
RESEARCH ARTICLE Open Access

Transcriptional analysis of defense
mechanisms in upland tetraploid
switchgrass to greenbugs
Teresa Donze-Reiner1†, Nathan A. Palmer2†, Erin D. Scully2,3†, Travis J. Prochaska4,7, Kyle G. Koch4,

Tiffany Heng-Moss4, Jeffrey D. Bradshaw4, Paul Twigg5, Keenan Amundsen6, Scott E. Sattler2

and Gautam Sarath2*

Abstract

Background: Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass

quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole

plant level, little information is available on plant defense responses at the molecular level.

Results: The global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested

and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes

(DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested

plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression

changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-

DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY,

and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases.

Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular

changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total

peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The

net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation

and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as

pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was

noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation.

Conclusions: Extensive remodeling of the plant transcriptome and the production of ROS and several defensive

metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and

apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later

stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can

be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.
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Background
Plants respond to insect herbivory with refined and vig-

orous innate immune responses that trigger a plethora

of inducible defenses, which can include localized cell

death, structural fortifications such as cell-wall strength-

ening (via callose, lignin, and cellulose deposition), bio-

chemical and molecular associated defenses [1, 2], and

the reallocation of plant nutrients away from the feeding

site, which negatively impacts plant nutritional quality

[3, 4]. These innate immune responses to herbivory are

stimulated by tissue damage and by removal of nutri-

ents, the degree of which is significantly affected by

plant genotype. These resultant responses have been cat-

egorized as resistant (negative effects on pest biology

and/or behavior), susceptible, and tolerant (an ability to

overcome damage caused by pests). The degree to which

plants can overcome biotic stresses, including insect

feeding, has been linked to plant resistance genes

(R-genes) [5–7]. For example, 33 NBS-LRR R genes were

induced in wheat in response to gall midge infestation

and were linked to the elicitation of defense responses

[8, 9]. In addition to possible interactions with plant

R-genes, aphid herbivory can elicit other short and long

term changes to plant physiology that shape the fitness

of the host and can contribute to its ability to overcome

herbivory.

Aphids, such as greenbugs (Schizaphis graminum;

GB), are predominately phloem-feeders, that nega-

tively affect plant fitness and health by removing

nutrients and secreting toxic salivary compounds

into phloem during feeding. Aphid herbivory can

therefore lead to extensive plant damage, such as

yellowing and/or death of leaves, reductions in plant

vigor, and ultimately reduction in yields [10, 11].

Aphids also excrete considerable amounts of sugars

through their honeydew, providing a substratum for fun-

gal and bacterial colonization of leaf surfaces which could

result in further direct or indirect injury to the plant

[12–14].

Initial responses to aphid herbivory appear to include

calcium, cell wall kinases, and reactive oxygen species

(ROS) responsive signaling networks [2, 7, 15, 16], with

later responses affecting photosynthesis and growth.

Resistant plants appear to activate some defensive re-

sponses, but these are generally not sustained, since the

pest does not feed or reproduce on such plants [17, 18].

In susceptible plants, a vigorous defensive response is

generally initiated, but the plant is unable to sustain this

response and ultimately dies [18, 19]. Tolerant plants, in

contrast, appear to either have a stronger constitutive

defensive response or are able to maintain a induced de-

fensive response, which in either case permits the plant

to compensate for herbivory by allowing growth to

resume [18].

Previous studies have indicated that substantial diver-

sity exists within switchgrass (Panicum virgatum) popu-

lations in terms of plant response to both GB and the

yellow sugarcane aphid (Sipha flava) [20–22]. However,

the molecular mechanisms underlying these responses

have yet to be elucidated. Here, global transcriptional re-

sponses of switchgrass cultivar Summer plants, an up-

land tetraploid cultivar adapted to the Upper Midwest of

the USA [23], to GB infestation over the course of a 15-

day evaluation period were identified using RNA-Seq.

This cultivar could serve as a host for GB, and was mod-

erately susceptible in response to GB herbivory, even

though GB spent considerable time feeding on leaf

phloem, suggestive of a tolerance-response to GB her-

bivory [20–22]. Unlike other plant-aphid systems, for

example, Arabidopsis-green peach aphid [15, 16], corn-

corn leaf aphid [24, 25], soybean-soybean aphid [26–28],

there is limited information on the underlying physio-

logical responses of switchgrass to insect herbivory,

although plant lignin content, peroxidases, and re-

sponses to ROS have been implicated in several recent

publications [29–31]. The intent of this study was to dis-

cover molecular signatures underlying switchgrass re-

sponses to GB and contrast these to developmental

changes occurring in uninfested control plants over the

time course of the experiment.

Methods
Plant growth conditions and sample collection

Seeds of cultivar Summer were obtained from field

grown plants maintained by the USDA-ARS at their field

locations near Mead, NE, USA. Original source of certi-

fied cultivar Summer seeds was the Manhattan Plant

Materials Center, Manhattan, KS, and subsequently

seeds were verified by USDA-ARS scientists based in

Lincoln, NE. Fifty switchgrass plants from cultivar

Summer were grown in individual Cone-tainers (Ray

Leach SC10; Stuewe & Sons, Inc, Tangent, OR) to the L2

stage [32] in a greenhouse under 400-watt high intensity

lamps with a 16 h day and 8 h night photoperiod at a

temperature of 23° ± 4 °C [21]. The plants were arranged

in a 2x3 factorial design consisting of two treatments

(infested and control) and three harvest time points: 5-,

10-, and 15- days after infestation (DAI). Ten GB were

initially placed on infested plants at day 0. Infested and

control plants were individually caged with tubular plas-

tic cages with vents covered with organdy fabric to con-

fine GB on the infested plants. Before leaf samples were

taken at each time point, GB were counted and removed

and damage rating evaluations were performed on the

plants using a 1 to 5 scale [21, 22, 33], where 1 = 10% or

less of leaf area with reddish or yellowing discoloration;

2 = 11–30% of leaf area with reddish or yellowing

discoloration; 3 = 31–50% of leaf area with reddish or
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yellowing discoloration; 4 = 51–70% of leaf area with

reddish or yellowing discoloration; and 5 = 71% or more

of leaf area with severe discoloration, or dead tissue. All

leaves present on the plant were collected flash frozen

with liquid nitrogen and stored at −80 °C for future

processing.

RNA extraction and sequencing

Four biological replicates (individual plants) were proc-

essed from each time point and treatment. A total of 24

RNA samples were isolated from flash frozen leaf sam-

ples as previous described in [34, 35] and then purified

using RNeasyTM kit according to the manufacturer’s pro-

tocols (Qiagen, Valencia, CA) for RNAseq experiments.

RNA purity and concentration of the RNA was deter-

mined using a Take3 plate and the Direct RNA Quantifi-

cation Protocol (Bio-Tek, Winooski, VT). Purified RNA

quality was validated using the RNA 6000 Nano Kit with

the Total RNA Nano Assay for Plants (Agilent, Santa

Clara, CA). From the clean RNA samples, 24 TruSeqTM

RNAseq libraries utilizing unique indexes were produced

according to manufacturer’s protocols (Illumina Inc, San

Diego, CA). Individual samples were diluted to a con-

centration of 10 nM and multiplexed at five samples per

lane. Single read 100-bp sequencing was performed on

the Illumina HiSeq 2000 system. All RNA-Seq libraries,

indexing and sequencing were performed at the DNA

Microarray and Sequencing Core Facility at the

University of Nebraska Medical Center.

RNA-Seq analysis

The RNA-Seq datasets analyzed during the current

study are available in the SRA repository, Accession

number SRP070829; (https://www.ncbi.nlm.nih.gov/sra/

?term=SPR070829) and additional data are provided as

Additional file 1: Table S1, Additional file 2: Table S2,

Additional file 3: Data S1 and Additional file 4: Data S2.

Single end 100-bp reads were mapped to the switchgrass

genome (v1.1, phytozome.jgi.doe.gov) [36] using

Tophat2 [37] with default parameters. Reads with mul-

tiple alignments were discarded, and gene expression

counts were calculated using the featureCounts function

in Subread [38]. Differential gene expression analysis

was performed using DESeq2 [39, 40]. Genes differen-

tially expressed (FDR < .05) in at least one of the treat-

ments in the dataset as a whole were identified using the

likelihood ratio test, and specific contrasts were tested

using the standard multi-factor design workflow with

nbinomWaldTest. Heat maps were assembled using

z-scores of replicate averages, which is indicative of the

number of standard deviations that the expression level

of each gene is from the mean expression level of the

gene across all treatments. A z-score less than 0 repre-

sents a gene expression level less than the mean, while a

z-score greater than 0 indicates a gene expression level

above the mean.

Transcriptome mapping statistics

All transcriptomic-related analyses were derived from data

shown in Additional file 1: Table S1. An average of 44.4

million 100-bp single-end reads per sample, with a range

from (34.9 to 54.6 million reads) were generated from

RNA isolated from each sample at 5-, 10-, and 15-DAI

(Additional file 1: Table S1), and were mapped to the ref-

erence switchgrass genome (version 1.1; www.phytozo

me.org). There were no significant differences between

total reads, mapped reads, or reads mapped to annotated

regions between the infested and control samples

throughout the time course (Additional file 1: Table S1).

Gene ontology enrichment analysis

Gene Ontology (GO) enrichment analysis was carried

out using GOseq [41]. This R package was designed spe-

cifically to analyze GO enrichment in RNA-Seq datasets.

Initial GO annotations were taken from the switchgrass

genome annotation (v1.1) and expanded with the

addition of parental terms. GO categories with fewer

than five genes were removed prior to GOseq analysis.

Genes were weighted by length and categories with

FDR-corrected p-values ≤ 0.05 were identified as being

enriched with all expressed genes in the data set used as

the reference.

Network analysis

Weighted gene co-expression network analysis (WGCNA)

[42, 43] was used to identify gene co-expression modules.

Co-expression modules arising from the current study

were also compared to modules identified in switchgrass

flag leaves [34] to identify any overlapping expression pat-

terns, especially those linked to senescence [44]. Differen-

tially expressed genes (DEGs) were identified using the

likelihood ratio test in DESeq2. DEGs were filtered by re-

quiring a FDR ≤ 0.05 and a log2 fold change ≥ 2 between

the highest and lowest normalized (variance stabilizing

transformation) expression values. A signed network was

then created from the resulting 18,581 genes with a soft

threshold (β) value of 18, a minimum module size of 30,

and a merge threshold of 0.25. Cytoscape (version 3.2.0)

[45] was used to visualize the resulting network. The topo-

logical overlap measure (TOM), calculated by WGCNA,

was used as a co-expression measure for pairs of genes.

The top four TOMs for each gene, along with the top

0.4% of all TOMs, were used to generate the network,

which was drawn in Cytoscape using the AllegroLayout

plugin with an edge-weighted Allegro Fruchterman-

Reingold algorithm. Edges connecting gene pairs were

weighted by their respective TOM values.
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Metabolite and enzyme analysis

A separate experiment was conducted to identify defense

metabolites and enzymes that accumulated in GB-

infested plants. Five plants each were grown in individ-

ual Cone-tainers to the L2 stage and were either infested

with GB or maintained as uninfested controls as de-

scribed for the RNA-Seq experiments. All plants were

harvested at 10-DAI, coinciding with peak gene expres-

sion observed in the RNA-Seq dataset. Soluble polar me-

tabolites were extracted and derivatized as previously

described [46]. Twenty μL aliquots of the extracts were

evaporated to dryness under vacuum and derivatized by

adding 50 μL of pyridine and 80 μL of N-Methyl-N-tri-

methylsilyltrifluoroacetamide (MSTFA, #TS-48910 Thermo

Scientific, Waltham, MA) and incubated at 60 °C for 2 h.

TMS-derivatized samples (1 μL injection) were analyzed on

an Agilent 7890B GC with a 5977A MSD with a HP-5MS

ultra inert column (30 m x 250 μm x 0.25 μm). GC run

conditions consisted of 250 °C inlet and 300 °C MS transfer

line, with an initial oven temperature of 60 °C which was

increased by 10 °C per minute to 325 °C and maintained

for 10 min. Helium was used as a carrier gas with a flow

rate of 0.6 mL min−1. Putative peak identification and quan-

titation was performed using Agilent GC-MS MassHunter

software. Authentic standards for pipecolic acid (P2519),

chlorogenic acid (C3878), and trehalose (T9531) were

obtained from Sigma-Aldrich, St.Louis, USA.

ROS as H2O2 equivalents were measured using

Amplex Red Ultra (ThermoFisher, A36006; Waltham,

MA) essentially according to [47]. Briefly, 300 μL of

0.1 M sodium phosphate buffer, pH 7.5 was added to 50

± 2 mg of liquid-nitrogen ground plant tissues. Tissues

were subjected to 2 cycles of sonication for 7 s each on a

Branson digital sonifier (Model 450; Branson Ultrasonics

Corp, Danbury, CT), attached to a microtip and an amp-

litude setting of 20%. Tubes were placed on ice in be-

tween sonification cycles. Samples were vortexed for

30 s following sonification and kept on ice for a further

10 min, prior to centrifugation for 15 min at 14,500 rpm

at 4 °C. Triplicate 50 μL aliquots from each sample were

used to detect ROS. A standard curve of 0 to 2000

pmoles of H2O2 was used to calculate ROS equivalents

in tissue extracts. Fluorescence of all samples were de-

termined on a Bio-Tek Synergy plate reader (Bio-Tek,

Winooski, VT), using an excitation filter of 530 ± 25 nm

and an emission filter of 590 ± 35 nm.

Aliquots of 50 ± 2 mg of liquid-nitrogen ground plant

tissues obtained from five individual plants (control or

infested) harvested 10 DAI were assayed for peroxidase

and laccase activities as follows: approximately 10 mg of

insoluble polyvinylpolypyrolidone (PVPP, 77627, Sigma-

Aldrich, St. Louis, MO) was added to plant samples on

ice, followed by the addition of 600 μL of 0.1 M sodium

phosphate buffer, pH 7.0 containing 1.6 mM PMSF

(P7626, Sigma-Aldrich, St. Louis, MO). Two stainless

steel balls (3 mm and 1 mm) were added to each tube,

and tubes were placed in prechilled (−20 °C) cryoholders

of a 2010 Geno/Grinder (SPEX SamplePrep, Metuchen,

NJ). The machine was operated at 1500 rpm for two agi-

tations of 30 s each with an interval of 60 s between

shaking. Samples were centrifuged for 15 min at

14,500 rpm at 4 °C. Supernatants were used as a source

of enzymes. All assays were performed in a total volume

of 200 μL in 96 well microtiter plates at 30 °C. Changes

in absorbance were measured using a Bio Tek Syn-

ergy HT plate reader (Bio-Tek U.S., Winooski, VT).

For peroxidase measurements, samples were diluted

1:5 with 0.1 M phosphate buffer, pH 7.0. For laccase

assays undiluted supernatants were used. Peroxidase

activity was assayed using 5 μL of diluted extract in a

solution containing 20 mM HEPES-NaOH buffer,

pH 6.0, 6.75 mM guaiacol and 0.1 M H2O2 (final

concentrations) as described previously [48, 49].

Laccase activity was assayed using 10 μL of undiluted

extract in 100 mM sodium acetate buffer, pH 5.0,

containing 1.82 mM 2,2′-azino-bis(3-ethybenzothiazo-

line-6-sulfonic acid) and 10 μg catalase (C-1345,

Sigma-Aldrich, St. Louis, MO) in a total volume of

200 μL [50]. Increase in absorbance was followed at

420 nm every 5 min for 30 min at 30 °C. An extinc-

tion coefficient of 3.6 x 104 M−1 cm−1 was used to

calculate laccase activities [51].

cDNA synthesis and real-time qPCR validation

Subsamples of RNA used for RNA-Seq experiments

were utilized to generate cDNA libraries for real-time

qPCR validation using the Evagreen chemistry on a Flui-

digm Biomark HD Instrument (Fluidigm, South San

Francisco, CA) using manufacturer supplied protocols

(available on-line at https://www.fluidigm.com/). Genes,

primers, and amplicon sizes of products are provided in

Additional file 2: Table S2. Data obtained from this in-

strument were analyzed using the Biomark & EP1 soft-

ware freely available through Fluidigm. Four housekeeping

genes were used to generate ΔCt values which were subse-

quently used for statistical evaluation as described below.

Statistical analyses

Statistical analyses of GB numbers and plant damage,

enzymes and metabolites were performed using ANOVA

in Excel. Real-time qPCR data for gene expression ana-

lysis were completed according to manufacturer’s proto-

col (Fluidigm). Relative expression values were statistically

analyzed using ANOVA followed by Tukey’s Honestly

Significant Difference (HSD) post hoc analysis using

p ≤0.05 as a cutoff for significance.
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Results
GB accumulation and damage ratings

Originally 10 apterous GB were placed on each plant at

day zero, and GB numbers continued to increase over

the duration of the experiment. The highest GB num-

bers were observed at 15 days after infestation (DAI)

(Table 1). Similarly, plant damage ratings increased with

time and were significantly higher at 15-DAI. The aver-

age damage rating of 2.4 ± 0.2 at 15-DAI indicated that

at least moderate damage had occurred to infested

plants. No GB (or other insects) were found on the

control plants.

GB-infestation significantly alters transcriptomes in

switchgrass plants

Principal component analysis (PCA) effectively separated

the different transcriptome samples by treatment and

partially separated the samples by time point within each

treatment (Fig. 1a), which suggests changes in transcrip-

tional profiles over the 15 day time course arose from

both development-related changes and stress conditions

associated with GB infestation. By 5-DAI, the transcrip-

tomes of the infested plants were partially differentiated

from the control plants by the first principal component

(PC1, which accounted for 32.4% of the variance), and

by 10-DAI, the transcriptomes from uninfested plants

were fully differentiated from the transcriptomes of the

infested plants along the PC1 axis (circles, Fig. 1a). By

15-DAI, transcriptomes of the uninfested plants were

partially differentiated from the transcriptomes of 10-

day uninfested plants along the PC2 axis (11.2% of the

variance), which could be linked to developmental

changes.

Identification of differentially expressed genes during GB

infestation

Global changes in differentially expressed genes (DEGs)

were identified using an FDR ≤ 0.05 and a fold change

of ≥ 2 (Fig. 1b), and in addition qPCR was performed on

a select list of the genes identified as differentially

expressed to corroborate the findings of the RNA-Seq

experiment (Fig. 7). In control plants, 762 and 779 genes

were differentially expressed at 5-DAI, relative to 10-

and 15-DAI respectively (Fig. 1b), which is likely due to

the developmental changes of the plants through the

time course. In infested plants, the maximum number of

DEGs occurred at 10-DAI (6558), when compared

against uninfested controls, consistent with the PCA

data. However smaller numbers of DEGs were also

observed at 5 (2425) and 15-DAI (3931; Fig. 1b).

A total of 7565 unique genes were identified as being

differentially expressed due to GB infestation when com-

paring each infested time point to the corresponding

uninfested controls. A majority of these DEGs were up-

regulated in response to GB feeding (5507 genes) com-

pared to the 2058 genes that were downregulated.

Among the upregulated DEGs, 271; 1568; and 417 were

exclusively upregulated at 5, 10, and 15-DAI respectively,

while 1703 were consistently upregulated and 21 were

consistently downregulated across all time points (Fig. 1c,

d). More DEGs were shared between the 10- and 15-DAI

plants compared to the other time points (Fig. 1c). The

maximum number of downregulated DEGs (1431) was

observed at 10-DAI, and far fewer repressed DEGs were

observed at 5 (41) and 15-DAI (222; Fig. 1d).

GB infestation activates cellular oxidative responsive

pathways and suppresses photosynthesis-related pathways

Four different gene ontology (GO) enrichment compari-

sons were performed to identify up/downregulated GO

biological processes in: (1) DEGs in common across all

time points in the aphid-infested plants; (2) DEGs at 5

DAI; (3) DEGs at 10-DAI; and (4) DEGs at 15-DAI

(Additional file 3: Data S1).

The 55 GO biological process terms enriched in upregu-

lated genes common to all three time points in GB-

infested plants included: oxidation-reduction process

(GO:0055114), response to biotic stimulus (GO:0009607),

and defense response (GO:0006952). Eighteen biological

process GO terms were enriched in infested plants 5-DAI

(271 DEGs; Fig. 1c) including gene expression

(GO:0010467) and cellular biosynthetic processes

(GO:0044249; Additional file 3: Data S1). By 10-DAI, the

seven enriched GO terms associated with upregulated

genes in infested plants included transmembrane transport

(GO:0055085), single-organism process (GO:0044699), and

oxidation-reduction process (GO:0055114). In contrast, the

nine significantly enriched terms among the 417 upregu-

lated DEGs that were specific to the 15-DAI plants

(Fig. 1c) were associated with protein phosphorylation

(GO:0006468) (Additional file 3: Data S1).

No GO terms were significantly enriched in genes

downregulated at all three time points or 5-DAI in

infested plants (21 and 41 genes respectively, Fig. 1d). The

1431 DEGs downregulated after 10-DAI in GB-infested

Table 1 Aphid numbers, damage ratings and leaf stage of samples

collected throughout the time course. (n= 4 samples per treatment)

Sample Total Aphid Number Damage Rating Leaf Stage

Day 5 Infested 25 ± 16.8a 1.4 ± 0.4 L3

Day 5 Control 0 1 L3

Day 10 Infested 33.8 ± 13.8a 1.9 ± 0.2a L4

Day 10 Control 0 1 L4

Day 15 Infested 57 ± 27.1a 2.4 ± 0.2a L4

Day 15 Control 0 1 L4

Means and standard errors are shown; samples with letter “a” are statistically

different (p-value ≤ 0.05) from the control sample at that specific time point
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plants were enriched in 24 biological process terms in-

cluding biological regulation (GO:0065007), peptide trans-

port (GO:0015833), and nitrogen compound transport

(GO:0071705) (Additional file 3: Data S1). Cell redox

homeostatic processes (GO:0045454) and photosynthesis

(GO:0015979) were among the four enriched in DEGs

downregulated in infested plants at 15-DAI.

Genes associated with chlorophyll, carbon, and nitrogen

metabolism are significantly affected by GB herbivory

Expression levels (average normalized mapped reads) for

all of the genes described in Figs. 2, 3, 4, 5, 6, 7, 8 and 9

are provided in Additional file 4: Data S2. In control

plants, expression of chlorophyll biosynthetic genes gen-

erally increased over the 15-day time course (Fig. 2a,

blue bar), with minimal changes occurring in expression

levels for chlorophyll degradative genes (Fig. 2a, orange

bar). In contrast, genes with roles in chlorophyll

biosynthesis were significantly downregulated by 10-

and 15-DAI in the GB-infested plants, and chloro-

phyll catabolic genes, namely chlorophyll(ide) b

reductase (CBR), chlorophyllase 2 (CHL2), and pheo-

phorbide A oxidase (PAO) were induced by 5-DAI

(1.2 to 2 fold) and upregulated (2.8 to 4 fold) by 10-

DAI (Fig. 2a; Additional file 4: Data S2) in infested

plants. Although expression levels of genes involved

in chlorophyll catabolism were reduced 15-DAI in

comparison to 10-DAI in infested plants (Fig. 2a,

orange bar), they were still significantly greater than

those observed for the 15-DAI uninfested control

plants (Fig. 2a, blue bar). Consistent with an upregu-

lation in chlorophyll catabolism and reduced chloro-

phyll biosynthesis in GB-infested plants, chlorophyll

content in GB-infested plants 10-DAI were signifi-

cantly lower than in comparable uninfested control

plants (Additional file 5: Figure S1a).
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Fig. 1 Overview of transcriptomic data. a PCA of transcriptomic data, Blue symbols, controls; Orange symbols, GB-infested plants; squares 5-DAI;

circles, 10-DAI; and triangles, 15-DAI harvest dates. b Heatmap of global changes in differentially expressed genes based on z-scores where cyan is
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Changes in chlorophyll metabolism were mirrored by

downregulation of the majority of genes involved in car-

bon fixation (Fig. 2b) and the Calvin cycle (Fig. 2c) in

infested plants by 10-DAI, although there appeared to

be a recovery in transcript levels for several of these

genes by 15-DAI (Fig. 2b, c). However, transcript levels

for a few genes including PEPcarboxylase kinase (PEPcK-

2), NADP-Malic enzyme (NADP-ME-2), and phospho-

enolpyruvate carboxykinase (PEPCK-1) were upregulated

in the 10-DAI plants (Fig. 2b, orange bar). Additionally,

cytosolic, but not chloroplastic, fructose bisphosphate al-

dolase (FbPA-1), ribulose phosphate 3 epimerase (RP3E),

glyceraldehyde 3-phosphate dehydrogenase (G3PDH),

and phosphoglycerate kinase (PGK-2) associated with

the Calvin cycle were also consistently elevated in infested

plants over the time course (Fig. 2c, orange bar).

Transcriptional profiles of genes involved in sucrose

synthesis and degradation are shown in Fig. 2d. Three

sucrose-phosphate synthase genes (SucPSyn) were

expressed, two of which were more highly expressed in

control plants compared to the infested plants. In con-

trast, a pair of sucrose synthase genes (SucSyn-2) was

more highly expressed at all three time points in the

GB-infested plants compared to control plants. A con-

comitant increase in invertase (Inv1; Fig. 2d) transcript

levels was observed in the infested plants. Conceivably,

these transcriptional changes signal increase sucrose

breakdown and decreased sucrose production due to

CA
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reduced photosynthetic capacity of the infested plants

(see Fig. 2b, c). In concert, starch synthesis was also ap-

parently affected by GB herbivory (Fig. 2e). A major

glucose-1-phosphate adenylyltransferase gene (G1PAT-1;

Fig. 2e, orange bar) and several other starch biosynthesis

genes were significantly downregulated in the infested

plants compared to the control plants. Downregulation

of the starch-biosynthesis transcripts had occurred as

early as 5-DAI (Fig. 2e). It is conceivable that some of

the contrasting patterns in the expression of the genes

associated with sucrose metabolism were under plant

developmental control (higher in uninfested plants) and

some responded to GB herbivory.

Nitrogen metabolism was also significantly impacted

by GB herbivory (Fig. 2f ). Transcripts for nitrate reduc-

tase (NR) and ferredoxin-dependent nitrite reductase

(fNiR) were downregulated by 5-DAI in the GB-infested

plants, and remained depressed even 15-DAI (Fig. 2f ).

Genes required for assimilating ammonia into amino

acids in the chloroplast were also downregulated in

GB-infested plants, including glutamine synthetase 1

(GlnSyn-1), ferredoxin-dependent glutamine-2-oxoglutarate

amino transferase (GluSynA-2), and NADP+ −dependent

glutamate dehydrogenase (GluDHa) (Fig. 2f, blue bar).

Conversely, cytosolic glutamine synthetase (GlnSyn-2),

asparagine synthetases (AsnSyn-1 and AsnSyn-2), and NAD

+ −dependent glutamate dehydrogenase (GluDHb-1 and

GluDHb-2) were upregulated in infested plants, generally

with maximum expression levels observed 10-DAI (Fig. 2f,

orange bar), suggestive of increased protein turnover.

Together these data signal a potential decline in N-assimila-

tion within chloroplasts, consistent with the apparent slow-

down in photosynthesis described earlier.

Infested plants upregulate genes related to ROS signaling

and mitigation

Expression profiles of gene families involved in ROS me-

tabolism are shown in Fig. 3. Expression of five reactive-

burst oxidase (RBOH) genes was detected in both

infested and uninfested plants. Of these, only one gene

was upregulated in the control plants while three

RBOHs were substantially elevated by 10-DAI in infested

plants (Fig. 3a). Similarly, two catalases were upregulated

in control plants, but four were significantly induced

within 10-DAI in the infested plants. Only one Fe/Mn

superoxide dismutase (SOD) gene was strongly upregu-

lated in infested plants 5-DAI, and this same gene was

downregulated in plants at 10- and 15-DAI. In contrast,

a second Fe/Mn SOD was upregulated at 10-DAI, and

its expression level was sustained through 15-DAI in
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infested plants. However, transcripts for this specific Fe/

Mn SOD were also detected in high abundances in 15-

DAI uninfested plants, suggesting that elevated expres-

sion of this gene might be linked to developmental pro-

cesses, and possibly in the recovery of plant growth in

the infested plants (Fig. 3a). Four Cu/Zn SOD genes were

significantly upregulated in GB-infested plants by 10-DAI

and transcript counts remained elevated in plants 15-DAI,

indicating these SODs might be strong candidates for de-

toxification of excess ROS produced as a defensive re-

sponse to GB. Supporting these findings, cellular ROS (as

H2O2 equivalents) was significantly greater in GB-infested

plants 10-DAI (Additional file 5: Figure S1b).

A total of 12 switchgrass ascorbate peroxidase genes

were differentially expressed (Fig. 3b). Six of these genes

were expressed at higher levels in control plants in at
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least two time points and six were significantly upregu-

lated in the infested plants with maximal expression

levels occurring at later time points (10- and/or 15-DAI)

(Fig. 3b). Four of the six genes upregulated in the

infested plants encoded ascorbate peroxidases destined

for the cytoplasm, and conversely four of the six genes

upregulated in control plants were targeted to plastids

(Additional file 4: Data S2).

Forty-three class III peroxidase genes were differentially

expressed (Fig. 3b). A majority of these genes were upreg-

ulated in response to GB feeding as early as 5-DAI (black

coloring in 5-DAI compared to cyan coloring in control

plants), with peak expression generally occurring 10-DAI

(Fig. 3b), although three peroxidase genes were upregu-

lated in infested plants 15-DAI. In contrast, transcripts for

seven other peroxidases were expressed more highly in

uninfested plants, suggesting an involvement in develop-

mental processes (Fig. 3b). Recently, peroxidases present

in a syntenic region of the genomes of switchgrass, sor-

ghum (Sorghum bicolor), and foxtail millet (Setaria italica)

have been shown to be variably responsive to GB feeding

[29], supportive of the findings reported here.

Increases and decreases in gene expression were ob-

served for a large number of laccases (Fig. 3c) and

glutathione-S-transferases (GSTs; Fig. 3d) as responses

to GB herbivory.

Supporting the role of peroxidases and laccases in

response to GB-herbivory, both total peroxidase

(using guaiacol as a substrate) and laccase activities

were significantly elevated in GB-infested plants 10-

DAI (Additional file 5: Figure S1c, S1d).

Genes associated with JA, SA, and ET biosynthesis are

upregulated during infestation

Phytohormone metabolic pathways are commonly used

by plants for defense against both pests and pathogens.

Expression levels of four genes associated with salicylic

acid (SA) metabolism were significantly altered during

GB infestation, including a hydroxybenzoate-glutamate

ligase (PBS3), a BAHD acyl transferase (EPS1),and two

SA esterases (Fig. 4a). The SA esterases were signifi-

cantly induced during infestation and low transcript

levels were observed in the control samples. A greater

effect on genes involved in jasmonic acid (JA) metabol-

ism was observed with 38 total DEGs identified across

the time course (Fig. 4b). These genes included 10 lipox-

ygenase (LOX), two allene oxide synthase (AOS), and

one allene oxide cyclase (AOC) genes, all of which were

induced by GB-infestation (Fig. 4b). In contrast, three

jasmonic acid-amido synthetases (JAR) were downregu-

lated in infested plants (Fig. 4b). There were also twenty

jasmonate-ZIM domain (JAZ) genes (Fig. 4b) that had

variable expression levels, with the majority being upreg-

ulated during infestation but some also being downregu-

lated during the two later time points, which suggests

that the expression of JAZ genes may be fine-tuned dur-

ing GB defense responses. In addition to SA and JA as-

sociated DEGs, DEGs associated with the ethylene (ET)

metabolism were also observed. These included four

acetyl-CoA synthetase (ACS) and four ACC oxidase

(ACO) genes, most of which showed the greatest upreg-

ulation at 10-DAI (Fig. 4c).

Switchgrass plants mount a significant defensive response

against GBs

The incursion of pests and pathogens can elicit the up-

regulation of a number of plant gene families associated

with defense, including pathogenesis responsive (PR)

genes, chitinases, proteases, inhibitors of insect digestive

enzymes, and any of a number of resistance gene homo-

logs (RGHs) belonging to the NB-LRR family of proteins

[24, 52]. In Summer switchgrass plants challenged with

GB, there was a dramatic upregulation in all of the clas-

ses of defensive genes including PR1 through PR4, but

not PR5 families (Fig. 5a).
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Transcripts for genes containing chitinase (PF00182)

and chitin recognition (PF00187) domains induced by

GB (Fig. 5b) typically displayed maximum expression

levels that were five- to ten- fold higher than those

expressed in control non-infested plants (Additional file 4:

Data S2). Several of these genes were significantly

induced within 5-DAI, although two chitinases

(Pavir.Aa01411 and Pavir.Ab02160) had expression

profiles indicative of developmental or age-related

regulation (Fig. 5b bottom) and were upregulated at

later time points (10- or 15-DAI in control plants).

Six major families of proteinase inhibitors (PIs) were

induced in response to GB feeding that included mem-

bers of the SERPIN, Bowman-Birk, potato inhibitor

type-I and type-II, cystatins, and serine carboxypeptidase-

γ-inhibitors families (Fig. 5c). Maximal expression was

generally observed 10-DAI, although in many cases their

induction was significantly elevated 5-DAI (black coloring

in 5-DAI compared to cyan coloring in control plants;

Additional file 4: Data S2). None of these PI families ap-

peared to have exclusive roles in GB defense, because at

least one gene from every PI class was more highly

expressed in uninfested plants (Fig. 5c).

Profiles for the differentially expressed NB-LRRs

(PF00931) are shown in Fig. 5d. Evidence for both age-

related and GB-inducible changes in NB-LRR gene

expression was observed. In the infested plants, two

different expression profiles were observed: (1) several
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NB-LRR genes were strongly upregulated 10-DAI with

decreased expression levels observed 15-DAI in infested

plants, and (2) other NB-LRRs were induced strongly

10-DAI and maintained high expression through 15-DAI

in infested plants (Fig. 5d).

GB elicit changes in defense metabolites in infested

switchgrass tissues

A total of 70 features with putative identification quality

scores >70 were detected in the metabolite analysis. Des-

pite some slight variation observed among the metabo-

lomes of the biological replicates of the control and

infested plants, it was evident that the metabolomes had

been significantly affected by GB herbivory (Fig. 6a).

Three GCMS peaks were substantially enriched in GB-

infested plants, and yielded mass spectra attributable to

pipecolic acid, chlorogenic acid, and trehalose. All three

compounds have been implicated in plant defense

[53–55] and were therefore validated using authentic

standards. Pipecolic acid was found at low levels in con-

trol plants but was elevated almost 1000-fold in the

infested plants. Trehalose was enriched by almost 200-

fold in the infested plants and chlorogenic acid was

enriched about 3-fold in the infested plants (Fig. 6b). An

analysis of genes involved in these three pathways was

performed next.

The predicted pathway for the formation of pipecolic

acid from lysine is shown in Fig. 5c (adapted from [56]).

The switchgrass genes encoding LL-diaminopimelate

aminotransferase/aldehyde dehydrogenase (ALD1) and

sarcosine (pipecolic acid) oxidase (SOX) were signifi-

cantly upregulated in the infested plants by approxi-

mately 100-fold relative to control plants by 5-DAI, and

the elevated expression levels for these genes were sus-

tained through 15-DAI (Additional file 4: Data S2).

Additionally, two other switchgrass lysine degradation path-

way genes, namely lysine ketoglutarate reductase/saccharo-

phine dehydrogenase (LKR/SDH) and L-aminoadipate

semialdehyde dehydrogenase (ALDH), were strongly upreg-

ulated by 10-DAI and retained higher expression than con-

trol plants at 15-DAI (Fig. 6c; Additional file 4: Data S2).

A large number of trehalose-6-phosphate synthase and

trehalose-6-phosphate phosphatase genes were found in

the switchgrass genome, but given their structural simi-

larities and lack of biochemical characterization, it was

not possible to clearly discriminate between genes
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coding for either enzyme using their amino acid se-

quences alone. However, when considered as a group,

significant expression changes were documented both in

control and infested plants (Fig. 6d). One set of

trehalose-6-phosphate synthase/phosphatase genes was

significantly upregulated in GB-infested plants 10-DAI.

In contrast, there appeared to be a greater diversity in

the expression profiles of these genes in the control

plants across all the three harvest dates (Fig. 6d). Tran-

scripts were mapped to two trehalases, both of which

were significantly upregulated in infested plants by

15-DAI, whereas transcript levels for these two genes

were relatively unchanged in control plants (Fig. 6d,

Additional file 4: Data S2).

Switchgrass plants also produce chlorogenic acid,

through the action of specific hydroxycinnamoyl CoA-

shikimate/quinate hydoxycinnamoyl transferases (HCTs

[55]). HCT1a and HCT2a genes were upregulated in

GB-infested plants as early as 5-DAI with substantial in-

creases in transcripts by 10-DAI (Fig. 6d). Of the six

expressed HCT-Like1 genes, four were significantly up-

regulated by 10-DAI in infested plants, although the ex-

pression levels for these four genes also increased over

the time course in the control plants (Fig. 6d). Two

HCT-Like1 genes were expressed at higher levels in the

control plants relative to the infested plants (Fig. 6d).

Real-time qPCR validates gene expression profiles

Twenty five genes representing key pathways, including

chlorophyll biosynthesis and degradation, C and N-

metabolism, hormones, redox, plant defense and three

specific transcription factors, were selected for validation

by real-time qPCR using the identical input RNA that

was used for RNA-Seq studies (Fig. 7). Four housekeep-

ing genes (Additional file 2: Table S2) were used to cal-

culate ΔCt and log2-fold change (infested/controls).

Real-time qPCR in general had correlation coefficients

of > 0.7, and in many case >0.9, with the RNA-Seq ex-

pression values for most genes queried (Fig. 7). Fructose

bis-phosphate aldolase (R2 = 0.401) and PR1 (R2 = 0.503)

were the two exceptions. In the case of PR1, little if any

amplification occurred in control samples. Real-time

qPCR essentially validated RNA-Seq results.

Network analysis identifies gene sets associated with leaf

senescence, and recovery of leaf function in response to

GB herbivory

Because RNA-Seq data indicated that significant changes

in leaf metabolic pathways associated with senescence

occurred in GB-infested switchgrass, a comparison be-

tween gene networks associated with flag leaf develop-

ment and senescence [34] and GB herbivory (this study)

was performed to discover networks unique and com-

mon to these two processes.

A total of 23 co-expression modules (M1 through

M23) among 17,637 genes were detected in the com-

bined flag leaf and GB herbivory datasets (Fig. 8a,

Additional file 6: Figure S2). In general, the networks of

genes correlating with flag leaf development (top yellow

dotted circle) were separable from the networks found

in the GB-infested and uninfested seedlings (Fig. 8a, bot-

tom white dotted circle). Additionally, strong gradients

were present in networks associated with flag leaf devel-

opment (early to late stages, white arrow, flag leaves)

and response to GB feeding over the 15-day time course

(magenta dotted circle; Fig. 8a, lower left corner) that

suggests several of the gene expression networks were

exclusively associated with flag leaf development (mod-

ules 1, 4, and 21), GB-infestation (modules 2, 7, 12, and

18), or developmental events during early plant growth,

(modules 11, 15, 20, and 22) and with flag leaf senes-

cence (modules 7, 8, 12).

Sixty-five putative switchgrass orthologs to senescence-

associated genes (SAGs) were identified in flag leaves [34],

of which 54 were within the combined flag leaf develop-

ment and GB feeding datasets (Fig. 8b; Additional file 4:

Data S2). Most of these SAGs were found in modules 2

(orange dots), 7 (yellow dots), and 8 (magenta dots)

(Fig. 8b). Expression patterns of SAGs in GB-infested

plants showed evidence of a limited progression towards

senescence as only a subset of the SAGs were induced.

For example, module 2 contained 18 SAGs induced by GB

infestation. Among these genes were three homologs to

Arabidopsis SAG2 (AT5G60360, coding for an aleurain-

like thiol protease; [57]), three catalase genes including the

CATALASE 2 ortholog [34], and one homolog to Arabi-

dopsis ANAC029, a known regulator of leaf senescence

[58]. It is plausible that triggering some components of

senescence pathways leads to reprogramming of leaf me-

tabolism away from nutrient assimilation and towards the

biosynthesis of defense molecules. Module 7 contained 16

SAGs which were expressed at similar levels during both

GB-induced stress and flag leaf senescence. The majority

of these SAGs included homologs to ANAC029 and genes

associated with chlorophyll degradation, which all have

established roles during senescence [34, 59, 60]. Module 8

contained five SAGs (Additional file 4: Data S2) which

were only expressed during flag leaf senescence [34] and

not induced in the GB-infested plants, supportive of a lim-

ited progression toward senescence under insect pressure.

A total of 83 WRKY genes out of 250 WRKYs identi-

fied in the switchgrass genome [44] were found in the

combined network (Fig. 8c). WRKYs are key regulators

of plant biotic and abiotic stress responses [61], and pos-

sible roles for WRKYs in switchgrass flag leaf senescence

have been proposed [44]. Forty-two WRKYs were

present in module 2 (Additional file 4: Data S2; GB-

infested). Eighteen of these 42 WRKYs were also
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associated with flag leaf senescence (see Fig. 5 in [44]).

Similarly, of the 14 WRKYs assigned to module 18

(Fig. 8c, Additional file 4: Data S2), thirteen were also

present in the transcriptomes of expanding flag leaves (see

Fig. 5 in [44]). These data provide evidence for both the

overlap and divergence between senescence and defense

response to GB herbivory. As examples, PviWRKY29 and

PviWRKY117, found in module 2, are orthologous to Ara-

bidopsis WRKYs implicated in leaf senescence, biotic

stress response, and P nutrition [44, 62, 63]. PviWRKY54,

found in module 7 (Additional file 4: Data S2), is an appar-

ent ortholog to ATWRKY28, which influences plant re-

sponses to stress by modulating SA biosynthesis [64].

Within module 18, PviWRKY175 is orthologous to

ATWRKY33 which encodes a transcriptional regulator

modulating responses to fungal infection by directly regu-

lating genes involved in SA, JA, and ET signaling and

cross-talk [65]. However, the actual roles of these specific

PviWRKYs in plant defense and growth processes in

switchgrass remain to be determined.

Network analysis of MYBs detected expression pat-

terns associated with flag leaf development or GB

feeding for 136 MYB genes (Fig. 8d, Additional file 4:

Data S2). In contrast to the distribution of the WRKY

genes (Fig. 8c), the MYBs were represented across the

entire network, highlighting their broad roles in regulat-

ing plant processes, including secondary cell wall forma-

tion [66, 67]. Plant cell wall fortification appears to be a

strong response of switchgrass plants to GB herbivory,

and specific MYBs could be regulating these processes.

Module 2 contained 27 MYBs (Additional file 4: Data

S2), and two of these MYBs (Pavir.Aa01159 and

Pavir.J10932) encode close homologs to sorghum

SbMyb60 (Sobic.004G273800). Constitutive overexpres-

sion of SbMyb60 in sorghum plants resulted in higher

expression levels of monolignol biosynthesis genes as

well as ectopic lignin deposition around the midrib and

vascular bundles in leaves [29]. Moreover, module 2 was

enriched with several genes encoding lignin biosynthetic

enzymes (Additional file 4: Data S2), which suggests

switchgrass homologs of SbMyb60 might also be linked

to monolignol biosynthesis to stimulate cell wall fortifi-

cation. Module 7 contained seven MYBs, whose Arabi-

dopsis orthologs have largely undescribed roles in plant

physiology [68, 69]. In contrast, module 18 contained

only one MYB, Pavir.J12840 (Fig. 8d, Additional file 4:

Data S2), an apparent ortholog to ATMYB12. ATMYB12

regulates a number of different pathways, including the

synthesis of flavonols that provide insect-resistance [70].

Possibly, the switchgrass ortholog could be influencing

production of similar defensive compounds. Overall this

network analysis provided a detailed map of the tran-

scriptional changes resulting from GB infestation and

highlighted expression profiles of key transcription

factors that could underlie the defensive responses of

switchgrass to GB.

Discussion
Switchgrass transcriptomes are significantly modulated

by GB feeding

As early as 5-DAI, significant differences in the tran-

scriptomes obtained from GB-infested and uninfested

plants were already apparent. Among the early signs of

defense responses were changes in C and N metabolism

in the infested plants. Suppression of photosynthesis and

diversion of carbon appear to be universal early re-

sponses in plants to aphid feeding [2, 16, 49, 71], and in

this regard, switchgrass responses to GB appears to be

similar. Other molecular signatures in infested plants

5-DAI were suggestive of the involvement of both mechan-

ically–triggered and elicitor-triggered plant responses. In

the former class were a number of wall-associated kinases

including, Pavir.Ab01425; Pavir.Ib00075; Pavir.J04391,

whose encoded proteins were orthologous to FERONIA

(FER) and HERCULES RECEPTOR KINASE 1 (HERK-1).

Both FER and HERK-1 transduce mechanical signals in

Arabidopsis and function by modulating calcium fluxes,

leading to subsequent downstream effects [72]. Two puta-

tive switchgrass orthologs to the Arabidopsis elongation

factor Tu (EF-Tu) receptor (Pavir.J26110 and Pavir.J27646)

were significantly upregulated only in infested plants 5-

DAI. EF-Tu receptors are known components of the

microbe-associated molecular pattern (MAMP) recognition

in plants [73, 74] and recognize EF-Tu secreted by bacteria.

Aphid honeydew also contains EF-Tu protein and has been

suggested to be involved in plant-aphid interactions [75].

Our data would support this hypothesis. However, confirm-

ation of this specific interaction at a biochemical level has

yet to be performed.

Other early markers of the response to aphid feeding

were specific upregulation of genes encoding wall-

associated kinases and the defense-related NB-ARC do-

main (NB-LRR) proteins (Pavir.J15505; Pavir.J19633). In

other plants, NB-LRRs have been identified as resistance

genes (R genes) for specific insects [17, 24]. Elevated ex-

pression for genes related to cell wall structure and cyto-

skeleton, specifically in GB-infested plants harvested at

5-DAI (Pavir.Ib01358, Pavir.Ia03598, Trichome birefrin-

gence like, TBL; Pavir.Aa00167, Myosin XI), might be

linked to the signaling cellular changes accompanying

activation of the many wall related sensor kinases. In

Arabidopsis, the orthologs to the switchgrass TBLs im-

pact the formation of crystalline cellulose in the second-

ary cell walls through interaction with cellulose

synthases [76] and myosin XI participates in the move-

ment of cellular organelles [77], nuclear shape, and plant

posture [78]. Myosin IX aids in the formation of effect-

ive barriers against pathogens by directing the trafficking
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of materials needed for cell wall fortification [79], sug-

gestive for a similar role for Myosin IX in switchgrass

responses to GBs.

ROS signaling and mitigation are a component of

switchgrass response to GB herbivory

ROS are a well-established component of plant response

to insect herbivory [16, 80, 81]. Indeed, the ability of a

plant to effectively scavenge excess ROS has been hy-

pothesized to differentiate susceptible genotypes from

tolerant genotypes [26, 82–84]. Although cellular ROS

can be generated from multiple compartments, the

plasma membrane-bound reactive-burst oxidases (RBOHs)

are among the first to respond to external stimuli and are a

central cog in ROS-mediated signaling [85, 86]. RBOH-

mediated ROS generation can activate a number of wall-

bound and cytoplasmic proteins triggering diverse cellular

responses. Upregulation of RBOHs, downstream signaling

proteins, and upregulation of a number of genes encoding

SODs (specifically Cu/Zn SODs), peroxidases, laccases, and

glutathione-S-transferases (GSTs) were detected upon GB

herbivory of switchgrass, indicating that both ROS signaling

and potentially an increased need to modulate ROS levels

had occurred in the GB-infested plants. Cu/Zn SODs,

which can be localized in multiple compartments including

cell walls and the cytoplasm [87], were expressed more

highly in the infested plants indicating a possibility of ROS

mitigation across several cellular compartments. Similar ob-

servations have been made in other plants [2, 80]. Ascor-

bate peroxidases and class III secreted peroxidases are

among the major ROS detoxifying enzymes in switchgrass

cells [88]. Four genes encoding cytosolic ascorbate peroxi-

dases were significantly upregulated in GB-infested plants,

and orthologs have been linked to wound responses [86].

Peroxidases also have well established roles in defensive re-

sponses to herbivores [88–90], and laccases, frequently as-

sociated with cell wall fortification [91], presumably play

similar roles in switchgrass and other related grasses [29].

ROS content and activities of peroxidases and laccases were

significantly elevated in GB-infested plants 10-DAI, sup-

portive for an overall role of ROS, and ROS mitigation in

switchgrass plants infested with GB. These data are consist-

ent with many literature reports cited elsewhere in the text.

Hormone defense signaling pathways

The plant hormones SA, JA, and ET play key roles as

signaling molecules during both abiotic and biotic

stresses, including plant-aphid interactions [92–95]. SA

biosynthesis and SA-dependent pathways can be induced

by phloem-feeding aphids and spider mites [96], and SA

has been shown to act as a negative modulator of the JA

pathway, but it can also act additively or synergistically,

depending on the system [97]. In susceptible soybean

plants, aphids depress both JA and SA-mediated defense

responses by activating abscisic acid (ABA)-related path-

ways [27]. In contrast, GB herbivory elicited large-scale

defensive responses in Summer switchgrass that in-

cluded upregulation of genes involved in SA, JA, and ET

biosynthesis (Fig. 4a–c) and downstream targets of these

phytohormones including PR genes (Fig. 5a).

The JA metabolism associated genes, including LOX,

AOS, AOC, and JAR, were shown to be upregulated in

response to wounding, insect feeding, as well as necro-

trophic pathogens [96, 98–101]. With the exception of

three JAR genes which were downregulated, all other JA

pathway genes were significantly induced in GB-infested

switchgrass (Fig. 4b) which is consistent with other stud-

ies [96]. JA has been shown to regulate plant growth and

development, and its down-regulation has been linked

to an increase in susceptibility during insect infestations

[1]. Therefore, the upregulation of these genes suggests

that a heightened level of defense could be linked to the

tolerant behavior of the switchgrass cultivar Summer.

However, more work will need to be completed to clarify

whether these induced genes were specifically upregu-

lated in response to GB or part of a broader suite of

plant defenses that respond to piercing-sucking insects

or biotic stresses in general.

The apparent simultaneous upregulation of genes asso-

ciated with SA and JA in plants subjected to aphid herbiv-

ory have been reported in the literature [102–105]. It is

conceivable that in switchgrass, at least for cultivar Sum-

mer x GB interactions, associations between SA, JA, and

ET are additive or synergistic. Ultimately, similar studies

on switchgrass responses with diverse aphid or other

arthropod pests should unravel the commonality or

uniqueness of the interactions between SA, JA, and ET

pathways in host plant defense.

Anti-nutritional genes and metabolites are induced during

GB infestation

Consistent with gene expression profiles, the broad scale

defensive response of Summer switchgrass plants to GBs

was also confirmed by metabolites produced in response

to herbivory, which included pipecolic acid, trehalose,

and chlorogenic acid.

Pipecolic acid is important to plant defense including

aphid herbivory [54, 106, 107] and is a known signaling

compound required for systemic acquired resistance

(SAR) [108–110]. Likewise chlorogenic acid is associated

with plant defense [55] and can negatively affect insect

health [111]. Trehalose can regulate carbohydrate me-

tabolism in leaves [112, 113], and its levels increase in

response to insect herbivory [24, 53]. In Arabidopsis,

trehalose also regulates PHYTOALEXIN DEFICIENT 4

(AtPAD4) expression and changes the flux of glucose to-

wards starch synthesis and away from sucrose synthesis,

depriving aphids of accessible energy sources [53].
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AtPAD4 orthologs in switchgrass were not differentially

expressed between controls and infested plants across all

harvest dates which could be consistent with downregu-

lation of genes associated with both starch and sucrose

synthesis in GB-infested switchgrass plants. The patterns

of regulation of genes associated with primary metabol-

ism appear to be both plant and herbivore dependent,

and transcriptomic events observed in this current study

should be interpreted within the framework suggested

by Zhou et al. [114].

Transcript evidence also supported the upregulation of

enzymes involved in the glyoxylate cycle in GB-infested

switchgrass plants. These included two isocitrate lyases

(Pavir.Ba00758, Pavir.Bb02888), two malate synthases

(Pavir.Gb01372, Pavir.J04298), and one malate dehydro-

genase (Pavir.Aa03554). The glyoxylate cycle is upregu-

lated during switchgrass leaf senescence [34] and has also

been shown to part of plant-microbe interactions [115].

Therefore, glyoxylate metabolism could be another im-

portant aspect of herbivore defense as has been predicted

for other pathogens or trigger defense-associated senes-

cence [115–117].

Conclusions

A model of switchgrass responses to GB

Based on our datasets, a model underlying switchgrass

response to GB feeding is proposed (Fig. 9). Among the

earliest transcriptional changes occurring 5-DAI were

related to a number of cell wall receptors, including

wall-associated kinases. These changes appear to be

similar to other studies reported in the literature (for ex-

ample [7]). Perception of GB likely triggered intracellular

signaling potentially through an upregulation of RBOHs

and other wall-anchored proteins. Expression changes of

genes linked to cell wall structure and glycans and to JA,

SA, and ET biosynthesis and signaling were also induced

5-DAI. ROS levels, peroxidase and laccase activities were

significantly higher by 10-DAI in GB-infested plants,

and were accompanied by a massive upregulation of

genes, including NACs, WRKYs, and MYBs, and poten-

tial ancillary signaling molecules such as leucine amino-

peptidases (LAP, [94]). The net result appears to be a

broad scale defensive response, starting from downregu-

lation of primary metabolism to potentially starve GB of

nutrients and minerals, to the production of defense me-

tabolites and cell wall fortification (possibly through ec-

topic lignification), and the induction of a number of

cytochrome P450s, terpene cyclases, and several dioxy-

genases at 10-DAI. Interestingly, both terpene cyclases

and dioxygenases are important for plant defense against

insects [118, 119].

These strong defensive responses observed at 10-DAI

were followed by an apparent recovery of leaf functions

related to photosynthesis, C, N, and nutrient metabolism

15-DAI, as detected by higher expression levels of genes

associated with several of these pathways compared to

10-DAI. Future transcriptome-scale comparisons with

resistant, susceptible, and tolerant genotypes will be ne-

cessary to conclusively link these pathways to possible

routes of host resistance in switchgrass and other

grasses. Overall, these studies provide new information

and genes that could be useful for the continued im-

provement of warm-season temperate C4 perennial bio-

mass grasses in response to herbivory.
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