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Abstract

The discovery of the specification of CD4+ helper T cells to discrete effector “lineages” 

represented a watershed event in conceptualizing mechanisms of host defense and 

immunoregulation. However, our appreciation for the actual complexity of helper T cell subsets 

continues unabated. Just as the Sami language of Scandinavia has 1000 different words for 

reindeer, the range of fates available for a CD4+ T cell is numerous and may be underestimated. 

Added to the crowded scene for helper T cell subsets is the continuously growing family of innate 

lymphoid cells (ILCs), endowed with common effector responses and the previously defined 

“master regulators” for CD4+ helper T cell subsets are also shared by ILC subsets. Within the 

context of this extraordinary complexity are concomitant advances in the understanding of 

transcriptomes and epigenomes. So what do terms like “lineage commitment” and helper T cell 

“specification” mean in the early 21st century? How do we put all of this together in a coherent 

conceptual framework? It would be arrogant to assume that we have a sophisticated enough 

understanding to seriously answer these questions. Instead, we will review the current status of the 

flexibility of helper T cell responses in relation to their genetic regulatory networks and epigenetic 

landscapes. Recent data have provided major surprises as to what master regulators can or cannot 

do, how they interact with other transcription factors and impact global genome-wide changes and 

how all these factors come together to influence helper cell function.

Introduction: functional specification of CD4+ helper T cells

The existence of T cells was first recognized in the 1960’s (1, 2) and their division into 

helper (CD4+) and cytotoxic (CD8+) T cells was appreciated in 1970’s (1–5). It was not 
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until the late 1980’s that the dualism between type 1 and 2 responses of CD4+ helper T cell 

subsets was first proposed (6, 7). Type 1 helper T (Th1) cells produce the signature cytokine 

interferon gamma (IFN-γ), and play a pivotal role in mounting immunity against 

intracellular pathogens (8, 9). Type 2 helper T (Th2) cells produce interleukin-4 (IL-4), IL-5 

and IL-13, and are important against helminth infections and for helping B-cells to produce 

IgE antibodies (10).

Just as T and B cells, or CD4+ and CD8+ T cells were viewed as distinct lineages, the notion 

that these subsets of cytokine-secreting CD4+ T cells were distinct lineages was driven by 

the recognition that with repeated rounds of stimulation the distinctive cytokine production 

was stabilized concomitant with extinction of alternate cytokine programs. This view was 

strengthened in the late 1990’s and early 2000’s by the findings that each subset expressed a 

master regulator transcription factor (TF) that was necessary and sufficient for fate 

determination. (11–15). First came the identification of GATA-3 in Th2 cells followed by T-

bet in Th1 cells, RORγt in Th17 cells and Foxp3 in Treg cells. Thus, a helper T cell lineage 

paradigm evolved to be viewed as having at least two key attributes – expression of a 

signature cytokine and a master regulator TF. Depending upon your perspective though, it 

was either edifying or perplexing that the expression of the master regulators was controlled 

by the signature cytokines: the process is clearly self-reinforcing (16). In addition, it was 

appreciated that the gene expression programs for Th1 and Th2 cells extended beyond just 

cytokines, since differentiating Th1 and Th2 cells down-regulated TFs and receptors for 

cytokines that promoted alternative fates (IL-4R in Th1 cells and IL-12R in Th2 cells) (17, 

18).

As recognized by the noted American philosopher, Yogi Berra, “you can observe a lot just 

by watching”. And so it was with CD4+ T cell subsets – immunologists began to observe a 

number of new options available for CD4+ T cells. This recognition, which continues at a 

dizzying pace, began with the designation of T helper 17 (Th17) cells (15, 19–21). As 

implied by the name, these cells produce IL-17A and IL-17F, but also IL-21 and IL-22. 

They may also express the immunoregulatory cytokine IL-9, which can also be expressed by 

Th2 and Th9 cells; however, its functional significance for Th17 cells is uncertain (22–26). 

Th17 cells can also express the immunoregulatory cytokine IL-10 perhaps as a self-imposed 

negative feedback loop that can be seen in Th1 cells as well (27, 28). Identification of a 

subset of T cells that produce IL-17 was notable for a number of reasons. As one of the 

evolutionarily oldest cytokines, IL-17 is important for host defense against extracellular 

bacteria and fungi; this is vividly illustrated in the disease Job syndrome (29–31). IL-17 is 

also important for activation of complement and increase of IgA production from B cells 

(32, 33). Moreover, Th17 cells provided an important “missing link” in pathogenesis of 

autoimmunity (34–36). Surprisingly, in a mouse model of arthritis, IL-17A is crucial for 

autoantibody formation (37). Interestingly, within the Th17 lineage, there is heterogeneity 

manifested as different degrees of pathogenicity (38, 39). With the recognition of Th17 

cells, it was edifying that that they too expressed a master regulator, retinoid orphan receptor 

γt (RORγt, encoded by Rorc); although another related factor RORα can also contribute, 

with a minor role, to differentiation of IL-17-producing cells (40). Whereas IL-22 is 

produced by Th17 cells, another T cell subset, termed Th22 cells, selectively produces this 
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cytokine (41–43). Th22 cells differ from “conventional” Th17 cells, since they express low 

levels of RORγt, high levels of T-bet and mediate protection against Citrobacter rodentium 

(44). In addition, a new subset closely related to Th2 cells, termed Th9 cells, has been 

identified, which participates in regulation of allergic inflammation, tumor immunity and, 

recently, immunopathology (45, 46). As indicated by the name, these cells produce IL-9, 

expression of which is dependent upon TGF-β and IL-4. They express a different “master 

regulator”, PU.1 along with IRF4 and GATA-3 (47–49).

The preceding lineages of helper T cells were all defined by their production of an 

eponymous cytokine; however, one effector subset is not defined in this manner. Such cells 

are called follicular helper T cells (Tfh cells); unlike other subsets, Tfh cells are defined by 

their location. They are found in B cell follicles and germinal centers and provide help for an 

efficient antibody production. When dysregulated, Tfh cells can contribute to autoantibody 

formation as exemplified in the sanroque mutant mouse (50). Their signature cytokine is 

IL-21, but this cytokine is produced by other cells and thus Tfh cells cannot be uniquely 

defined by their production. Likewise, they express a master regulator transcription factor, 

Bcl6, but the expression of this factor is by no means absolutely limited to Tfh cells (51–58).

Any student of immunology will appreciate that in addition to the array of immune cells 

with effector functions, there are also many types of “suppressor” cells. Although 

suppressors cells have a checkered history (59), it is now understandable in retrospect given 

the multitude of cells and mechanisms that mediate immunosuppressive functions. This is 

certainly true of CD4+ T cells, with multiple subsets of CD4+ T cells being endowed with 

repressive functionality (60). The phenomenology of regulatory function was simplified by 

the recognition of Forkhead Box P3 (FoxP3) as the master transcription factor that is 

necessary for the development of these critical regulatory T cells (Treg cells) (61). These 

cells can arise in the thymus (thymic Treg or tTreg cells), periphery (pTreg cells) or can be 

induced in vitro (62). Treg cells defied the emerging master regulator/signature cytokine 

view of specification – they are functionally critical, but the molecular basis of their 

regulatory activity remains incompletely understood. Furthermore, there is evidence that a 

network of transcription factors is required for the Treg cell gene expression program (63, 

64). Moreover, FoxP3-expressing Treg cells are not the only regulatory T cells; multiple 

types of Foxp3-negative regulatory T cells have been identified and termed Th3, Tr1 or Tr35 

cells (65–68), although the identity of these cells remains somewhat imprecise. These cells 

produce critical anti-inflammatory cytokines like TGFβ, IL-10 or IL-35 but these are by no 

means signature cytokines. On the contrary, many cells, including effector T cells, broadly 

produce these cytokines (69). Even among CD4+CD25+Foxp3+ Treg cells, there is 

heterogeneity. For example, there are fat- and muscle-resident Treg cells etc. (70, 71).

Added to this complexity is the recognition that molecules, like perforin, which are 

expressed by effector cells have regulatory functions, serving to mediate and limit effector 

function (72, 73). Thus, what defines the identity of regulatory cells and precisely how they 

exert their immunosuppressive effect encompasses a variety of factors acting in diverse cells 

that employ different mechanisms to exert regulatory function.
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CD4+ T cells have issues with boundaries

Despite views of different T cell subsets as stable, self-reinforcing, terminally differentiated 

lineages, there was also evidence early on of a more fluid view of immunoregulation (74–

76). Much has been written on this topic and there are many examples of flexibility, so only 

a few striking cases will be pointed out. Even though “Th17 cells” were quickly anointed as 

a separate lineage, it is well-known that they can make IFN-γ, a Th1 cytokine (77–82). 

Indeed, the current view is that Th17 cells represent a heterogeneous collection of cells, 

some of which are pathogenic and express T-bet, GM-CSF and other factors and others 

which express IL-10 and are not pathogenic (38, 39). Th2 cells exhibit plasticity too, and 

can be reprogrammed into GATA-3+T-bet+ cells, that produce both IL-4 and IFN-γ 

following viral infection (83). By their nature, iTreg cells are prone to Foxp3 instability and 

can produce effector cytokines (84). The extent to which tTreg cells are plastic is still the 

subject of some debate, although as will be discussed, epigenetic mechanisms have been 

identified that help explain their stability (85–87).

Tfh cells are among the hardest cells to characterize as a simple, distinct “lineage”. They do 

not have a unique pattern of signature cytokine secretion and have the ability to produce 

cytokines of other lineages. Tfh-like cells generated in vitro can be re-programmed to make 

IFN-γ (88) and Tfh-like features are present early in Th1 differentiation (55). This flexibility 

is not limited to in vitro differentiation. During helminthic infections, IL-4-producing cells 

in the lymph nodes are located in germinal centers, blurring the boundary of Tfh and Th2 

cells (57, 89, 90). Conversely, during a Th1-type bacterial infection, Tfh cells express IFN-γ 

(57). While this complicates a simple view of helper T cell differentiation, it also makes 

some sense – after all, a major role of CD4+ helper T cell cells is to provide help in 

particular for B cells to mount humoral responses. They need not help B cells in just one 

way, using a limited palette of cytokines.

Though the emerging consensus is that many differentiated CD4+ T cells retain at least some 

degree of plasticity, it has been assumed that the boundary between CD4+ and CD8+ T cells 

constitute a more formidable boundary and these two subsets are true lineages. However, 

even these “terminally differentiated” cells show more flexibility than previously assumed. 

CD4+ T cell commitment per se appears not to be fixed and helper cells can acquire 

cytolytic functions; more on this shortly (91, 92). Suffice it to say, that it is increasingly 

difficult to argue that differentiated CD4+ T cells necessarily produce a selective, fixed 

transcriptomic program.

CD4+ T cells – you are not alone!

An additional development in the field that needs to be considered in discussions of helper T 

cell lineage commitment is that they are no longer the only lymphoid cell subset that 

exhibits selective cytokine production. Along with CD4+ T cells, multiple innate lymphoid 

cell (ILC) subsets have been recently identified and divided in three main groups 

corresponding to Th1-, Th2- and Th17-associated cytokine production (93, 94) (Figure 1). 

Long recognized as professional IFN-γ producers are conventional natural killer (NK) cells, 

which represent the first Type 1 ILC (ILC1) described. Initially identified for their 
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spontaneous cytotoxic activity (95–98) (99). NK cells represent a major innate source of 

IFN-γ produced rapidly before the onset of an adaptive immune response. In vivo studies 

have demonstrated that NK cell-produced IFN-γ is important against infections by 

intracellular bacteria, parasites and viruses (100–102). In addition to conventional NK cells, 

other tissues contain IFN-γ producing lymphoid cells endowed with lower or no killing 

activity (103–105); these cells are also termed ILC1 (94). Thus, in addition to IFN-γ-

producing Th1 cells, the IFN-γ producing lymphocytes include: α/β CD8+ T cells, NKT 

cells and γ/δ T cells (106, 107).

The innate source of Th2 cytokines has been of interest for a number of years. Basophils and 

mast cells can produce IL-4 (108–111), as well as NKT cells (112). More recently, ILC that 

produce IL-13 and IL-5 have been identified by 3 independent groups and termed nuocytes, 

natural helper cells and innate type 2 helper cells (ILC2 cells), although the cells identified 

do not necessarily correspond precisely to the same subsets (113–116). ILC2 functions can 

be elicited by IL-25 and IL-33 and can amplify type 2 responses (117). Similarly, whereas 

mast cells are known to produce IL-9 (118–120), ILC2 are now recognized as the major 

producers of IL-9 in the lung (121).

Production of IL-17 and IL-22 in ILC was characterized in 2009 and it is now recognized as 

ILC3 represent an important source of these two cytokines in the earlier phases of infection 

(122–124). Lymphoid Tissue inducer (LTi) cells and cells expressing NKp46 (currently 

named NCR+ ILC3) belong to these groups and altogether participate in the development of 

lymphoid tissues, regulation of epithelium barrier function, host defense against Citrobacter 

rodentium, and shape T cell responses (125–131). Beyond ILC, and other lymphocytes, such 

as γδ-T cells and NKT cells, expression of “type 3” cytokines has been described also in 

neutrophils (132–140)

Production of IL-10 is not limited to T cells, but includes many other cells such as myeloid, 

B and NK cells all produce this key cytokine (69, 141–144). Bone marrow-derived stromal 

cells also produce IL-10 and have suppressor functions. Parenthetically, it is worth adding 

that IL-2, the prototypic T cell growth factor is produced by non-T cells including dendritic 

cells (145), and by a specific ILC1 subset (146). So the bottom line is that selective cytokine 

production is hardly the sole domain of CD4+ T cells – it appears that no cytokine is 

produced exclusively by T cells and furthermore CD4+ T cell “lineages” are not the only 

immune cells that have the capacity to selectively produce restricted cytokine programs. 

This appreciation has profound implications for the concept of cell identity and 

specification, and the role of transcription factors as we consider exactly what it is required 

for helper T cell differentiation.

Transcription factors acting across immune cell fates

It is famously stated, accurately or otherwise, that Eskimos have more than 100 words for 

snow and ice. Similarly, Sami speakers of Lapland are said to have hundreds of words to 

describe reindeer as well as snow. This may be a reasonable metaphor for immunologists in 

the early 21st century. We have become very good at paying attention to the enormous range 

of subtle and not so subtle differences among populations of immune cells. The challenge, 
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of course, is to move beyond simple descriptions, and provide solid molecular and 

mechanistic explanations that explain and predict the actions of lymphoid cells in terms of 

the patterns of gene expression and regulatory networks.

For this reason, it is useful in thinking about the specification of CD4+ T cells to keep firmly 

in mind that innate and adaptive lymphoid cells share common bone marrow progenitors and 

share many functionalities. This is certainly true with respect to selective production of 

cytokines. The fact that so many immune cells have the capacity to discriminately express 

virtually all of the cytokines produced by helper T cells implies that this capacity and the 

attendant machinery is in place prior to the specification of ILCs and T cells (including γ/δ, 

NKT, CD4+ and CD8+ cells). In other words, the capacity to effect specialized gene 

expression as it relates to cytokines genes must arise earlier in ontogeny than diversification 

of lymphocytes from other products of hematopoietic stem cells (HSC). The functionalities 

of T cells and ILCs are likely to be superimposed upon pre-existing programs.

While defining the precise relationships between the different cells is still a work in progress 

we do know the identities of a number of transcription factors (TFs) that are fundamentally 

important for HSC development and fitness. Those factors set the stage for generation of 

differentiated immune cells. Factors include: Ikaros, E2A, Pu.1, Bcl11a, as well as Hox, 

Runx, and Gata family members, and all are important contributors to early events in 

hematopoiesis (147–151) and lymphocyte specification as well.

Deciphering lineage specification

The extraordinary variety of immune cells is coordinated by the regulatory network of TFs, 

which shapes cell features and identity. In this network some TFs can define and/or preserve 

boundaries among lineages. However, the same TFs can be “recycled” during differentiation 

by switching “on” and “off” their expression, serving distinct functions at different times. 

They can be also shared among the different lineages, making the boundaries of lineage-

defining TFs blur and difficult to distinguish (Figure 2).

A major determinant of T cell development is Notch1; T cell differentiation is completely 

blocked in the absence of this factor, with resultant expansion of B cells in the thymus (152, 

153). A constitutively active form of Notch promotes expansion of T cells in the bone 

marrow at the expenses of B cells (154). Notch signaling though is not just important for T 

cells, but also ILC, DC, and splenic marginal zone B cells are also affected by the absence 

of Notch. T cell factor 1 (TCF-1, encoded by Tcf7) is induced by Notch and it is also 

required for generation of T cells, and specific ILC subsets (155–158).

If Notch in some extent is the switch for B/T cell fate, E2A, a basic helix–loop–helix 

(bHLH) TF controls T/ILC bifurcation. Multiple steps of T cell development in the thymus 

require the activity of this TF or the related protein HEB (159–163). Bcl11b is yet another 

factor that is important for double negative thymocytes, repressing genes associated to stem 

cells and preventing the expression of NK cell lineage genes (164). Fate choice between a 

helper versus cytotoxic T cells is controlled by the mutually antagonistic actions of Th-

inducing POZ-Kruppel factor (ThPOK), encoded by the zinc finger and BTB domain 

containing 7b (Zbtb7b) gene, and the related protein LRF (165) and Runx (166–169); (170).
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By inhibiting the transcriptional activity of E proteins, the inhibitor of DNA binding (Id)-2 

(a bHLH protein) promotes generation of all ILC (114, 171–173). Deletion of E2A in Id2−/− 

mice is sufficient to restore generation of NK cells (174), while overexpression of Id3 

promotes NK cell development at the expense of T/B lymphocytes in an in vitro system 

(175). Unlike ILCs, Id2 deletion is not sufficient to abrogate development of thymic 

invariant NKT (iNKT) cells, due to the redundant role of Id3 in promoting iNKT lineage 

specification (176).

The basic leucine zipper TF encoded by Nfil3 (also called E4bp4) was initially proposed as 

the first TF specifically required for NK cell development (177, 178). Surprisingly, during 

viral infection, activating receptors and pro-inflammatory cytokines can drive generation of 

fully competent NK cells in absence of Nfil3 (179). However, requirement of Nfil3 is not 

restricted to NK cells and broadly contributes to the differentiation of other ILC1 subsets, 

and CD8α+ DC, IgE class switching in B cells and regulation of cytokine production in 

CD4+ T cells (180–186). Moreover, an expanded role has been attributed to the signature TF 

for iNKT development, PLZF (Promyelocytic Leukemia Zinc Finger protein, encoded by 

Zbtb16, a member of the POK family). It is expressed by a precursor that generates all 

helper ILCs, with the exception of NK and LTi cells (187). Finally, thymocyte selection-

associated high mobility group box (Tox) is a factor that is important for both CD4+ T cells 

and LTi cells (188, 189). Tox−/− mice show decreased LNs and Peyer’s patches, and 

absence of NK cells; whether other ILC are affected has not been investigated.

STATs and lymphoid development and differentiation

Cytokine signaling is a critical determinant of the lymphoid differentiation programs. Signal 

transducer and activator of transcription (STAT) family includes 7 members, (STAT1-4, 

STAT5A, STAT5B and STAT6) able to transmit signals from most cytokines and to 

regulate unique spectra of gene sets. The advent of ChIP-seq technology, which has rapidly 

advanced over the last few years has quickly expanded the knowledge of the molecular 

functions of STATs on T cell. Here, we will review some of the main concepts concerning 

the role of STATs in lymphocyte differentiation.

Among the different STATs, STAT3 and STAT5 cover a wide spectrum of functions, even 

beyond the hematopoietic system. There are two Stat5 genes, Stat5a and Stat5b, which play 

a nonredundant role in mammary gland development and growth hormone signaling, 

respectively (190–193). Deletion of both alleles typically results in growth retardation and 

perinatal lethality due to anemia (194). STAT5 is a critical factor for the hematopoietic 

system and the entire lymphoid compartment, controlling HSC fitness, lymphoid cell 

development/homeostasis and, later on, Th polarization (195–197). Its relevance relates to 

the importance of c-kit (stem cell factor) and IL-7 signaling for HSC and lymphoid 

development, and IL-15 signaling for generation of conventional NK cells and homeostasis 

of memory T cells (198, 199).

STAT5 Chip-seq data revealed that regulation of homeostasis during Th polarization occurs 

through direct binding of STAT5 to genes important for proliferation and anti-apoptotic 

activity (including cyclin genes and Bcl2). STAT5 controls Treg homeostasis and 
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generation, directly by regulating the Il2ra and Foxp3 genes generating a positive loop in 

which stable expression of Foxp3 is influenced by expression of IL-2 receptor (200). STAT5 

is essential for both Th1 and Th2 cell differentiation by transmitting IL-2 signals (201). On 

the other hand, IL-2 through STAT5 suppresses formation of Tfh and Th17 cells (202–206). 

STAT5 can directly inhibit Il17a and promotes FoxP3 expression by competing with 

STAT3 (207). In summary, STAT5 is a critical TF for lymphocytes at all stages of their 

differentiation. Elucidation of the stage-specific versus unique functions of STAT5 is still 

being resolved.

Many of the paradigms concerning the role of STATs have been developed by the plethora 

of evidence concerning helper T cell polarization (208). In the initial rigid monolithic view 

of Th polarization, each STAT (except STAT2) was argued to be associated with a given T 

cell fate. While some STATs are more easily linked to particular T cell subset (e.g. STAT4 

and STAT6 with Th1 and Th2, respectively), it is now recognized that each subset can be 

influenced by multiple STATs. A good example is provided by Tfh cell development, which 

is promoted by the complementary actions of STAT1, STAT3, and STAT4 (55, 209–214).

Among the ways STATs promote specific helper features is through direct interaction and 

activation of “master regulator” TF genes. Like STAT5 and Foxp3, STATs directly regulate 

Tbx21, Gata3 and Rorc. STATs regulate hundreds of other genes, including many other 

“lineage-specific” loci including cytokines, cytokine receptors, chemokines and chemokine 

receptors (215–217) microRNAs (218) and lincRNAs (219, 220) (see section below).

Although the role of STATs has been relatively poorly characterized in ILC, especially in 

terms of defining targets by Chip-seq, it is likely that they will regulate many of the key loci 

that contribute to ILC function, especially those that are shared with T cells. It will be of 

great interest to dissect shared and unique actions. NK cells express high basal levels of 

STAT4 and their effector functions are highly affected in STAT4-deficient mice (221). At 

the same time STAT3 deficiency in ILC3 impairs their ability to produce IL-22 and IL-17 

(222). Whether STAT6 can participate in regulation of effector functions in ILC2 has not 

been characterized yet. However, the two main cytokines involved in ILC2 activation, IL-25 

and IL-33, do not use STAT6 for their signaling.

Function of helper cell master regulators beyond Th differentiation

The classical helper T cell “master regulators”, T-bet, Gata-3 and Rorγt, have functions 

beyond this restricted role. Even though T-bet (encoded by Tbx21 gene), initially described 

as a Th1 specific TF (11) and an important factor for acquisition of type 1 features in Th 

cells, it is also expressed in CD8+ T cells, NKT cells, conventional NK cells/ILC1, specific 

ILC3 subsets, myeloid cells and B cells (223). Th1 responses and development of tissue 

specific ILC1, along with effector functions of CD8+ T cells, conventional NK cells and 

NKT cells are all T-bet dependent (224–229). Global profiling of T-bet binding and its 

impact on transcription and epigenetics has now been accomplished (230). T-bet binds to the 

Ifng locus and promotes its expression, as well as the loci for Il12rb2 and Cxcr3. The 

integration of T-bet binding and transcriptional profiling in T-bet deficient cells suggests 
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that only 6% of genes bound by T-bet are transcriptionally regulated by this factor, but 

overall the number of genes positively or negatively regulated by T-bet are comparable.

Interestingly, T-bet also seems to be important for IL-22 production in Th22 cells (44) and it 

is relevant for generation of NCR+ ILC3 (224, 231). ILC3 expressing T-bet can acquire the 

ability to produce IFN-γ and can convert to “pure” type 1 ILC, but the requirement for 

development implies a function beyond regulation of IFN-γ (107).

CD8+ T cells and conventional NK cells illustrate the importance of another, non-redundant 

T-box TFs, Eomesodermin (Eomes). In CD8+ T cells, the fine-tuned regulation of T-bet and 

Eomes expression can direct fate to the memory vs. effector cells (232). High expression of 

Eomes is a hallmark of conventional NK cells among the other ILC1, expressing T-bet only 

and differing for cytokine production (146, 229, 233).

Gata-3 plays a broad role in lymphoid development. During T cells development in the 

thymus, expression of Gata3 is finely regulated. Notch, Tcf1 and TCR signaling are 

important for its induction while E2A proteins restrain Gata-3 expression (234). Beyond its 

role in T cell lineage commitment, Gata-3 is important to drive generation of CD4+ T cells 

at the expense of CD8+ T cells, both by inducing ThPOK expression (168) and by repressing 

Runx3 (235). GATA-3’s role in Th2 cells is well appreciated, being induced by IL-2 and 

IL-4 in a STAT5 and STAT6-dependent manner respectively. GATA-3 is also important for 

ILC2 cell differentiation and is also required for maintenance and maturation of a lineage-

specific ILC2 precursor in the bone marrow (236–238). Global gene expression analysis 

reveals similar function of GATA-3 in ILC2 and Th2 cells regulating the same pattern of 

cytokines and receptors (239).

An unbiased analysis of GATA-3 in Th2 cells suggests that 60% of the genes that require 

GATA-3 for transcription also exhibit GATA-3 binding, arguing for a direct mode of action 

in a relatively large proportion of genes (240).

Rorγt, encoded by Rorc, is essential for generation of Th17 cells, but like T-bet and Gata-3, 

it too has broad functions in ILCs and other cells (131). Rorγt is important for survival of 

DP thymocytes and expression of Bcl-xL (241, 242). It is also important for the lymphoid 

organogenesis and generation of ILC3 (104, 241–243), NKT (244) and γδ-T cells (15). It is 

also expressed in non-lymphoid cells, including neutrophils, another source of IL-17 (133). 

The genome-wide characterization of Rorγt binding argues that this protein has a relatively 

focused mode of action serving as modulator rather than a master transcription factor in the 

conventional sense. In fact, Rorγt binding is associated with modest changes in gene 

expression in Th17 cells relative to Th0 cells (217). The atypical nuclear factor I kappa B 

family member, IkBζ, encoded by Nfkbiz) acts in concert with Rorγt to promote Th17 

differentiation (245). The role of Nfkbiz in ILCs has not been explored, but it would not be 

surprising if it is relevant for these cells.

The importance of Foxp3, other Forkhead Box proteins and their actions have been 

intensively reviewed and will not be discussed here; interested readers are referred to many 

other outstanding reviews of this important topic (246–248).
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Repressors abound

Also of interest in terms of helper T cell function are three key repressors Blimp-1, Bach2, 

and Bcl6 (249, 250). Identified first in B cells, these TFs are in fact expressed in many cell 

types. Perhaps more interestingly, they create a transcriptional network that can regulate one 

another (251). In B, T and NK cells, Blimp-1 is associated with terminally differentiated 

cells (252–258). In B cells, it is the master regulator of plasma cell formation, suggesting 

that Blimp-1 controls gene programs that drive a highly differentiated state (259, 260). Both 

Bcl6 and Bach2 can repress Blimp-1, suggesting early and inappropriate activation of 

Blimp-1 is detrimental to the cellular differentiation process (52, 261, 262). In the absence 

of Bach2, plasma cells form too early, and both germinal center responses and class switch 

recombination are impaired (263, 264).

Recently, a critical role for Bach2 was described in T cells, where Bach2 acts to restrain 

effector T cell differentiation by suppressing Blimp-1 and other targets (265, 266). This is 

especially critical in Treg cells, where increased Bach2 levels control effector T cell genes 

and prevent the development of a lethal autoimmunity (265, 266).

In contrast to Blimp-1, Bcl6 is considered to be the master regulator of germinal center 

reactions (267) (268). In addition to controlling the DNA damage response and cell cycle 

checkpoints in GC B cells, a major role of Bcl6 is to suppress Blimp-1 and plasma cell 

development until somatic hypermutation and class switch recombination are completed 

(249, 269, 270). In T cells, Bcl6 is proposed as the master transcription factor required for 

Tfh cell formation (52–54). Blimp-1 can also repress Bcl6, and overexpression of Blimp-1 

results in severely impaired Tfh responses (52). Mutations in all three of these TFs are 

associated with lymphomagenesis, further emphasizing the critical role these factors play in 

controlling cellular differentiation (249).

Although these factors are members of different families, they work in a similar fashion. All 

have N-terminal protein-protein interaction domains, with C-terminal DNA binding 

domains. Blimp-1 recruits co-repressors such as G9a and HDAC1/2 and induces repressive 

marks like H3K9 methylation (271–273). Bach2 and Bcl6 both have BTB protein-protein 

binding domains that is known to mediate protein-protein interaction, and function as 

homodimers, or interact with each other (274). In addition, they bind other TFs and recruit 

co-repressor complexes (275, 276). Bach2 was identified in B cells in a pull-down with 

MafK, and has a bZIP DNA binding domain that can bind DNA elements that are well 

known to also bind AP-1 family members (276, 277). While mainly described as a repressor, 

examples of Bach2 acting as an activator have been described (278). Bcl6 has a zinc finger 

DNA binding domain, and recruits the co-repressor complexes SMRT, NCOR and BCOR 

(279, 280). New models suggest Bcl6 can repress transcription by two distinct but 

simultaneous mechanisms (281). Bcl6 can repress promoter regions by depletion of 

activating marks, and addition of repressive marks via a ternary complex with BCOR and 

SMRT/NCOR. A second mechanism acts on a different set of genes to switch enhancers 

from an active to a poised configuration by recruiting the deacetylating SMRT-HDAC3 

complexes and opposing the action of the histone acetyltransferase (HAT) p300 (281). 

Although the basics of how these factors repress have been established, the target genes they 
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each act on in specific cell types and conditions are still unclear. Far more work is needed to 

fully understand the role these factors play by modulating the epigenetics of chromatin to 

control gene expression and cellular differentiation. In addition, it is important to note that 

HATs and HDACs may have additional substrates in addition to histones.

More players in the TF network

T cell receptor (TCR) requirement marks a fundamental demarcation line between T cells 

and ILC. TCR signals are essential for initiation of CD4+ T cell differentiation and signal 

strength biases T cell programming toward divergent differentiating directions. In this 

setting, nuclear factor of activated T-cells (NFAT), adaptor-related protein complex 1 

(AP-1, encoded by Fos and Jun) and nuclear factor κB (NF-κB) among other TFs are 

important regulators of gene expression (282). While ILC do not express antigen receptors, a 

variety of receptors including Ly49, NKG2, and integrin family members can provide 

signals that activate that the aforementioned TFs, which presumably activate many of the 

same target genes (283, 284).

Other TFs including basic leucine zipper transcription factor (BATF), which can form AP-1 

complexes, and a ternary complex with interferon regulatory factor 4 (IRF4), are also 

essential for Th differentiation (285–290). In Th17 cells, BATF and IRF4 are globally co-

localized in the genome and both required for remodeling chromatin landscape for 

deposition of other TFs (217, 291). Along with STAT3, BATF and IRF4, influence genome-

wide histone acetyltransferase p300 occupancy in Th17, whereas RORγt has minimal effects 

(217). Increasing evidence suggests BATF and IRF4 are “pioneer factors” for permission of 

lineage specification. However, how these “pioneer TFs” from TCR signaling interact with 

“polarizing TFs” regulated by cytokines to tune the gene expression remains unclear.

Maf was originally identified as a Th2-associated TF, but is induced by IL-6, IL-27 and 

STAT3 and so is expressed in Th17, Tfh and Tr1 cells (292, 293). Maf has been reported to 

be a positive regulator of IL-10 (294). It is also induced by TGFβ and directly inhibits Il22 

(295).

Due to the exposure to the mucosal barrier, generation of Th17 cells and ILC3 subsets share 

many other common features, such as dependency on bacteria, environmental factors and 

dietary components. Aryl hydrocarbon receptor (AHR) can affect expression of IL-17 and 

IL-22 in T cells and it is also required for the generation of ILC3 cells (296–300). Dietary 

stress, such as vitamin A deprivation, highly impacts ILC3 generation (301), while Th17 

generation is favored (302). Finally, dietary salt can enhance IL-23-mediated Th17 

differentiation by regulating serum glucocorticoid kinase 1 (SGK1). One action of SGK1 is 

to deactivate the transcription factor Foxo1 (303, 304). SGK1 can also promote Th2 and 

repress Th1 cell differentiation (305).

At the risk of overwhelming readers, it should be clear from the above that numerous TFs 

work in concert to drive gene expression. While it may seem like an impossibility to sort out 

their discrete, cell- and stage-specific functions, Chip-seq technology does provide a high 

throughput means to experimentally identify potential direct targets of TFs. Using genome-

editing technology it should be feasible to introduce specific binding-site mutations and 
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prove causality of some of these DNA-binding events. We are in our infancy of such studies 

and the data and work ahead will be overwhelming; nonetheless, it should be possible to 

identify precise functions amidst this apparent cacophony. But wait, it’s not just about TFs 

acting on protein-coding genes……

Gene expression and epigenetic controls

While key transcription factors working in a combinatorial fashion are essential elements for 

cell specification, their “substrate”, DNA, is anything but a passive participant with respect 

to control of gene expression. DNA is packaged into nucleosomes and chromatin, and 

variety of DNA and chromatin modifications contribute to the accessibility of DNA. The 

regulatory mechanisms that promote or restrict DNA accessibility include: DNA 

methylation, histone modifications, nucleosome positioning or remodeling, chromatin 

insulators and long-distance chromatin interactions. All of these factors weave a 

complicated network now referred to as the epigenome that contributes each unique cell 

identity and fate determination. By analogy, the RNA within a cell is neither linear nor 

naked; therefore, RNA-binding proteins and the epitranscriptome will need to be considered.

A major challenge in the field though is to understand how epigenetic modifications allow 

or prevent TF access to key sites in the genome. Alternatively, TFs can also modify the 

epigenetic landscapes (so-called “pioneer” factors) (306, 307) (Figure 3). In addition, it is 

now well appreciated that the control of lineage-specific programming extends far beyond 

the small portion of the genome that encodes conventional genes that give rise to proteins. 

Only a tiny portion of the genome encodes such genes (< 2%); a considerably greater 

portion of the genome is transcribed and these diverse RNAs generate many products large 

and small, including microRNAs (miRNAs), enhancer RNAs (eRNAs) and long non-coding 

RNAs (lncRNAs). Emerging data indicate that these products themselves are important in 

controlling gene expression. In addition, chromatin accessibility and architecture also 

function as “switches” that regulate distal gene activities by facilitating or excluding TF 

binding to cis-regulatory elements including promoters and enhancers. Promoters are DNA 

sequences located upstream of transcription start sites (TSS) and are essential for 

transcription by recruiting the transcriptional apparatus. Enhancers regulate gene expression 

also by recruiting TFs and are “distal” in terms of linear distance from genes; because of 

looping of DNA and higher order chromatin conformations, enhancers can bring TFs to 

promoters. An important goal is to integrate the action of TF networks with modifications of 

epigenetic landscapes, signaling pathways and cellular metabolism. This is an active area of 

research that has already yielded a number of surprises. Traditionally, defining how gene 

transcription was influenced by the epigenetic landscape was a significant challenge; 

however, thanks to the development of deep-sequencing technology and bioinformatic 

methods, nowadays it is reasonably straightforward to measure genome-wide gene 

expression for both coding and non-coding RNAs, transcription factor binding, and 

epigenetic dynamics. We will briefly summarize the current views of epigenetic regulation 

and their roles in programming cellular differentiation using examples pertinent to 

lymphocyte biology and provide instances in which we have begun to understand how TFs 

modify the epigenome.
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DNA methylation

DNA methylation modifies cell development and differentiation by attracting specific 

proteins or making DNA less accessible to TF binding (308). DNA methylation at the fifth 

carbon of cytosine (5mC) occurs mainly at CpG dinucleotides that are abundant across the 

genome (~70% of promoters contain high frequency of CpG sites, termed CpG islands). 

DNA methylation can repress gene activity through recruiting repressor complexes that 

contain methyl CpG-binding domain. It can also simply prevent interaction with some 

DNA-binding proteins that can either activate or repress transcription. Methylated CpG 

islands also influence nucleosome positioning (309, 310). Methylation of cytosine is 

catalyzed de novo by DNA methyltransferases (DNMT) 3A and DNMT3B, and then 

maintained by DNMT1 during mitosis. Absence of DNMT1 in naive CD4+ T cells results in 

abnormal cytokine expression (311).

Methylated DNA has been argued to be among the most stable epigenetic marks; however, 

there are multiple examples in lymphocytes of rapid or active demethylation. For instance, 

the Il2 locus is quickly demethylated upon T cell activation (312) and the Ifng, Il4 and Il17 

loci are demethylated during differentiation of Th1, Th2 and Th17 cells respectively (313–

317). These loci remain methylated in cells that are differentiated to opposing fates (e.g. the 

Ifng locus is methylated in Th2 cells). In addition, demethylation of Foxp3 and other Treg 

signature genes is important for stabilization of Treg fate (318–320). At present, there are no 

comprehensive, genome-wide comparisons of DNA methylation among the different helper 

T cell subsets and the consequences on transcription is not well known.

The role of DNA methylation has also been studied in ILCs, but no comprehensive maps 

have been provided. DNA methylation is important for the regulation of Ly49 genes in NK 

cells, a collection of loci clustered on chromosome 6 (321, 322). These genes are variably 

expressed by different mouse strains (323) and are subject to allelic exclusion (324). 

However, precisely how other characteristic features of ILCs are or are not controlled by 

methylation has not been determined.

The biochemical basis of DNA demethylation has been elusive and while it has been 

proposed that the loss DNA methyl-groups could occur simply by dilution during cell 

division, this does not explain the rapid demethylation of the Il2 locus that occurs 

independent of cell proliferation (312, 325). Recently, new insights into the processing of 

methylated DNA have emerged. Instead of a simple erasure of the methyl group, 5mC is 

sequentially converted into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 

5-carboxylcytosine (5caC) through oxidation by ten-eleven translocation (TET) proteins-

catalyzed oxidations (326). In mouse embryonic stem cells (ESCs), Tet1 and Tet2 are highly 

expressed, whereas in differentiated cells Tet2 and Tet3 are the major TET enzymes. The 

5fC and 5caC are further removed by thymine DNA glycosylase (TDG) and the base 

excision repair (BER) pathway.

The dynamic 5mC oxidation forms can regulate gene expression by further modulating 

protein binding landscapes. For instance, 5mC but not 5hmC can be recognized by 

repressive complexes recruiter, methyl CpG-binding domain protein 1 (MBD1) and MBD2, 
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whereas both 5mC and 5hmC are recognized by MeCP2. MBD2 has been linked to regulate 

demethylation of immune-related genes (327–329). MBD2 mediates demethylation and 

TET2 binding of a CpG-rich region upstream FoxP3, which is critical for FoxP3 expression 

in thymic Treg (tTreg) cells (328, 329). Hence, dynamic 5mC oxidation forms and the 

proteins each of them recruits can be important for lineage specification.

Despite our very incomplete understanding of the genome-wide state of DNA methylation in 

lymphocytes in health and diseases, a number of new techniques are now or becoming 

available that will help fill the gaps in our knowledge. Currently, genome-wide DNA 

modification of each 5mC oxidation form can be identified at single base resolution by 

combining bisulphite-based chemical reactions with deep-sequencing, including bisulphite-

sequencing (BS-seq), oxidative bisulphite-sequencing (oxBS-seq), Tet-assisted bisulfite 

sequencing (Tab-seq) and chemical modification-assisted bisulfite sequencing (fCAB-seq) 

(reviewed by W.A. Pastor et al (326)). Interestingly, the demethylation intermediates are 

enriched at regulatory elements (330–332). For instance, 5hmC is enriched at promoters 

with “bivalent” histone modifications as well as active enhancers (333–337). 

Comprehensive measurement of genome-wide methylation remains technically challenging 

and is costly. As a result, a comprehensive DNA methylation map of relevant cytokine-

producing subsets is lacking; however, it will surely be the case that many immune 

response-related genes are tightly regulated by DNA methylation/demethylation.

It should be emphasized that alterations in DNA methylation are not just relevant to our 

basic understanding of helper T cell differentiation but also may be relevant to the 

pathogenesis of immunologic diseases (338), especially systemic lupus erythematosus (SLE) 

(339–342). Of particular note is that drugs that affect DNA methylation can cause lupus in 

humans and also in mouse models (343, 344).

Nucleosome positioning and histone modifications

Nucleosomes are the basic units of chromatin that contains a histone octamer wrapped by 

147 base pairs of DNA. The dynamic nucleosome positioning and histone modifications 

play key roles in determining chromatin accessibility to transcription factor binding. At cis-

regulatory elements, such as promoters and enhancers, nucleosomes are usually depleted or 

replaced by more dynamic histone variants like H2A.Z and H3.3. Therefore, cis-regulatory 

elements are usually more accessible and sensitive to DNA nucleases and can be predicted 

by DNaseI or Micrococcal nuclease hypersensitivity.

The mechanisms for nucleosome positioning are complicated and not fully understood. In 

addition to DNA sequence preference, both ATP-dependent chromatin remodelers and 

transcription machinery are also involved in the localization of nucleosome positioning 

(reviewed by Struhl and Segal (345)). SWI/SNF complex, one of the ATP-dependent 

chromatin remodelers, can loosen nucleosomes using the energy from ATP hydrolysis and 

cause nucleosome depletion or sliding. SWI/SNF complexes are essential for remodeling 

chromatin at multiple stages of T cell development in thymus while receiving external 

signals from pre-TCR and TCR (346) and for the bifurcation of CD4/CD8 SP T cells by 

silencing CD4 expression (347). This mechanism is also relevant to helper T cell 
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differentiation. In Th1 differentiation, Brahma-related gene 1 (BRG1), one of SWI/SNF 

complex subunits, targets Ifng locus for nucleosome remodeling in a STAT4-dependent 

manner (348). In cooperation with STAT4, BRG1 also regulates Il12rb2 gene expression in 

Th1 cells (349). BRG1 is also required for full activation of Treg ability to suppress 

autoimmunity (350).

Post-translational modifications of histone proteins create epigenetic codes that mark 

distinct chromatin status and function (351–353). Histone H3 lysine 4 tri-methylation 

(H3K4me3) and H3K36me3 mark active transcription; H3K4me3 modification is highly 

enriched at TSS regions, while H3K36me3 modification preferentially spreads across the 

transcribing gene body. Conversely, histone methylation of H3K9, H4K20 and H3K27 are 

linked to gene repression. High H3K4 mono-methylation (H3K4me1) and low H3K4me3 

modifications are recognized as general features of enhancers, in which “active” enhancers 

can be distinguished from “poised” enhancers by H3K27 acetylation and acetyltransferase, 

p300 and/or CBP binding. The roles of other histone acetyltransferases such as PCAF and 

GCN5 are not yet known in T cells. Using these marks, studies have revealed global 

enhancer landscape that will be discussed later. In addition, histones can be modified by 

many other post-translational modifications including phosphorylation, ubiquitination, 

sumoylation – we are just beginning to decipher all of the elements of the “histone code”. It 

is important to note that although particular histone marks has been associated with either 

promoting or repressing transcription, and even splicing, genetic evidence in mammals is for 

the most part lacking.

H3K27 trimethylation is catalyzed by histone methyltransferase Ezh1 or Ezh2, a subunit of 

polycomb repressive complex 2 (PRC2). Ezh2 has been linked to various types of cancers 

including prostate cancer, breast cancer, and leukemia (354–356). In CD4+ T cells, Ezh2 is 

important for modulating Tbx21 and Gata3 expression in Th1 and Th2 cells, respectively 

(357, 358). It suppresses Eomes expression (358) and stabilizes T-bet levels through both 

transcriptional and post-translational regulation in Th1 cells (359). In Th9 cells, TGF-β 

activated Smad proteins displace Ezh2 from the Il9 locus promoting expression of the 

encoded cytokine (360). In Treg cells, Ezh2 is induced and recruited to FoxP3-bound 

regions of the genome following inflammatory stimuli. This results in increased H3K27 

trimethylation, and repression of nearby genes (361). In Th17 cells, a DNA-binding protein 

called Jarid2 is required for recruitment of PRC2 to its chromatin targets, which include 

Il22, Il10, Il9 and Atf3 (362). PRC2 is generally thought to lead to PRC1 recruitment; 

however, the role of PRC1 in T cells is not known. In addition to nuclear functions, 

however, Ezh2 also controls TCR-dependent actin polymerization (363).

H3K9me3 is another important repressive mark that recruits heterochromatin protein (HP) 

for gene silencing. During T cell differentiation, Th2 cell commitment requires H3K9me3 

involved repression of Th1 loci (364). In addition, H3K9me3 also controls CD8+ T cell 

memory progression by Blimp-1-dependent recruitment of G9a histone methyltransferase to 

the Il2ra and Cd27 loci (271).

The genome-wide enumeration of permissive and repressive histone marks in helper T cells 

has been obtained and helps explain several features of distinctive gene expression in helper 

Shih et al. Page 15

Immunol Rev. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



T (365). As expected, characteristic genes associated with lineage commitment have the 

predicted accessible marks in their respective lineage and repressive marks in opposing 

lineages. However, genes that encode key regulatory transcription factors including Tbx21, 

Gata3, Rorc, Prdm1, etc. have more complex features. The combination of H3K4me3 and 

H3K27me3 modifications, so called “bivalent” domains, is indicative of genes that are 

poised for expression (365). In principle, this could provide an explanation for the plasticity 

of transcription factor expression. Other transcription factors like Bcl6 reveal a different 

pattern; the epigenetic marks surrounding this locus show that the Bcl6 gene accessible in all 

subsets (55). This helps explain the fact that multiple T cell subsets can acquire features of 

Tfh cells. Thus, the epigenetic landscape of genes encoding master regulators may allow 

flexibility in expression and thereby permit the blurring lineages, allow fine tuning or 

provide sub-specialization.

As discussed, a critical issue is defining the factors responsible for creation and modification 

of epigenetic landscapes. STAT proteins are one important class of transcription factors that 

regulate lineage-specific expression profiles by shaping histone modification patterns. In 

Th1 cells, STAT4 is essential for promoting genome-wide H3K4me3 modification for 

activated genes, whereas in Th2 cells, a major aspect of STAT6’s action is to influence the 

removal of repressive H3K27me3 modification on poised loci (216). In addition, analysis of 

epigenetic marks and transcription activities of STAT4 target genes reveals that STAT4 can 

regulate histone modifications or transcription independently. That is, for STAT4-bound 

genes, only a very small proportion (4%) is STAT4-dependent in terms of both histone 

modifications and transcription. In contrast, 11% shows STAT4-dependence with respect to 

transcription only and another 20% shows STAT4-dependence for epigenetic modifications 

only. These observations suggest STAT4 impacts cell phenotype in various ways. This point 

is particularly important because STATs were first identified as gene activators; however, 

identification of STAT4-dependent repressive markers with genome-wide analysis suggests 

a role for STAT4 as a transcriptional repressor as well as its more widely recognized role as 

a transcriptional activator.

Epigenetic modifications communicate with transcriptional machinery through certain 

“histone code readers.” For example, bromodomain and extraterminal (BET) proteins can 

recognize acetylated histones. BET proteins, including BRD2, BRD3, BRD4 and BRDT, 

provide a bridge on chromatin to connect histone modifiers, chromatin remodelers and 

Mediator complex to for gene regulation (366). BRD4, for instance, can recruit the positive 

transcription elongation factor b (P-TEFb) complex to promote phosphorylation of paused 

RNA polymerase II for mRNA elongation. BET proteins have been proposed to be target for 

cancer therapy because they regulates oncogenesis-related growth factors such as c-myc in 

cancer cells (367). Of note, BET proteins also play a role in the regulation of pro-

inflammatory cytokines and chemokines as well as T cell differentiation. Targeting BET 

proteins with small molecule inhibitors suppresses the production of IL-1β, IL-6, IL-12α, 

CXCL9 and CCL12 from bacterial endotoxin stimulated macrophages (368). In addition, 

BRD2 and BRD4 control Th17 differentiation through direct binding to Il17 locus (369). 

Treatment of BET inhibitors suppresses both Th1- and Th17-induced autoimmune 

pathology in mice (369, 370).
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Enhancer landscapes

Enhancers are DNA elements essential for gene regulation by controlling promoter activity 

from a distance as far as a megabase away. It is believed that enhancers are brought into 

proximity of promoters by looping of DNA and in this way contribute to the precise spatial 

and temporal regulation of gene expression profiles during development and differentiation. 

Therefore, identifying functional enhancers and understanding the mechanisms for their 

dynamic activities is likely to be key in deciphering basis of cellular specification and the 

acquisition of specialized functions. The other side of the coin is to characterize 

transcriptional repressor or silencer elements in DNA.

For many years, the identification of enhancer elements was an arduous task. One strategy to 

identify candidate enhancers was through computational approaches, seeking conserved 

non-coding sequences. An alternative approach was DNase hypersensitivity assays based on 

the property of enhancers as being nucleosome-depleted to allow for transcription factor 

binding. This though, was only done on small portions of the genome and was validated by 

cloning candidate sequences into reporter constructs that may not reflect the endogenous 

chromatin context. In a limited number of circumstances, their in vivo function was 

established genetically by deleting the sequences in engineered mouse models.

In lymphocytes, the cytokine loci are regulated by complicated enhancer structure that fine-

tunes gene expression under various stimulations or defines lineage specificity (371). For 

instance, enhancer activity from CNS2 on Il4 locus is critical for IL-4 expression 

specifically in Tfh cells but not in Th2 cells (372). Similarly, CNS1 on FoxP3 locus is the 

enhancer required for differentiation of pTreg cells but not for tTreg cells (318).

The identification of chromatin signatures at enhancers using high throughput sequencing 

has profoundly affected the field of chromatin biology. As described previously, enhancers 

are highly associated with high H3K4me1 and low H3K4me3 modifications (373) and the 

activity of these enhancers are reflected by H3K27Ac modification and deposition of the 

acetyltransferase p300 (373–376). These enhancer characteristics have been used to identify 

numerous putative enhancers and to track the dynamics of enhancer activity during cell 

development and reprogramming (377, 378). For instance, comparing H3K4me1 and p300 

binding patterns in macrophages with or without lipopolysaccharide (LPS) treatment 

suggests that LPS-induced enhancers marked by p300 are labeled with H3K4mel prior to 

LPS stimulation (378). Genome-wide analysis of H3K27 acetylation has been used to track 

dynamic enhancer activity in heart, brain and liver tissues during mouse development (377). 

Recently, H3K27 acetylation has been used to identify a cluster of lineage-specific 

enhancers (379), which will be discussed later.

With the ability to enumerate one class of distal enhancers, questions arise as to what factors 

are responsible for the appearance of these sites and what factors employ these sites to exert 

their effect. At present, the answers to these questions for lymphocytes are limited. 

Nonetheless, some surprises have already emerged. Master regulatory factors, or lineage-

determining TFs (LDTFs), have been argued to be important for determining the lineage-

specific enhancer landscape (380). These LDTFs recognize essential cis-regulatory elements 
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and mark them through histone modification and/or nucleosome positioning that alters the 

accessibility for other factors. For instance, PU.1, a key LDTF essential for development of 

hematopoietic cells, can coordinate with other regulatory factors to “prime” enhancer 

candidates for complete composition of active enhanceosome (381). In addition, it has been 

characterized that PU.1 can maintain enhancer structure through maintaining H3K4me1 

modification (378). As appealing as this model is, the situation for CD4+ T cells is more 

complicated.

During CD4+ T cell differentiation, the expectation might be that LDTFs like T-bet, 

GATA-3, Rorγt, and FoxP3 might be the major drivers of the selective enhancer landscapes. 

In fact though, the lack of these factors had minimal impact on the global profiles of 

enhancer landscape in Th1, Th17 and Treg cells, respectively (217, 300, 382, 383). This 

calls into question whether these factors are indeed master regulators since they are 

subservient to STATs and Foxo1, for example. Based on current data, it appears that the 

LDTFs for T helper cell subsets exert their effect on a preset chromatin landscape. Indeed 

some master regulators, like T-bet, have limited action on distal enhancers and preferentially 

exert their affect more proximally directly on genes. Similarly, Foxp3 binds to regions that 

are already accessible in Naïve CD4+ T cells, the stage prior to Treg differentiation and 

FoxP3 expression. However, FoxP3 leads the road for Ezh2 to mark FoxP3-bound regions 

with H3K27me3 once Ezh2 is up-regulated upon inflammatory stimuli. Therefore, FoxP3 is 

not the “pioneer” factor to permit chromatin accessibility, rather, is one of the “directing” 

factors for selective gene expression and cell fate. Given the limited ability of LDTFs to 

shape the enhancer landscape for T helpers (382, 383), a useful strategy was to identify 

computationally factors that generated the accessibility of LDTFs. A recently developed 

assay of transposase accessible chromatin, ATAC-seq, which allows evaluation of 

chromatin accessibility as well as transcription factor footprints on small amount of cells, 

provides a new avenue to assess the identity and hierarchy of gene regulators (384).

If master regulators are not the major factors that drive creation of the distinctive “switches” 

in T cells, then who are the drivers and what are the master regulators doing? Interestingly 

STATs were found to have a much more profound effect on lineage-specific chromatin 

landscape than T cell master regulators. More specifically, STAT1/STAT4 and STAT6 

binding motifs are enriched in Th1- and Th2- specific active enhancers, respectively, in both 

mouse and human (382, 385). Within the more than 9000 murine Th1-specific active 

enhancers, only 17% are T-bet-dependent, while 60% are STAT1- and/or STAT4- 

dependent (382). Importantly, exogenous expression of T-bet or GATA-3 fails to fully 

rescue the defective chromatin landscapes caused by STAT deficiency. Similarly, during 

Th17 differentiation, the presence of STAT3 as well as BATF and IRF4 is more critical for 

the establishment of lineage-specific enhancer landscapes than the presence of RORγt (217).

With advanced bioinformatic assistance, a new family of enhancers called “super” or 

“stretch” enhancers (SEs) have been recently identified (379, 386, 387). SEs represent 

sequences across several kilobases that contain multiple discontinuous enhancer domains 

bound by key TFs, Mediator complex and intense deposition of p300 or H3K27 acetylation. 

Mutation of the Mediator complex, inhibiting Brd4 or any key TFs results in reduced 

expression of SE-related genes. Comparison of SEs patterns in various cell types revealed 
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that SEs play a significant role in defining cell identity (379, 386, 387). For instance, in 

embryonic stem cells (ESCs), SEs are enriched at genes essential for ESCs. Therefore, it is 

intriguing to utilize SE patterns to distinguish diverse hematopoietic lineages, especially for 

CD4+ T and ILC subsets. With the ability to identify enhancers genome-wide, an obvious 

next question is what they regulate – hold that thought for now. We will return to this issue.

Non-Coding RNAs

Although only 2% of genome encodes messages for proteins, recent whole transcriptome 

RNA sequencing data suggest that over 80% of genome is actively transcribed {Ecker:

2012ji}. While there is considerable debate surrounding this topic, it clearly begs the 

question why there are so many RNAs generated that do not produce proteins. This question 

has been partially answered by discovery of new RNA roles within various important 

biological processes (388). Arrays of small RNAs (<30nt), including microRNA (miRNA) 

and piwi-associated RNA (piRNA), function as gene repressors by binding to 

complementary RNA sequences and recruiting silencing complexes that either act at the 

post-transcriptional or translational level, respectively (389). Recently, a new focus of the 

RNA field is deciphering the function of enhancer RNAs (eRNAs) and long non-coding 

RNAs (lncRNAs) that are largely unknown.

lncRNA

LncRNAs are transcripts longer than 200 nucleotides that lack a functional open reading 

frame. Most lncRNAs are believed to be produced in the similar way as mRNAs in the sense 

that both of them are transcribed by RNA polymerase II, modified by 5′ capping and 3′ 

polyadenylation and undergo splicing and sometimes exported to the cytoplasm. Recently, 

the maturation of high throughput RNA-seq methods enhanced the progress of lncRNA 

identification and brings us to a new level of viewing fundamental biology in the cell. More 

than 10,000 lncRNAs have been identified in mammals, but only a few have been 

functionally characterized (390, 391).

Despite this paucity of knowledge, the criticality of lncRNAs has been established. Perhaps 

the most striking example is the role of Xist, a lncRNA essential for X chromosome 

inactivation (392). In addition, lncRNAs have roles in imprinting, chromatin remodeling and 

constructing chromatin architecture. Recently, several lncRNAs were identified to function 

as scaffold for recruiting histone modifiers. For instance, HOTTIP, a ~4 kb lincRNA 

transcribed upstream of HoxA gene clusters, can regulate its target genes through direct 

interactions by chromatin loop formation and through introduction of histone 

methyltransferase MLL complex by direct interactions with WDR5, a subunit of MLL 

complex. These actions drive H3K4 trimethylation and facilitate transcription of HOTTIP 

target genes (393). LncRNAs can also antagonize protein or miRNA function through 

physical interactions. LncRNA GAS5, for instance, binds to the DNA-binding domain of the 

glucocorticoid receptor (GR) to inhibit GR-induced gene activation {Kino:2010dt}. 

ecCEBPA RNA can physically target DNA methyltransferase DNMT1 to prevent local 

DNA methylation (394). Recently, a new class of circularized lncRNA molecules that are 

abundant can “sponge up” miRNAs in the cells to neutralize their activity (395, 396). 
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Disruption of novel lncRNAs by knockdown in vitro or knockout in vivo results in cell 

abnormality or death, arguing that lncRNAs are functionally essential rather than just 

byproducts from transcription machinery (390, 397).

Emerging data are beginning to show just how important lncRNAs are essential for immune 

cells. During lymphocyte development, expression of lncRNAs on antigen receptor loci 

(also called germline transcription or sterile transcription) is essential for recombinase 

accessibility to target recombination signal sequences in order to reassemble V(D)J gene 

segments (398). In germinal center B cells, sterile transcription of switch regions are 

predictive of immunoglobulin isotype class switch recombination (399). NeST (also known 

as TMEVPG1 or LincR-Ifng-3′AS), a 45kb lincRNA located adjacent downstream Ifng 

locus, controls susceptibility to Theiler’s virus and Salmonella infection in mice through 

epigenetic regulation of the interferon-γ (IFN-γ) locus (400). NeST is expressed specifically 

in Th1 and CD8+ T, but not NK cells, and the expression is dependent on Th1 factors 

STAT4 and T-bet (401). Like HOTTIP, NeST regulates gene expression through the 

recruitment of WDR5 and its associated H3K4 methylation (400). In Th2 cells, an antisense 

lncRNA, lincR-Ccr2-5′AS, is important for regulating gene expression across this 

chemokine locus, which contains the Ccr1, Ccr2, Ccr3 and Ccr5 genes. These chemokines 

are required for Th2 migration to lung and are down-regulated after knocking down LincR-

Ccr2-5′AS (220). Another lncRNA that is involved in immune responses is lincRNA-Cox2, 

which positively and negatively regulates distinct clusters of immune genes. lncRNA-Cox2 

can repress genes through its interaction with heterogeneous nuclear ribonucleoprotein A/B 

and A2/B1 (402).

The array of lncRNAs produced by subsets of T cells has recently been cataloged by deep 

sequencing of both poly-A+ and total transcriptomes within differentiating T cells at various 

stages and 1524 lncRNAs were identified in total (220). Among these lncRNAs, 464 were 

expressed by double-negative thymocytes, 515 in double- and single- positive thymocytes, 

and 646 in naïve and/or differentiated CD4+ helper T cell subsets. The expression of these 

lncRNAs was highly dynamic during thymocyte development and helper T cell 

differentiation as compared to mRNA expression, and therefore provides a new way of 

thinking about functional cell identity. Of note, a number of these newly identified lncRNAs 

are STAT-dependent in their expression.

eRNAs

Another exciting discovery in RNA field is the identification of transcripts originated from 

enhancers, termed eRNAs. eRNAs are non-coding RNAs transcribed bidirectionally from 

enhancers and are generally 5′-capped, non-spliced and non-polyadenylated (403–406). 

eRNAs are essential for transcriptional regulations as well as loop formation for enhancer-

promoter interactions. The expression of eRNAs can be induced by external stimuli and 

their expression correlates well with neighbor gene expression (407–410). The evolving 

view is that eRNAs are active participants in established accessibility of protein-coding 

genes. Using cap analysis of gene expression (CAGE), the FANTOM project has mapped 

genome-wide transcription start site (TSS) across hundreds of cell types (411). Interestingly, 

enhancers that identified by the combination of H3K27ac, H3K4me1 and p300 correlate 
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well with the production of bidirectional eRNAs, while TSSs for protein coding genes are 

more biased towards one direction (Andersson et al, 2014). Therefore, the expression of 

eRNAs can be another indicator for the prediction of active enhancers.

miRNAs

Numerous miRNAs are recognized as critical regulators to fine-tune gene expression. They 

are encoded in the genome and transcribed by RNA polymerase II to generate primary 

miRNA (pri-miRNA) transcripts, which are then processed sequentially by two members of 

RNase III type endonucleases, Drosha and Dicer. The mature ~21mer miRNAs are bound by 

Argonaute proteins to form miRNA-induced silencing complexes (miRISCs) to target 

complementary mRNAs in a sequence-specific fashion. miRNAs modulate target mRNA 

levels through various mechanisms including blocking translation, mRNA deadenylation 

followed by 5′ decapping, and enhancing mRNA degradation. (389). Importantly, each of 

these “tiny pieces” can target more than one gene; vice versa, each gene can be regulated by 

more than one miRNA, therefore, creating a complicated regulatory network. Thus, the 

regulatory logic of miRNAs is analogous to transcription factors except that as far as we 

know miRNAs repress gene expression in general.

miRNAs have been shown to dramatically influence the homeostasis of immune systems. T-

cell specific deletion of Drosha or Dicer causes abnormal T cell differentiation and 

autoimmunity (412–414). Interestingly, in the absence of Dicer, Th2 differentiation cultures 

contain T cells that aberrantly express IFN-γ, suggesting that one or more miRNAs restrict 

Th2 cell plasticity (412). Individual miRNAs also have been shown to influence effector cell 

differentiation and stability. miR-155, for instance, is involved in the development of Th17 

and Treg cells under the regulations of key regulators like STAT3 (218) and FoxP3 (415). 

miR-155 regulates IL-2 production for Treg cell maintenance by suppressing cytokine 

signaling 1 (Socs1), a negative regulator of IL-2 signaling (416). miR-155 also controls 

TGF-β signaling molecules SMAD2 (417) and SMAD5 (418), Ets1, a negative regulator of 

Th17 differentiation, (419), c-Maf and Jarid2 (362, 420). Of note, miR-155 deficient mice 

are protected from EAE and CIA (416, 421–423) but develop enteric and lung inflammation 

(420). miR-146a and miR-29 are essential for suppression of Th1 differentiation; miR-29 

does this by directly targeting IFNγ, T-bet and Eomes (424, 425); miR-146a inhibits Th1 

responses through regulating Treg cell activity. More specifically, miR-146a keeps STAT1 

expression in check, which would otherwise unleash IFNγ expression. Deficiency of 

miR-146a in T cells leads to over-expression of IFNγ and Th1-mediated pathology (426). 

miR-146a also targets IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-

associated factor 6 (TRAF6), two molecules involved in NFκB activation. De-repression of 

IRAK1 and TRAF6 leads to NFκB-mediated TCR hyper-responsiveness, followed by up-

regulation of IFN-γ in effector T cells (427).

Other miRNAs, mir-10a, miR-181, miR-210, and miR-17~92 cluster are also involved in 

various immune regulations. miR-10a can restrain conversion of iTreg into Tfh by targeting 

Bcl-6 and is also involved in suppression of Th17 differentiation (428). miR-181 modulates 

T cell responses mainly by targeting several phosphatases critical for TCR signaling (429–

431). miR-210 regulates Th17 differentiation in hypoxia by targeting HIF-1α, a key TF for 
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Th17 polarization (432). Finally, miR-17~92 cluster regulates IL-10 production in Treg cells 

and Tfh differentiation (433, 434).

Higher order chromatin conformation

Beyond the previously mentioned epigenetic mechanisms, another aspect of chromosome 

biology is also critical for gene expression and cell identity, namely the three-dimensional 

chromatin conformation. It has been appreciated that enhancers regulate gene activity 

through physical interactions with promoters. These interactions require chromatin folding 

that excludes intervening genes and specifies enhancer targets. As the enhancers can 

function in a location-independent manner, analyzing enhancer-promoter interactions has 

become critical for identifying putative targets of an enhancer without getting into laborious 

genetic modifications. More importantly, the three billion base pair, two-meter long genome 

is complexly packaged in nuclei that are only a couple micrometers in diameter (reviewed 

by Gibcus and Dekker (435)). How this compact architecture permits the tightly-regulated 

gene expression is intriguing in terms of understanding what switches regulate which 

circuits. Mapping these connections is key to deciphering the logic of lymphocyte function.

Currently, chromosome conformation capture (3C) and its derivative methods are 

prevalently used for determining chromatin spacial organization. In the past decade, the 

development of 3C-based methods, including 4C, 5C, Hi-C and ChIA-PET, has broadened 

our access to chromatin architecture from local loops to global interactions (436). (4C: 

chromosome conformation capture-on-chip or circular chromosome conformation capture, 

using inverse PCR to genome-widely identify regions interacting with interest bait [one-to-

all]; 5C: chromosome conformation capture carbon copy, using multiplex primers during 

ligation-mediated amplification [many-to-many]; HiC, amplifying ligation junction by 

introducing biotin and pulling down [all-to-all]; ChIA-PET: chromatin interaction analysis 

with paired-end tag sequencing, combining chromatin immunoprecipitation and Hi-C). The 

basis of 3C involves formaldehyde-crosslinking and ligation of DNA fragments that are 

nearby in three-dimensional space in the nucleus. The advantages of 3C technology include 

that it can detect DNA folding at molecular level (high resolution as compared to imaging 

three-dimensional fluorescence in situ hybridization [3D-FISH]) and it can be incorporated 

with modern sequencing techniques to study genome-wide chromosome topology (436). 

Furthermore, 3D-FISH is low throughput and can only look at a few genes at a time.

Global mapping of DNA proximity reveals a hierarchic chromatin organization that 

aggregates active and inactive genes in euchromatin and heterochromatin compartments, 

respectively (437). Within these compartments are megabase-scale globules termed 

topologically associated domains (TADs) that have stable boundaries that are invariant 

within different cell types and are conserved between species (437–439). Within each TAD 

are numerous submegabase-scale long-distance interactions that are dynamic and cell-type 

specific (440). TADs that contain repressive genes are often associated with nuclear 

peripheral lamina regions as well as H3K9 and H3K27 methylation (439, 441, 442). Hence, 

identification of cell-type specific interactome is informative for understanding the 

regulation of gene expression and cell specification.
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With regard to the mechanisms, both transcription factors and global chromatin organizers 

are essential for the formation of cell-type specific chromatin architecture. It has been shown 

that the long-distance structure domains consist of colocalizing of CTCF and cohesin, 

whereas dynamic enhancer-promoter interactions are regulated by Mediator and cohesin 

(440). Master transcription factors and Polycomb proteins are also reportedly involved in the 

formation of cell-type specific chromatin architecture. In mouse pluripotent stem cells, 

lineage-specific master transcription factors, Nanog, Sox2, and Oct4, orchestrate chromatin 

conformations with the help of Polycomb proteins. Depletion of one master regulator or 

Polycomb subunit disrupts local DNA contacts, but not the large-scale chromosome 

topology (443, 444).

Several studies have demonstrated cell type-specific and stimulus-inducible chromatin 

architectures on cytokine loci (445–449). For instance, the Th2 cytokine (Il4, Il5 and Il13) 

locus forms a cell-type specific interacting center that recruits the promoters of these genes 

in CD4+ T and NK cells but not in B cells or fibroblasts (447). Interestingly, upon Th2 

activation, this locus further develops from basal status with limited contacts into a more 

complicated “cage-like” chromatin architecture in a special AT-rich sequence binding 

protein 1 (SATB1)-dependent manner (448). Similarly, the Ifng locus possesses lineage-

specific DNA contacts across 100kb specifically in Th1 cells that facilitate IFN-γ expression 

(445, 446). The Th1-specific interacting hub on Ifng locus is framed by two CTCF/cohesin 

binding sites anchor to another CTCF/cohesin site within the first intron of Ifng gene. 

Knockdown of CFCF or cohesin results in reduction of long-distance interactions and IFNγ 

production (445, 446). T cell lineage-specific transcription factors, T-bet and GATA-3, 

respectively, are also essential for the looping on Th1- and Th2 cytokine loci (445, 447). 

Based on the chromatin signature, Ifng gene is surrounded by multiple enhancers (a good 

example of a super-enhancer) and most of which are within the loop created by CTCF/

cohesin, suggesting this factor can help define the boundaries of super-enhancer 

architecture.

The Ifng and Il4/Il3/Il5 loci contrast with genes rapidly activated by TNF in which the 

enhancer-promoter interactions are present prior to stimulation, suggesting that the 

chromatin conformation sets the stage for rapid responses of extrinsic stimuli (449). 

Furthermore, the genome-wide mapping of promoter-enhancer interactomes reveals that 

global gene expression is fine-tuned by tissue-specific enhancers, even for those genes that 

are not cell-type specific. For instance, within near five thousand promoter interactions 

shared by B cells and ES cells, up to 90% use at least one cell type-specific enhancer (450). 

These enhancers, however, are associated with lineage-determining factors.

Evidence also reveals that expression of co-regulated genes can be coordinated through 

inter-chromosomal interactions (451). During mouse T cell differentiation, the dynamic 

inter-chromosomal interactions between cytokine loci provide a new mechanism for 

genomic regulation. For example, Ifng locus on chromosome 10 interacts with Th2 cytokine 

on chromosome 11 in naïve CD4+ T cells, in which both genes are inactive. This interaction 

further dissociates once the cell differentiated into Th1 or Th2 cells, suggesting a co-

regulation or “poised” nuclear organization for lineage-specific genes (452). Similarly, the 

Th2 locus is also shown to interact with Il17 locus to restrain Th17 differentiation (453).
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Conclusions

More than three decades ago, the term “master regulator” was introduced to describe “ a 

gene that occupies the very top of a regulatory hierarchy” (454). This concept was 

introduced roughly at the same time when “lineages” of CD4+ helper T cells were first 

recognized. “Master regulator” tacitly implies that these factors dominantly specify cell 

lineage. The classical example is the myogenic transcription factor MyoD, which is essential 

for muscle cell differentiation but can turn on myogenic genes when introduced into 

heterologous cells. Initially, it seemed appropriate to view helper T cell lineages and cognate 

master regulators in the same way. However, much has changed over the last 30 years. 

There are many more fates for CD4+ T cells and likewise the array of cytokines produced by 

ILCs has also expanded. These discoveries highlight the limitations of a one lineage-one 

master regulator model for explaining the diversity of functions of lymphoid cells. More 

accurate is the appreciation that the establishment of each immune cell type requires 

multiple key TFs that coordinately regulate aspects of their specialized functions (Figure 4). 

In this way, more than one “master regulator” can be expressed in more than one cell type. 

Moreover, multiple cells can exhibit the same functionality (e.g. production of IFN-γ or 

IL-17) and not surprisingly these cells express many of the same factors. However, master 

regulators like T-bet appear to be functionally critical in different ways in different cells. 

GATA-3 and Rorγt are important at multiple steps in lymphocyte differentiation – their 

function is not limited to cytokine production alone. Therefore, the notion of master 

regulators, at least based on the traditional definition, needs to be revised with respect to 

diverse immune cell populations that have distinct functions and gene expression. 

Superimposed upon selective cytokine production are other functionalities of immune cells 

and their ability to localize in diverse tissues. Consequently, lymphoid populations express 

more than one “master regulator” and diverse types of cells can express the same “master 

regulator”; this limits the notion that a single transcription factor defines a specific cell 

population. A more accurate view is to think about the superimposition of functionalities 

that can coexist. Thus, the combinatorial action of TFs is probably a more appropriate way 

of thinking about how these factors specify gene expression programs.

In addition to thinking about how TFs act on genes, one also needs to consider how 

chromatin states affect the action of TFs. Accumulating evidence indicates that cell identity 

is established by converging signals provided by epigenetic traits accumulated from the 

action of pioneer TFs, not master regulators, and the consequence of past environmental 

stimuli that alter the epigenetic landscape to imprint “memory” and in this way alter 

transcription factor deposition. For instance, the process of hematopoietic stem cells to 

differentiate into effector immune cells requires multiple steps of chromatin remodeling and 

epigenetic reprogramming. However, the connections between these events are only 

partially understood. An important challenge will be to track the dynamic appearance of 

epigenetic marks along cell differentiation and activation, to understand the interpretation of 

each epigenetic mark, to identify the hierarchy and/or the combination of transcription 

factors for cell identity.

Finally, genes represent only a tiny portion of the genome; most of the genome represents 

different kinds of switches, many of which are themselves transcribed into RNA, but not 
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into proteins. Understanding what factors are responsible for the creation of these switches 

and what controls their state is clearly an important challenge. Clarifying the role of key TFs 

in creating the switches or how the switches influence TFs access to the genome are 

important questions to resolve. The advent of deep sequencing technologies now allows 

comprehensive, genome-wide views of chromatin states in lymphocytes, along with 

assessment of transcription factor binding and measurements of the transcriptome that go far 

beyond the small portion of the genome that encodes conventional protein coding genes. 

With improved ability to edit the genome with efficient technologies like TALENs or 

Crispr/Cas9, along with rich resources like ENCODE, (http://www.encode-roadmap.org) 

enumeration and functional dissection of the switches is now within reach. Defining TF 

networks and how they affect or employ enhancer landscapes will undoubtedly provide a 

more sophisticated understanding of diverse lymphoid populations in health and disease.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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