involved in 
synaptogenesis in CA3 pyramidal neurons, while 
TrkB was implicated in DGC maturation [34], [35]. In 
this study, FRS2 and FRS3 expression significantly 
decreased in the group of patients with post-operative 
hypothyroidism, while it significantly increased Group 
3, which includes patients with AIT and elevated serum 
anti-Tg and anti-TPO autoantibodies.

A new family of neurotrophic factors composed 
of four members, namely, GDNF, NTN, ART, and 
PSP which other preferentially to GFRa-1, GFRa-2, 
GFRa-3, and GFRa-4, respectively, has been recently 
described [37]. Within the CNS, GFRa-1 and GFRa-2 
show a widespread expression [38]. A dramatic 
increase in GFRa-2 mRNA that was triggered after 
short-term treatment with THs suggests a specific 
action through high affinity receptors for this gene [37]. 
TH receptors were detected in glial cells [39] and T3 
affects the development of both astrocytes [40] and 
oligodendrocytes [41], indicating that T3 may control 
the expression of GFRa2 in these two cell types.

The results of our study indicated that the 
expression of GFRA2 was significantly decreased in 
all groups of patients. At the same time, the patients 
with primary hypothyroidism resulting from AIT and 
post-operative hypothyroidism had significantly lower 
expression of GFRA1, while in the group of patients 
with AIT and rising serum anti-Tg and anti-TPO 
autoantibodies, the levels of GFRA1 mRNA were 
significantly increased.

GMFB is a highly conserved brain-enriched 
protein implicated in immunoregulation, neuroplasticity, 
and apoptosis, processes central to neural injury and 
repair following cerebral ischemia. Although GMFB is 
expressed in multiple organs, the expression is enriched 
in brain tissue and relatively stable in adults [42], [43]. 
Plasma GMFB levels can serve as a convenient non-
invasive addition to neuroimaging for stroke diagnosis 
and prognosis [44]. The expression of GMFB is also 
altered in several neurodegenerative diseases [45], 
suggesting that GMFB as a broadly applicable disease 
biomarker. Peak GMFB expression correlates with 
learning and memory formation in rats [46]. Further, 
the neurite localization of this protein is also consistent 
with its role in neural plasticity. In this study, we found 
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that GMFB was downregulated in Groups 1 and 2. 
Patients with AIT and rising serum autoantibodies had 
significantly higher expression of GMFB.

The biological effect of the neurotrophins is 
mediated through the high-affinity tropomyosin-related 
family of tyrosine receptor kinases (TrkA, TrkB, and 
TrkC) and the p75 neurotrophin receptor which can bind 
all neurotrophins with low affinity [21]. These receptors 
can either enhance or inhibit each other’s actions to 
mediate neurotrophic effect. NGF, neurotrophin (NT-3), 
and NT-4 are expressed by neurons, microglial cells, 
and astrocytes, as well as activated lymphocytes [47]. 
NT-4 levels were shown to correlate with psychosocial 
functioning in patients with bipolar disorder in 
remission [48]. A recent meta-analysis conducted by 
Tseng et al. found increased NT-3 and NT-4 levels 
in patients with bipolar disorder in a depressed state 
when compared to healthy controls. This difference was 
significantly associated with the duration of illness [48].

Different inflammatory and autoimmune 
diseases lead to altered expression of NGF. Increased 
anti-NGF antibody levels have been detected in patients 
with rheumatoid arthritis, systemic lupus erythematosus, 
and thyroiditis and are thought to contribute to the 
immune dysfunction and nerve damage observed 
in these diseases [49]. NGF is expressed not only in 
the neuronal but also non-neuronal cells (epithelial, 
endothelial and skeletal muscle cells, fibroblasts, 
adipocytes, and bone marrow-derived cells); it can 
modify the local immune responses promoting T-helper 
2 dominance with the release of various cytokines, 
chemokines, and prostaglandin derivatives [50]. NGF is 
involved in both neuronal cell function and inflammatory-
immune cell activity, contributing to the development 
and maintenance of chronic inflammation [51]. NGF 
secretion increases in hypothyroidism [52]. In our study, 
we found reduced levels of NGF mRNA in all groups of 
patients. This is in contrast to the expression of NTF4, 
which was reduced only in Groups 1 and 3.

The neuregulins (NRGs) are cell-cell signaling 
proteins that are ligands for tyrosine kinase receptors 
of the ErbB family. The neuregulin gene family has 
four members: NRG1, NRG2, NRG3, and NRG4 [53]. 
NRGs and their receptors are widely expressed in the 
postnatal nervous system [54]; NRG expression in the 
brain is upregulated by its activity; and NRGs can inhibit 
long-term potentiation (LTP), a mechanism involves in 
learning [55]. In this study, we determined that patients 
with post-operative hypothyroidism had a significantly 
increased expression of NRG2 and NRG4. The NRG2 
mRNA levels decreased, while NRG4 mRNA levels 
significantly increased in the patients with elevated 
serum autoantibodies anti-Tg and anti-TPO.

EP2 receptor plays an important role in 
hippocampal LTP and spatial learning. PGE2 induces a 
synaptic response through its action on a pre-synaptic 
EP2 receptor [56]. This means that PGE2-EP2 signaling 
is important for hippocampal long-term synaptic 

plasticity and cognitive function. In this study, PTGER2 
mRNA increased in Group 1 which included patients 
with post-operative hypothyroidism, while PTGER2 
expression decreased in the group of AIT patients with 
elevated serum autoantibodies, such as anti-Tg and 
anti-TPO and in the patients with hypothyroidism as a 
result of AIT. 

Trophinin (TRO) and bystin are highly expressed 
in the SVZ and RMS of the adult rat brain [57]. Since 
TRO is expressed on plasma membranes and in the 
cytoplasm of type C cells in the SVZ and in migrating 
neuroblasts in the RMS, it is possible that it interacts 
with the extracellular matrix promoting chain migration 
of neuroblasts along the RMS toward the olfactory 
bulb. We observed a decrease in expression of TRO 
in patients with post-operative hypothyroidism. On the 
contrary, TRO expression considerably increased in 
Groups 2 and 3.

VGF nerve growth factor inducible (VGF) was 
first identified as a neuropeptide, the expression of 
which is induced by NGF [58]. VGF expression is also 
induced by several other growth factors, such as brain-
derived neurotrophic factor (BDNF) and NT-3 [59]. VGF 
is synthesized in neuronal and neuroendocrine cells as 
well as in the CNS, especially in the cerebral cortex, 
hippocampus, and hypothalamus [60], [61]. Studies 
show that VGF-derived peptides are involved in a 
number of functions in the CNS and peripheral tissues. 
For instance, in patients with the major depressive 
disorder who were drug-free for at least 2 weeks, 
VGF mRNA levels in leukocytes were significantly 
reduced, by approximately 50%, compared to healthy 
subjects [62]. In another study, VGF levels in serum and 
prefrontal cortex decreased in patients with the major 
depressive disorder [63]. In this study, patients with 
hypothyroidism as a result of AIT and post-operative 
hypothyroidism VGF expression was reduced, while it 
was significantly increased in the group of AIT patients 
with elevated serum autoantibodies, such as anti-Tg 
and anti-TPO.

Conclusion

In summary, the analysis of gene expression of 
neurotrophins and their receptors showed that CRHBP, 
FRS2, FRS3, GFRA1, GFRA2, GMFB, NGF, NRG2, 
NRG4, NTF4, TRO, and VGF significantly decreased 
their expression in Group 3, which includes the patients 
with post-operative hypothyroidism. The patients 
with primary hypothyroidism stemming from AIT had 
significantly reduced expression of CRHBP, GFRA1, 
GFRA2, GMFB, NGF, PTGER2, and VGF, while the 
expression of NRG4 and TRO increased. In Group 
3, which includes the patients with AIT and elevated 
serum anti-Tg and anti-TPO autoantibodies, the 
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mRNA levels of GFRA2, NGF, NRG2, NTF4, NGF, and 
PTGER were reduced, and the expression of CRHBP, 
FRS2, FRS3 GFRA1, GMFB, NRG4, TRO, and VGF 
significantly increased. In addition, the expression of 
ADCYAP1R1, CRHR1, CRHR2, FUS, GMFG, and 
MAGED1 did show a significant change in all groups 
of patients. These results indicate significant variability 
in the transcriptional activity of the genes of encoding 
for neurotrophins and their receptors in the peripheral 
blood in people with thyroid diseases.
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