Transcriptional assessment by microarray analysis and large scale meta-analysis of the metabolic capacity of cardiac and skeletal muscle tissues to cope with reduced nutrient availability in gilthead sea bream (*Sparus aurata* L.)

Josep A. Calduch-Giner¹, Yann Echasseriau², Diego Crespo³, Daniel Baron⁴, Josep V. Planas³, Patrick Prunet² & Jaume Pérez-Sánchez¹

¹Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain

²INRA, UR1037 LPGP Fish Physiology and Genomics, Rennes, France

³Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain

⁴INSERM, UMR 1064, Nantes, France

Running title: cardiac and skeletal muscle transcriptome

Corresponding author: Jaume Pérez-Sánchez

e-mail: jaime.perez.sanchez@csic.es

Tel: +34 964319500

Fax: +34 964319509

Abstract

The effects of nutrient availability on the transcriptome of cardiac and skeletal muscle tissues was assessed in juvenile gilthead sea bream fed with a standard diet at two feeding levels: i) full ration size and ii) 70% satiation followed by a finishing phase at the maintenance ration. Microarray analysis evidenced a characteristic transcriptomic profile for each muscle tissue following changes in oxidative capacity (heart > red skeletal muscle > white skeletal muscle). The transcriptome of heart and secondly that of red skeletal muscle were highly responsive to nutritional changes, whereas that of glycolytic white skeletal muscle showed less ability to respond. The highly expressed and nutritionally regulated genes of heart were mainly related to signal transduction and transcriptional regulation. In contrast, those of white muscle were enriched in gene ontology (GO) terms related to proteolysis and protein ubiquitination. Microarray metaanalysis using the bioinformatic tool Fish and Chips (http://fishandchips.genouest.org/index.php) showed the close association of a representative cluster of white skeletal muscle with some of cardiac and red skeletal muscle, and many GO terms related to mitochondrial function appeared to be common links between them. A second round of cluster comparisons revealed that mitochondriarelated GOs also linked differentially expressed genes of heart with those of liver from cortisol-treated gilthead sea bream. These results show that mitochondria are among the first responders to environmental and nutritional stress stimuli in gilthead sea bream, and functional phenotyping of this cellular organelle is highly promising to obtain reliable markers of growth performance and well-being in this fish species.

Key words: feeding level, skeletal muscle, heart, microarray, meta-analysis, mitochondria.

Background

The optimization and modelling of muscle fish growth is an intended goal of the aquaculture industry to improve its productivity, sustainability and profitability. Indeed, large quantities of fish larvae are produced, but survival rates are often low or highly variable, and in most cases the growth potential of cultured fish is not fully exploited (Conceição et al., 2010). This is indicative of important gaps in our knowledge, and understanding the mechanisms by which the environment, and nutrient availability and diet composition in particular, introduce growth variability among individuals and fish species is an important goal for future aquaculture research (Valente et al., 2013). In this sense, it must be noted that myogenesis is a common feature of all vertebrates, and the relative timing and importance of production (hyperplasia) and subsequent enlargement (hypertrophy) of muscle fibers determines the growth potential and the final weight attained by a given species (Johnston, 2006; Johnston et al., 2011).

As key components of muscle growth, the first genes to be targeted are the myogenic regulatory factors myoD, myf5, myogenin and MRF4 (Fernandes et al., 2007; Hinits et al., 2009; Rescan, 2001), and those related with the insulin and somatotropic axes (Glass, 2005; Oksbjerg et al., 2004). Hence, considered as a whole, the components of the somatotropic axis (growth hormone, GH; insulin-like growth factors, IGFs; IGF-binding proteins; IGF-receptors; GH receptors) are highly informative of the metabolic condition and growth potential arising from the changing environment and nutritional condition year-round and through the productive cycle in either salmonid (Gómez-Requeni et al., 2005) or non-salmonid fish (Benedito-Palos et al., 2007; Mingarro et al., 2002; Pérez-Sánchez et al., 2002; Saera-Vila et al., 2007b), it is expected that new genes and processes, regulated by environmental factors, controlling key traits

to maximize muscle growth will be recognized and characterized. For instance, the use of fish-specific microarrays has allowed the simultaneous expression of thousands of transcripts to be compared in a number of experiments, and have proven to be a valuable tool in many genomic studies in the field of aquaculture (Prunet et al., 2012). In particular for gilthead sea bream (*Sparus aurata* L.), many specific microarrays have been employed to analyze the transcriptionally-mediated changes on ontogeny (Ferraresso et al., 2008), skin and scales regeneration (Vieira et al., 2011), cortisol administration (Sarropoulou et al., 2005; Teles et al., 2013), crowding stress (Calduch-Giner et al., 2010), and parasite and nutritional challenges (Davey et al., 2011; Calduch-Giner et al., 2012). However, experimental designs are focused on a few specific research questions, that lead to a rather limited set of conditions and replicates, and integration of results for a broad range of species and experimental conditions are still far to be achieved. Besides, available Atlas of gene expression clearly indicate that the expression profile in mammals, and perhaps other vertebrates, is quite different among organs and tissues (Briggs et al., 2011; Son et al., 2005).

To solve the above issues, integrative approaches of functional genomics have enormous potential for the association of a given phenotype and process to a particular gene expression profile (Feichtinger et al., 2012; Moreau et al., 2003). Taking this into account, the aim of this work was to assess by microarray analysis the functional regulation in gilthead sea bream of the transcriptome of cardiac and skeletal muscle (white and red) tissues in a model of restricted nutrient availability. This analysis was completed by the search of common gene signatures and biological processes in the muscle tissues exposed to food restriction in the present experiment and other transcriptomic studies carried out in fish. For that analysis, we used a newly developed bioinformatic tool (Fish and Chips, <u>http://fishandchips.genouest.org</u>).

Materials and methods

Experimental setup and sampling

Juvenile gilthead sea bream were acclimatized to laboratory conditions for 25 days before the start of the trial in the indoor experimental facilities of the Institute of Aquaculture Institute Torre de la Sal (IATS-CSIC). After this initial period, fish of 17.08±0.06 g initial mean body mass were randomly distributed into 500 L-tanks in triplicate groups of 50 fish each. Fish were fed from May to August (11 weeks) with a commercial diet (D-2 Excel 1P, Skretting, Stavanger, Norway) twice per day at two different feeding levels: i) full ration until visual satiety (R_{100}) and ii) 70% satiation for 8 weeks followed by a finishing phase at the maintenance ration for 3 weeks (R_{70-20}). The trial was conducted under natural photoperiod and temperature conditions at IATS latitude (40°5N; 0°10E, 16-25 °C). Water flow was 20 L/min, oxygen content of water effluents was always higher than 85% saturation, and unionized ammonia remained below toxic levels (< 0.02 mg/L).

At the end of the trial (following an overnight fasting), eight fish per dietary treatment (three from two of the triplicate tanks and two from the third one) were anesthetized with 100 mg/L of 3-aminobenzoic acid ethyl ester (MS-222, Sigma-Aldrich, Madrid, Spain). Heart ventricles and tissue samples of white and red skeletal muscles were rapidly excised, frozen in liquid nitrogen and stored at -80°C until RNA extraction. All procedures were carried out according to the national (IATS-CSIC Review Board) and the current EU legislation on the handling of experimental animals.

RNA Extraction

Total RNA from target tissues was isolated with the ABI PRISMTM 6100 Nucleic Acid PrepStation (Applied Biosystems, Foster City, CA, USA). Briefly, tissue samples were homogenized at a ratio of 25 mg/mL with a guanidine–detergent lysis reagent. The reaction mixture was treated with proteinase K, and RNA purification was achieved by passing the tissue lysate (0.4–0.5 mL) through a purification tray containing an application-specific membrane. Wash solutions containing DNase were applied, and total RNA was eluted into a 96-well PCR plate. The RNA yield was 30–50 µg with absorbance measures (A260/280) of 1.9–2.1, and RIN (RNA integrity number) measurements using the Agilent 2100 Bioanalyzer varied between 8 and 10, which is indicative of clean and intact RNA suitable for microarray analysis.

Microarray hybridizations

Sequences present on the gilthead sea bream oligonucleotide microarray were obtained from the EST collection of the Spanish Consortium Aquagenomics. This array was designed with the eArray online tool (Agilent Technologies, Santa Clara, CA, USA), and contained 2-3 different 60-mer probes for each of the 6862 transcripts encoding for annotated sequences (20,499 total different probes), as well as a unique probe for each of the 8294 sequences with no annotation. The design of the array is stored in the NCBI Gene Expression Omnibus (GEO) database under accession GPL13442. RNA labelling, hybridizations and scanning were performed according to the manufacturer's instructions. Briefly, total RNA (100 ng) from each individual sample was amplified and Cy3-labelled with Agilent One-Color Microarray-Based Gene Expression analysis (Low Input Quick Amp Labelling kit) along with Agilent One-color RNA SpikeIn kit. After labelling, cRNA was purified with RNeasy mini spin columns (Qiagen, Chatsworth, CA, USA) and quantity and quality was checked using a nanodrop (Thermo Scientific, Wilgminton, DE, USA) and 2100 Bioanalyzer (Agilent), respectively. Each RNA sample (1.65 μ g) was then hybridized to the gilthead sea bream array at 65°C for 17 h using the Agilent GE hybridization kit. After washing, arrays were scanned with the Agilent scanner G2505B. Spot intensities and other quality control features were extracted using the Agilent Feature Extraction software version 10.4.0.0, and were deposited in GEO under accession identifier GSE47859.

Microarray data analysis

Microarray data were analyzed by means of the GeneSpring GX 11.5.1 software (Agilent) focusing on the probes encoding annotated sequences. The quality of each individual hybridization was assessed with the Feature Extraction plug-in (Agilent). To verify that all features within each array were measured over the same starting intensity, raw data (median intensity of each spot) were extracted and corrected for background with the same plug-in. To remove systematic signal intensity bias between each array, data were log2 transformed and normalized as previously described (Kuroka et al., 2013) using the "75th percentile shift", the recommended global normalization method by Agilent for alignment of intensities distributions across arrays for comparisons (see Agilent Technologies, 2009). To ensure similar expression of all transcripts, a baseline transformation was applied by subtracting for each probe the median value of its intensities (Baron et al., 2005). The quality and comparability of samples before and after normalization was verified by analysis of intensity boxplots and MA plots.

Further statistical analyses included a principal components analysis of the six experimental groups, as well as an one-way ANOVA (corrected P-value < 0.05, Tukey's HSD post hoc test, Benjamini-Hochberg multiple testing correction) and k-means clustering of the differentially expressed genes. Gene ontology (GO) and Fisher

enrichment analyses of k-means clusters were carried out by means of Blast2GO software (Conesa et al., 2005).

Real-time qPCR validation

Up to 11 genes representative of all k-means clusters of differentially expressed genes were validated by real-time qPCR on the same individual RNA samples used for cDNA labelling for microarray analysis, using a MyiQ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Synthesis of cDNA was performed with the High-Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA, USA) using random decamers. For this purpose, 500 ng of total RNA was reverse-transcribed in a final volume of 100 μ l. RT reactions were incubated for 10 min at 25°C followed by 2 h at 37°C. Negative control reactions were incubated in the absence of reverse transcriptase. PCR reactions (20 µl of final volume) contained 10 µl of SYBR GreenER qPCR SuperMix (Invitrogen, Gaithersburg, MD, USA), 500 nM of forward and reverse specific primers (Table 1), and 5 µl of diluted cDNA. Reactions were run using the following protocol: 2 min at 50°C, 8 min at 95°C, followed by 40 cycles of 15 s denaturation at 95°C and 30 s at 60°C, and a final melting curve of 81 cycles from 55 to 95°C (0.5°C increments every 10 s). β -Actin was used as the housekeeping gene and the efficiency of PCR reactions for target and reference genes was always higher than 90%. The dynamic range of standard curves (serial dilutions of RT-PCR reactions) spanned five orders of magnitude, and the amount of product in a particular sample was determined by interpolation of the cycle threshold (Ct) value. The specificity of the reaction was verified by analysis of melting curves. Fluorescence data acquired during the extension phase were ultimately normalized to β -actin by the $\Delta\Delta$ Ct method (Livak and Schmittgen, 2001). Results are expressed as mean fold-change ± standard error of the mean (SEM) with respect to the control group, which was set at 1 (Table 2). Statistical differences (P < 0.05) were calculated by non parametric Mann-Whitney U-test for the determination of differences among groups, using StatView 5.0 (SAS Institute, Cary, NC, USA). The expression of β -actin was not affected by feeding level in any tissue.

Microarray meta-analysis

Identification of co-regulated transcript groups among tissues was performed with the Fish and Chips online tool (<u>http://fishandchips.genouest.org</u>). This resource, specifically designed for the meta-analysis of fish-related microarray experiments, has been constructed in a similar way to the MADmuscle database (Baron et al., 2011b). The database was thus built by the reanalysis of datasets from public (GEO and ArrayExpress) and private repositories, and populated with clusters of co-expressed genes generated from these datasets. The corresponding gene lists were used as the basis for pair-wise comparisons with the user's list.

Public datasets were pre-processed and normalized using a channel-by-channel Lowess procedure (Workman et al., 2002) adapted to the analysis of mono- (Baron et al., 2007a; Baron et al., 2011a) and two-channel (Lamirault et al., 2010; Quillé et al., 2011) microarrays. After this normalization step, clusters were identified by a stable kmeans procedure, applied on log and baseline transformed data (Baron et al., 2007a). The quality of each cluster was then evaluated by a test statistic based on the Pearson's product-moment coefficient. For standardization, gene annotation was performed mapping transcript sequences retrieved from NCBI on Ensembl annotated genomes using a BLAST strategy. For each sequence, the best match (Ensembl Gene ID) on a fish genome was retained. Orthology/paralogy relationships between annotated genes were computed from Ensembl BioMart tool and gathered in the database as previously described (Baron et al., 2011b). Besides, functional annotation of the clusters (gene lists) was performed using the GOMiner program (Zeeberg et al., 2003) and the Gene Ontology resource (Ashburner et al., 2000).

In order to identify similar trends of co-expression across datasets from the database, the search tool performs a statistical comparison of the input gene list from the user and the lists from the database related to the clusters. The concordance of similarity (overlap) between lists was indicated by the ratio between the number of common genes (size of the overlapping list) and the total number of genes (size of the input list). Its statistical relevance was evaluated by the Fisher's exact test. Besides, among the results, the ability of the targeted output cluster to statistically discriminate between experimental conditions (stress vs. control) was evaluated by the Fisher's exact test as previously described (Feuerstein et al., 2012).

Currently, the database contains the datasets from 355 microarray experiments from public and private repositories (listed in Supplemental Table A1) up to April 2013, which were conducted on zebrafish (*Danio rerio*, H.) (188 datasets), European sea bass (*Dicentrarchus labrax*, L.) (4 datasets), Atlantic cod (*Gadus morhua*, L.) (5 datasets), longjaw mudsucker (*Gillichthys mirabilis*, C.) (4 datasets), rainbow trout (*Oncorhynchus mykiss*, W.) (73 datasets), Atlantic salmon (*Salmo salar*, L.) (60 datasets) and gilthead sea bream (21 datasets). All datasets were included together in an automatic lowess re-normalization and re-analysis to identify clusters of co-expressed genes that are functionally annotated. Statistically significant GO annotations in gene clusters were determined by Fisher's exact test.

Results

10

Fish growth performance

Fish of the R₁₀₀ group grew from 17.06±0.07 to 72.55±0.20 g (SGR = 1.95 ± 0.01), with a feed efficiency (wet weight gain/dry feed intake) of 0.89 ± 0.04 . In the R₇₀₋₂₀ group the final body weight (48.67±0.13 g, SGR = 1.41 ± 0.01) and feed efficiency (0.11±0.01) were significantly lower. For more detail see Bermejo-Nogales et al. (2011).

Tissue-specific transcriptome profile

Principal component analysis of microarray results clearly grouped together the transcriptomes of the same tissue regardless of dietary treatment (Figure 1). Component 1 contributed to most of the variation (69.9%), and separated the different muscle tissues according to their oxidative capacity (white skeletal muscle < red skeletal muscle < heart). These inter-tissue differences were also evidenced when dietary samples of each tissue were grouped and analyzed by means of one-way ANOVA, finding a differential expression for 3499 genes. The k-means clustering of these differentially expressed genes established three major groups of genes, reflecting the different transcript abundance among muscle tissues. The WM-cluster was composed of 1393 annotated genes that were expressed at a higher level (more than 4-fold on average) in the white skeletal muscle than in the red skeletal muscle or heart (Figure 2A). A second cluster with 628 annotated genes was termed the RM-cluster, as the red skeletal muscle was the muscle tissue where they reached their greatest expression level (Figure 2B). Likewise, the Heart cluster comprised 1478 annotated genes that were highly expressed in heart in comparison with the other two muscle tissues (Figure 2C).

The tissue-specific transcript expression profile was also regulated by feed restriction, but the magnitude of change did not necessarily reflect the abundance of

11

transcripts in a given tissue. Hence, genes of the WM-cluster were mostly up- or downregulated by feed restriction in heart (518 genes; 226 up-regulated and 292 downregulated) or red skeletal muscle (448 genes; 371 up-regulated and 77 down-regulated) than in the white skeletal muscle, where only 175 genes were differentially expressed by feed restriction (78 genes up-regulated and 97 down-regulated) (Figure 2A). The same transcript expression pattern was found for the other two gene clusters, which was especially evident for the Heart-cluster, with only 3 genes differentially expressed in the white skeletal muscle instead of 242 in the red skeletal muscle or 362 in the heart (Figures 2B and 2C).

Differentially expressed genes by feed restriction were functionally examined by GO analysis. In the white skeletal muscle, the 175 differentially expressed genes of the WM-cluster showed a significant enrichment in processes related to the GO terms "proteolysis", "ubiquitin-dependent catabolic process" and "protein ubiquitination" (Figure 3A). The 90 genes of the RM-cluster that were nutritionally regulated by feed restriction in the red skeletal muscle did not evidence enrichment in any GO process (Figure 3B). Ontologies for the 362 heart-like genes differentially regulated by feed restriction in heart were enriched in the GO terms "signal transduction", "regulation of transcription" and "signalling pathway" (Figure 3C). For each of the analyzed groups, the entire list of differentially expressed genes accompanied by their values of fold-change with feed restriction is presented in Supplemental Tables A2-A4.

Real-time qPCR validation

Three or four genes representative of each tissue-gene cluster (11 in total) were chosen to validate microarray results by qPCR, covering a wide range of up- and downregulation with restricted feeding. As shown in Table 2, qPCR values were quite consistent with those of the microarray analysis for 10 of the 11 genes assayed (r=0.91). The only exception to this good correlation was the measured expression of pyruvate dehydrogenase isoenzyme 2 in heart, with a large up-regulation (23.6) with restricted feeding calculated by microarray analysis and a lower fold-change increase (2.24) estimated by means of qPCR validation. Importantly, the expression of all genes analyzed was significantly regulated in response to restricted feeding, except in the case of novel protein similar to vertebrate myelin expression factor 2 in heart (1.48 fold-change).

Microarray meta-analysis

The normalization and clustering steps of the datasets stored in the bioinformatic tool Fish and Chips do not take into account the experimental conditions of each experiment, so a first step in the cluster comparison analysis was the choice of a group of genes with a sample clustering distribution in accordance with the dietary treatment. For the whole set of transcriptome data of white skeletal muscle, the Fish and Chips tool identified 23 clusters that varied in size from 23 to 861 probes, and cluster 17 was selected as the starting point of the meta-analysis because it showed good, and perhaps the best distribution of the samples according to the experimental feed restriction (R_{100} and R_{70-20}). This cluster was composed of 533 probes that corresponded to 224 different annotated genes, and k-means clustering clearly separated the two experimental conditions. Among the five most representative GO terms in cluster 17 of white muscle, the tool revealed the involvement of proteolysis and ubiquitin-protein ligase activity, similar to that which was previously observed by microarray analysis. Profile comparison of this cluster among the fish datasets of Fish and Chips evidenced that the best hits (p-value<0.0001) with cluster 17 of the white skeletal muscle were clusters of red skeletal muscle and heart derived from the same experimental setup (Figure 4A). Interestingly, many GO terms related to mitochondria function appeared to be common links among the best hit clusters. A second round of cluster comparison with the cluster found in heart (cluster 17, composed by 501 annotated genes) evidenced a significant overlap of genes from clusters from two early developmental stages of gilthead sea bream (from Ferraresso et al., 2008) and from liver transcripts of gilthead sea bream with high plasma cortisol levels induced by slow-release cortisol implants (Teles et al., 2013). The top GO terms of the gilthead sea bream larvae cluster were related to spindle assembly checkpoint and organelle fission, but mitochondria GO terms were again among the major cluster nexus in the cortisol administration experiment (Figure 4B). Overlapping annotated genes between clusters in the first and second round of cluster comparison are listed in Supplemental Table A5.

Discussion

Multiple microarray studies in different animal models, including monkey, rodents, pig, and *Drosophila melanogaster*, have addressed the effect of caloric restriction or food deprivation on transcript expression (Dejean et al., 2007; Gershman et al., 2007; Higami et al., 2004; Kayo et al., 2001; Lkhagvadorj et al., 2010; Martin et al., 2009; Sreekumar et al., 2002; Teleman et al., 2008; Zinke et al., 2002). Even though the duration and the degree of caloric restriction varied among separate studies, common responses are observed, and adipose tissues show a strong down-regulation of energy-generating processes (Higami et al., 2004; Lkhagvadorj et al., 2010; Teleman et al., 2008). Also, the liver shows a strong up-regulation of genes involved in gluconeogenesis (pyruvate metabolism) and β -oxidation, whereas genes linked to oxidative phosphorylation and tricarboxylic acid cycle are down-regulated (Bauer et al.,

2004; Dejean et al., 2007; Desert et al., 2008; Teleman et al., 2008). The muscle tissues show a much weaker response, although caloric restriction in humans leads to enhanced mitochondrial activity (Civitarese et al., 2007). In the same way, feed restriction in gilthead sea bream increases the activity of key metabolic enzymes (citrate synthase, 3-hydroxyacyl CoA dehydrogenase, pyruvate kinase, lactate dehydrogenase) of white skeletal muscle, whereas the mRNA expression of muscle markers of mitochondrial respiration uncoupling (uncoupling protein 3, UCP3) remains mostly unaltered (Bermejo-Nogales et al. 2011). In contrast, in the same study, we also found that UCP3 mRNA expression is highly regulated by feeding level in heart and red skeletal muscle, which is viewed as part of the different tissue muscle strategies to cope with the altered metabolic needs and risk of oxidative stress upon feed restriction or starvation. Our present results complement and expand this hypothesis, although the focus of the study is not pointed on specific genes, but on ontogenies and metabolic pathways derived from the simultaneous differential expression of many transcripts.

The notion of a tissue-specific transcript expression pattern for cardiac and skeletal muscle tissues was further evidenced herein with the simultaneous expression analysis of more than 6000 annotated genes. Hence, the PCA analysis highlighted that the tissue variable is a more discriminant factor that dietary intervention, which allowed a reduction in weight gain of more than 40%. The different transcript expression profile of red and white muscle fibres has also been evidenced by deep RNA-seq in rainbow trout, which showed a predominance of genes involved in protein degradation by means of the ubiquitin-proteasome pathway in the white skeletal muscle (Palstra et al., 2013). Likewise, the tissue-specific transcriptome of human and rodents is usually clustered based on tissue function and developmental origin (Son et al., 2005; Zheng-Bradley et al., 2010). As a result, up to 90% of genes in the human gene expression Atlas are

15

differentially expressed among the different organs and tissues (Lukk et al., 2010). Thus, the search of general biomarkers of fish performance and growth becomes more complicated, as the establishment of reference expression values for potential candidate genes will be highly dependent on the tissues to be analyzed.

The strength of the molecular tools of analysis is envisaged to greatly increase soon for gilthead sea bream, not only by the growing technical capacity to detect and quantify more transcripts, but also by the improvement of their annotation. Hence, an important number of transcripts from whole larvae (Yúfera et al., 2012), vertebrae and gill arches (Vieira et al., 2013) and skeletal muscle (Garcia de la Serrana et al., 2012) have been recently released, and the conventional Sanger sequencing of several EST libraries combined with next generation sequencing of 454 libraries of intestine, head kidney, blood and skeletal muscle allowed the annotation of more than 75% of the codifying gilthead sea bream transcriptome (Calduch-Giner et al., 2013) in a fully searchable database (http://nutrigroup-iats.org/seabreamdb). In any case, the current version of the presented microarray was designed and annotated prior to some of these recent advances, so the annotation level of the included sequences was around 45%. Regardless of this, one of the strongest effects of nutrient availability on the transcriptome of the white skeletal muscle was reported for stearoyl-CoA desaturases (SCD) with Δ -9 desaturase activity, which have evolved through evolution of the teleost lineage as duplicated genes (Castro et al., 2011). This has been recently confirmed in gilthead sea bream by phylogenetic and sequence analyses of two fatty acid desaturase enzymes of SCD1-type (Benedito-Palos et al., 2013). In particular, the down-regulation of SCD transcripts was especially evident for the SCD1a isoform. This metabolic feature, which was confirmed by qPCR, is not surprising given that SCD enzymes are strong markers of lipogenesis in humans and rodents with a low SCD expression and activity in obesity and insulin resistance (Hulver et al., 2005; Ntambi et al., 2002; Sampath & Ntambi, 2011).

Protein synthesis and degradation are part of healthy muscle growth and metabolism, and the ubiquitin-proteasome pathway plays a pivotal role in the degradation of short-lived proteins that are important in a variety of basic cellular processes (Jung et al., 2009; Lecker et al., 2006). Prior to degradation, a target protein undergoes a three-step process that covalently links a polyubiquitin chain to the substrate. Three enzyme components are involved in this process (E1-3), and herein the non-specific Ub-conjugating enzymes (E2) were highly represented within the differentially expressed genes of the white muscle of restricted fed fish. Up to six E2 enzymes are consistently down-regulated and the loss of protein deposition with reduced growth would be related to a coordinated decrease of protein synthesis and degradation, as pointed out in different fish models (Fraser & Rogers, 2007). Feed deprivation also modulates other proteases in our experimental model, and the expression of the muscle-specific calpain 3 was significantly down-regulated (foldchange, -2.08) with the concomitant up-regulation (fold-change, 2.05) of the calpainspecific inhibitor (calpastatin). Likewise, Cleveland et al. (2009) have reported a coordinated and opposite regulation of the calpain-calpastatin system in the white muscle of fasted rainbow trout. In any case, at least in our model of nutrient availability, the nutritionally-mediated effects on the transcriptome of white muscle are less evident that those observed in aerobic muscle tissues (heart and red skeletal muscle). One might speculate that this differential regulation at the transcriptional level represents a lower capacity of the glycolytic white muscle to cope with different nutritional and environmental challenges.

Regarding cardiac muscle, many activators of transcription (like chromodomain helicase DNA binding protein 4, dynamin-2, friend leukemia integration 1 transcription factor, GC-rich sequence DNA-binding factor candidate isoform 1, or lysine-specific demethylase 5B and 5B-like, among others) were up-regulated by restricted feeding, whereas transcription inhibitors (notably chibby homolog 1, chromobox protein homolog 5 or origin recognition complex subunit 2) were mostly down-regulated, which conform and extent an overall enhanced transcription. This is specially supported by the up-regulation of dynamin-2, already known as a survival factor for bovine endothelial cells (Kang-Decker et al., 2007). Conversely, the transcription activator ets variant gene 5, involved in cell growth and differentiation, was down-regulated, but even so the augmented expression of this gene is associated with several mouse cardiomyopathies (Spurney et al., 2008). Intriguingly, four-and-a-half LIM domains protein 2 is a well characterized marker of muscle hyperplasia in gilthead sea bream (Rafael et al., 2012), and its down-regulation in the present study might reflect a reduced growth-promoting capability of muscle cardiac tissue. In the same line, we also reported a down-regulation of chibby protein that inhibits cardiomyocyte differentiation of murine embryonic stem cells (Singh et al., 2007). Taken together, these results suggest the activation of mechanisms focused not only in tissue differentiation or growth, but also in tissue cell survival.

Likewise, the up-regulation of a high number of transcripts related to cell signalling GO terms (signal transduction, signalling pathway) (Supplemental Table 4) might be indicative of an adaptive response to keep the life-essential functions of heart. Noteworthy, the consistent up-regulated expression of the pyruvate dehydrogenase kinase isoenzyme 2 is in accordance with the the observed increase of pyruvate dehydrogenase kinase activity in the skeletal muscle of starved rats, driving a reduced

18

glucose oxidation (Fuller & Randle, 1984; Sugden et al., 2000). Otherwise, the growth factor receptor-bound protein 14 belongs to a family of adaptor molecules involved in insulin receptor signalling (Holt & Siddle, 2005), and its up-regulated expression in our restricted feeding model agrees with a healthy heart phenotype in mice (Lin et al., 2010). Finally, the signal transducer and activator of transcription 3 (STAT3) is required for cardiomyocyte protection (reviewed in Haghikia et al., 2011). So, in our study, the up-regulation of the STAT3 inhibitor (PIAS3) is apparently a contradictory result, but PIAS protein family are not restricted to the inhibition of STATs, and other potential beneficial effects might be considered as reviewed by Schmidt & Müller (2003). As a whole, a highly coordinated action of transcription and cell signalling pathways would serve to maintain heart as an efficient and reliable pump even in face of an adverse metabolic condition, driving the switches of metabolic fuels according the nutrient availabilities (Taegtmeyer et al., 2004). The up-regulated expression of the myogenic growth factor MYOD2 fish could be indicative of this issue in our experimental model of severe feed restriction.

Transcriptomic meta-analysis approaches constitute an alternative to alleviate the methodological constraints due to different tissue responsiveness, comparing data across independent studies to reveal robust biomarkers and pathways for traits of interest. A major pitfall of such meta-analysis is the use of different microarray protocols and platforms, which difficults the comparison among transcriptome datasets (Baron et al., 2011). To date, meta-analytic studies applied to cultured fish performance have been conducted by the revision and classification of published studies for evaluation of the effect of the replacement of live feed on the mortality and growth of freshwater fish larvae at first feeding (47 studies) (Sales, 2011), or the levels of inclusion and source of plant proteins in feed on the growth of salmonids (19 and 45 studies, respectively) (Hua and Bureau, 2012; Collins et al., 2013). Thus, the present work, using the Fish and Chips bioinformatic tool, represents the first time that a metaanalysis based on genomic data from a vast repository with many different experimental setups, species and microarray types has been conducted in a fish species of aquaculture interest. Semi-automatization of normalization and clustering has allowed the inclusion of a significant number of datasets, 355 to date, that cover a wide array of experimental conditions, species and tissues. The annotation by means of GO terms also facilitates the determination of common pathways in multi-tissue comparisons. Taking these issues into account, two rounds of gene cluster comparisons served to highlight the key role of mitochondria, not only in the transcriptomic response in both aerobic and anaerobic muscle tissues in response to feed restriction, but also to link the mitochondria in the stress response mediated by cortisol administration. This notion is also supported by previous gilthead sea bream studies in which different mitochondrialrelated genes, including antioxidant enzymes, respiratory chain components, and mitochondrial chaperones and heat shock proteins, have been identified as highly stressresponsive genes in crowding stress models combined with a different nutritional background as the result of the use of either fish oil or a blend of alternative vegetable oils as the most important dietary lipid source (Calduch-Giner et al., 2010; Pérez-Sánchez et al., 2013). This is, in fact, not surprising given that the mitochondrion is an important cellular organelle housing the oxidative phosphorylation machinery and multiple metabolic pathways such as β -oxidation of fatty acids and the tricarboxylic acid and urea cycles. In addition, mitochondria have important biosynthetic activities, control intracellular calcium metabolism and signalling, generate most cellular reactive oxygen species (ROS) and serve as the gatekeeper of the cell for apoptosis, facing a vast array of disturbance setups in different tissues, as reviewed by Liesa et al. (2009).

In summary, cardiac and skeletal muscle tissues of gilthead sea bream evidenced a clear distinctive transcript expression pattern. Nutritionally regulated genes with a high level of expression in the glycolytic white muscle were mostly related to proteolysis and protein ubiquitination pathways, whereas aerobic muscles shared an extensive response, which might reflect the metabolic plasticity of muscle tissues with essential physiological functions. The microarray meta-analysis highlighted the tissuespecific differences of the fish transcriptome among tissues, fish species and experimental conditions, but also evidenced the emerging role of mitochondria as a common link, despite the different oxidative capacities of cardiac and skeletal muscle tissues. This opens new research possibilities focusing on mitochondria as a reliable subcellular marker of stress phenotyping in fish and gilthead sea bream in particular.

Acknowledgments

This work was funded by the EU seventh Framework Programme by the AQUAEXCEL (Aquaculture Infrastructures for Excellence in European Fish Research, FP7/2007-2012; grant agreement n° 262336) project. Additional funding was obtained from the Generalitat Valenciana (research grant PROMETEO 2010/006) and the Spanish Government through AQUAGENOMICS project (Consolider-Ingenio-2010 Programme).

References

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29

Agilent Technologies (2009) One-color microarray-based gene expression analysis (Quick Amp Labeling) with Tecan HS Pro Hybridization. Publication number G4140-90041. Available: http://www.chem.agilent.com/library/usermanuals/public/g4140-90041_one-color_tecan.pdf

Baron D, Bihouée A, Teusan R, Dubois E, Savagner F, Steenman M, Houlgatte R, Ramstein G (2011a) MADGene: retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets. Bioinformatics 27(5):725-726

Baron D, Dubois E, Bihouée A, Teusan R, Steenman M, Jourdon P, Magot A, Peréon Y, Veitia R, Savagner F, Ramstein G, Houlgatte R (2011b) Meta-analysis of muscle transcriptome data using the MADMuscle database reveals biologically relevant gene patterns. BMC Genomics 12:113

Baron D, Houlgatte R, Fostier A, Guiguen Y (2005) Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod 73:959-966

Baron D, Magot A, Ramstein G, Steenman M, Fayet G, Chevalier C, Jourdon P, Houlgatte R, Savagner F, Pereon Y (2011c) Immune response and mitochondrial metabolism are commonly deregulated in DMD and aging skeletal muscle. PLoS One 6:e26952

Baron D, Montfort J, Houlgatte R, Fostier A, Guiguen Y (2007a) Androgen-induced masculinization in rainbow trout results in a marked dysregulation of early gonadal gene expression profiles. BMC Genomics 8:357

Baron D, Raharijaona M, Houlgatte R (2007b) DNA microarrays. IRBM 28:210-215

Bauer M, Hamm AC, Bonaus M, Jacob A, Jaekel J, Schorle H, Pankratz MJ, Katzenberger JD (2004) Starvation response in mouse liver shows strong correlation with life-span-prolonging processes. Physiol Genomics 17:230-244

Beckman BR (2011) Perspectives on concordant and discordant relations between insulin-like growth factor (IGF1) and growth in fishes. Gen Comp Endocrinol 170:233-252

Benedito-Palos L, Calduch-Giner JA, Ballester-Lozano GF, Pérez-Sánchez J (2013) Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (*Sparus aurata*). British J Nutr 109:1175-1187

Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J (2007) Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (*Sparus aurata* L.): Networking of systemic and local components of GH/IGF axis. Aquaculture 267:199-212

Bermejo-Nogales A, Benedito-Palos L, Calduch-Giner JA, Pérez-Sánchez J (2011) Feed restriction up-regulates uncoupling protein 3 (UCP3) gene expression in heart and red muscle tissues of gilthead sea bream (*Sparus aurata* L.). New insights in substrate oxidation and energy expenditure. Comp Biochem Physiol A. 159:296-302

Brand MD, Affourtit CA, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biol Med 37:755-767

Briggs J, Paoloni M, Chen QR, Wen X, Khan J, Khanna C (2011) A compendium of canine normal tissue gene expression. PLoS One 6:e17107

Calduch-Giner JA, Bermejo-Nogales A, Benedito-Palos L, Estensoro I, Ballester-Lozano G, Sitjà-Bobadilla A, Pérez-Sánchez J (2013) Deep sequencing for *de novo* construction of a marine fish (*Sparus aurata*) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 14:178

Calduch-Giner JA, Davey G, Saera-Vila A, Houeix B, Talbot A, Prunet P, Cairns MT, Pérez-Sánchez J (2010) Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (*Sparus aurata* L.). BMC Genomics 11:193

Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J (2012) Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (*Sparus aurata*), but modulate the transcriptomic response to infection with *Enteromyxum leei*. BMC Genomics 13:470

Castro LFC, Wilson JM, Gonçalves O, Galante-Oliveira S, Rocha E, Cunha I (2011) The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 11:132

Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

Cleveland BM, Weber GM, Blemings KP, Silverstein JT (2009) Insulin-like growth factor-I and genetic effects on indexes of protein degradation in response to feed deprivation in rainbow trout (*Oncorhynchus mykiss*). Am J Physiol Regul Integr Comp Physiol 297:R1332-1342

Collins SA, Øverland M, Skrede A, Drew MD (2013) Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture 400-401:85-100

Conceição, L.E.C., Aragão, Richard N, Engrola S, Gavaia P, Mira S, Dias J (2010) Novel methodologies in marine fish larval nutrition. Fish Physiol Biochem 36:1-16

Conesa A, Götz S, García-Gómez JM, Perol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676

Davey GC, Calduch-Giner JA, Houeix B, Talbot A, Sitjà-Bobadilla A, Prunet, P, Pérez-Sánchez J, Cairns MT (2011) Molecular profiling of the gilthead sea bream (*Sparus aurata* L.) response to chronic exposure to the myxosporean parasite *Enteromyxum leei*. Molecular Immunology 48:2102-2112

Dejean S, Martin PG, Baccini A, Besse P (2007) Clustering time-series gene expression data using smoothing spline derivatives. EURASIP J Bioinform Syst Biol 70561

Desert C, Duclos MJ, Blavy P, Lecerf F, Moreews F, Klopp C, Aubry M, Herault F, Le Roy P, Berri C, Douaire M, Diot C, Lagarrigue S (2008) Transcriptome profiling of the feeding-to-fasting transition in chicken liver. BMC Genomics 9:611

Feichtinger J, McFarlane RJ, Larcombe LD (2012) CancerMA: a web-based tool for automatic meta-analysis of public cancer microarray data. Database bas055

Fernandes JMO, Kinghorn JR, Johnston IA (2007) Differential expression of multiple alternatively spliced transcripts of MyoD. Gene 391:178-185

Ferraresso S, Vitulo N, Mininni AN, Romualdi C, Cardazzo B, Negrisolo E, Reinhardt R, Canario AVM, Patarnello T Bargelloni L (2008) Development and validation of a gene expression oligo microarray for the gilthead sea bream (*Sparus aurata*). BMC Genomics 9:580

Feuerstein P, Puard V, Chevalier C, Teusan R, Cadoret V, Guerif F, Houlgatte R, Royere D (2012) Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS One 7:e40449

Fuller SJ, Randel PJ (1984) Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J 219:635-646

Garcia de la Serrana D, Estévez A, Andree K, Johnston IA (2012) Fast skeletal muscle transcriptome of the gilthead sea bream (*Sparus aurata*) determined by next generation sequencing. BMC Genomics 13:181

Gershman B, Puig O, Hang L, Peitzsch RM, Tatar M, Garofalo RS (2007) High resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics 29:24-34

Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signalling pathways. Int J Bioch Cell Biol 37:1974-1984

Gómez-Requeni P, Calduch-Giner J, Vega-Rubín de Celis S, Medale F, Kaushik S, Pérez-Sánchez J (2005) Regulation of somatotropic axis by dietary factors in rainbow trout (*Onchorhynchus mykiss*). British Journal of Nutrition 94:353-361

Higami Y, Pugh TD, Page GP, Allison DB, Prolla TA, Weindruch R (2004) Adipose tissue energy metabolism: altered gene expression profile of mice subjected to long-term caloric restriction. FASEB J 18:415-417

Hinits Y, Osborn DP, Hughes SM (2009) Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136:403-14

Holt LJ, Siddle K (2005) Grb10 and Grb14: enigmatic regulators of insulin action – and more?. Biochem J 388:393–406

Hua K, Bureau DP (2012) Exploring the possibility of quantifying the effects of plant protein ingredients in fish feeds using meta-analysis and nutritional model simulation-based approaches. Aquaculture 356-357:284-301

Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM (2005) Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2:251-261

Johnston I (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249-2264

Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617-16228

Johnston IA, Manthri S, Bickerdike R, Dingwall A, Luijkx R, Campbell P, Nickell D, Alderson R (2004) Growth performance, muscle structure and flesh quality in out-ofseason Atlantic salmon (*Salmo salar*) smolts reared under two different photoperiod regimes. Aquaculture 237:281-300

Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191-296

Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan LJ, Semela D, Mukhopadhyay D, Shah V (2007) Nitric oxide promotes endothelial cell survival signaling through Snitrosylation and activation of dynamin-2. J Cell Sci 120:492-501 Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 98:5093-5098

Kurokawa K, Akaike Y, Masuda K, Kuwano Y, Nishida K, Yamagishi N, Kajita K, Tanahashi T, Rokutan K (2013) Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. Oncogene 2013 doi: 10.1038/onc.2013.86

Lamirault G, Meur NL, Roussel JC, Cunff MF, Baron D, Bihouée A, Guisle I, Raharijaona M, Ramstein G, Teusan R, Chevalier C, Gueffet JP, Trochu JN, Léger JJ, Houlgatte R, Steenman M (2010) Molecular risk stratification in advanced heart failure patients J Cell Mol Med 14:1443-1452

Lecker SH, Goldberg AL, Mitch WE (2006) Protein Degradation by the Ubiquitin– Proteasome Pathway in Normal and Disease States. J Am Soc Nephrol 17:1807-1819

Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799-845

Lin RCY, Weeks KL, Gao X-M, Williams RBH, Bernardo BC, Kiriazis H, Matthews VB, Woodcock EA, Bouwman RD, Mollica JP, Speirs HJ, Dawes IW, Daly RJ, Shioi T, Izumo S, Febbraio MA, Du X-J, McMullen JR (2010) PI3K(p110α) Protects Against Myocardial Infarction-Induced Heart Failure: Identification of PI3K-Regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol 30:724-732

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the $2^{-\Delta\Delta C}_{T}$ method. Methods 25:402-408

Lkhagvadorj S, Qu L, Cai W, Couture OP, Barb CR, Hausman GJ, Nettleton D, Anderson LL, Dekkers JC, Tuggle CK (2010) Gene expression profiling of the shortterm adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. Am J Physiol Regul Integr Comp Physiol 298:R494-R507

Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, Ukkonen E, Brazma A (2010) A global map of human gene expression. Nat Biotechnol 28:322-324

Martin B, Pearson M, Brenneman R, Golden E, Wood W, Prabhu V, Becker KG, Mattson MP, Maudsley S (2009) Gonadal transcriptome alterations in response to dietary energy intake: sensing the reproductive environment. PLoS ONE 4:e4146

Mingarro M, Vega-Rubín de Celis S, Astola A, Pendón C, Valdivia MM, Pérez-Sánchez J (2002) Endocrine mediators of seasonal growth in gilthead sea bream: The growth hormone and somatolactin paradigm. Gen Comp Endocrinol 128:102-111

Mommsen TP (2001) Paradigms of growth in fish. Comp Biochem Physiol B. 129:207-219

Moreau Y, Aerts S, De MB, Dabrowski M (2003) Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet 19:570-577

Nabben M, Hoeks J (2008) Mitochondrial uncoupling protein 3 and its role in cardiacand skeletal muscle metabolism. Physiol Behav 94:259-269

Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 99:11482-11486

Oksbjerg N, Gondret F, Vestergaard M (2004) Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 27:219-240

Palstra AP, Beltran S, Burgerhout E, Brittijn SA, Magnoni LJ, Henkel CV, Jansen HJ, van den Thillart GEEJM, Spaink SP, Planas JV (2013) Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish. PLoS ONE 8:e53171

Pérez-Sánchez J, Borrel M, Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S (2013) Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (*Sparus aurata*) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comp Biochem Physiology D 8:123-130

Pérez-Sánchez J, Calduch-Giner J, Mingarro M, Vega-Rubín de Celis S, Gómez-Requeni P, Saera-Vila A, Astola A, Valdivia MM (2002) Overview of fish growth hormone family. New insights in genomic organization and heterogeneity of fish growth hormone receptors. Fish Physiol Biochem 27:243-258

Prunet P, Øverli Ø, Douxfils J, Bernardini G, Kestemont P, Baron D (2012) Fish Welfare and genomics. Fish Physiol Biochem 38:43-60

Quillé ML, Carat S, Quéméner-Redon S, Hirchaud E, Baron D, Benech C, Guihot J, Placet M, Mignen O, Férec C, Houlgatte R, Friocourt G (2011) High-throughput analysis of promoter occupancy reveals new targets for Arx, a gene mutated in mental retardation and interneuronopathies. PLoS One 6:e25181

Rafael MS, Laizé V, Bensimon-Brito A, Leite RB, Schüle R, Cancela ML (2012) Fourand-a-half LIM domains protein 2 (FHL2) is associated with the development of craniofacial musculature in the teleost fish *Sparus aurata*. Cell Mol Life Sci 69:423-434

Rescan PY (2001) Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B 130:1-12

Saera-Vila A, JA Calduch-Giner, Pérez-Sánchez J (2007) Co-expression of IGFs and GH receptors (GHRs) in gilthead sea bream (*Sparus aurata* L.): sequence analysis of the GHR-flanking region. J Endocrinol 194:361-372

Saera-Vila A, Calduch-Giner JA, Prunet P, Pérez-Sánchez J (2009) Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (*Sparus aurata*) exposed to acute confinement. Differential stress response of growth hormone receptors. Comp Biochem Physiol A 154:197-203

Sales J (2011) First feeding of freshwater fish larvae with live feed versus compound diets: a meta-analysis. Aquacult Int 19:1217-1228

Sampath H, Ntambi JM (2011) The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann NY Acad Sci 1243:47-53

Sarropoulou E, Kotoulas G, Power DM, Geisler R (2005) Gene expression profiling of gilthead sea bream during early development and detection of stress-related genes by the application of cDNA microarray technology. Physiological Genomics 23:182-191

Schmidt D, Müller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561-2574

Singh AM, Li F-Q, Hamazaki T, Kasahara H, Takemaru K-H, Terada N (2007) Chibby, an antagonist of the Wnt/ β -catenin Pathway, facilitates cardiomyocyte differentiation of murine embryonic stem cells. Circulation 115:617–626

Son CG, Bilke S, Davis S, Greer BT, Wei JS, Whiteford CC, Chen Q-R, Cenacchi N, Khan J (2005) Database of mRNA gene expression profiles of multiple human organs. Genome Res 15:443-50

Spurney CF, Knoblach S, Pistilli EE, Nagaraju K, Martin GR, Hoffman EP (2008) Dystrophin-deficient cardiomyopathy in mouse: Expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscular Disorders 18:371–381

Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R, Nair KS (2002) Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 283:E38-E43

Sugden MC, Kraus A, Harris RA, Holness MJ (2000) Fibre-type specific modification of the activity and regulation of skeletal muscle pyruvate dehydrogenase kinase (PDK) by prolonged starvation and refeeding is associated with targeted regulation of PDK isoenzyme 4 expression. Biochem J 346:651-657

Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci:202–213

Teleman AA, Hietakangas V, Sayadian AC, Cohen SM (2008) Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 7:21-32

Teles M, Boltaña S, Reyes-López F, Santos MA, Mackenzie S, Tort L (2013) Effects of chronic cortisol administration of GR and the liver transcriptome in *Sparus aurata*. Mar Biotechnol 15:104-114

Valente LMP, Moutou KA, Conceição LEC, Engrola S, Fernandes JMO, Johnston IA (2013) What determines growth potential and juvenile quality of farmed fish species?. Reviews in Aquaculture 5:S168-S193

Vieira FA, Gregório SF, Ferraresso S, Thorne MAS, Costa R, Milan M, Bargelloni L, Clark MS, Canario AVM, Power DM (2011) Skin healing and scale regeneration in fed and unfed sea bream *Sparus auratus*. BMC Genomics 12:490

Vieira FA, Thorne MAS, Stueber K, Darias M, Reinhardt R, Clark MS, Gisbert E, Power DM (2013) Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen Comp Endocrinol 191:45-58

Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3:research0048

Yúfera M, Halm S, Beltrán S, Fusté B, Planas JV, Martínez-Rodríguez G (2012) Transcriptomic characterization of the larval stage in gilthead sea bream (*Sparus aurata*) by 454 pyrosequencing. Mar Biotechnol 14:423-435

Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28

Zheng-Bradley X, Rung J, Parkinson H, Brazma A (2010) Large scale comparison of global gene expression patterns in human and mouse. Genome Biol 11:R124

Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar dependent response. EMBO J 21:6162-6173

Table 1. Primers used for real-time qPCR.

GenBank/Probe Name	Description	Primer sequence (5´-3´)	Amplicon size (bp)	
CUST 16662 DI410295025	Malanin 1	(F) ACGAGGACGAAGAGATGGTGACG	170	
CUST_16662_PI419285025	Makorin-I	(R) GAGTGTTAGTTGGTGGGGCTGCT	170	
CUET 7001 DI410285025	Samin h1 maaanaa	(F) CCGTGTCTCTGCCCAAAGTCA	182	
CUST_7901_PI419285025	Serpin h1 precursor	(R) TCCGTCAGTGTCCCATTCCAT	182	
CUST_6095_PI419285025	Delta-9-desaturase 1	(F) GCTGTGTGTGTTTTGCCGTGTGTAA	246	
0031_0093_F1419283023	Dena-9-uesaturase 1	(R) CTCTTGGCACTGCGATGTATTCA	240	
AM967776	Skeletal muscle sodium channel	(F) TCTGCTCATCCTGGCTTGGTTTT	226	
AMJOTTO	alpha subunit-like	(R) CACCAGCAGCACATCAAACAGG	220	
AM975569	Neural cell adhesion molecule	(F) GGTGCGTTGGTGATTGAGGAG	171	
AM975509	isoform 3	(R) TTTGAGGGAGAAGAGGACTGAGGA	1/1	
AM979502	Membrane-type matrix	(F) GCCTGCCTCGTGGTTACTGA	98	
111177502	metalloproteinase	(R) CACAAACACTTACCGCTGACACA	90	
CUST_15171_PI419285025	Annexin a?a	(F) GTAAGAAATCAGTCGTCAGCGTCC	107	
0001_13171_1417203023	Annexin aza	(R) GCAAAAGAAAAAGTCGGATGAGC	107	
CUST 13470 PI419285025	Pyruvate dehydrogenase isoenzyme 2	(F) TGTGTGAGTAGGAGTGGACGGAAA	105	
0001_131/0_1111203023	r yruvate denyarogenase isoenzynie z	(R) TTTCATCGTCGCAGGCTTCA		
AM957114	Novel protein similar to vertebrate	(F) GGTGGAAATAACATCAGGAAGGGA	GGAAGGGA 223	
	myelin expression factor 2 (MYEF2) (R) CATTCAGCCGATAGCCGTTCA	223		
AM969068	Androgen receptor	(F) TGACCAATGAGCCAATGTAGCA	217	
111303000	8	(R) CAAACCGCCCAACTTACTCAAA		
AM978198	(F) GTTCCTTGGCATTTTGATGTGT Adiponectin receptor protein 1	(F) GTTCCTTGGCATTTTGATGTGTTG	233	
1111/01/0		(R) TACATTGTGCGTAGCCCAGGA		
X89920	Beta actin	(F) TCCTGCGGAATCCATGAGA	51	
107720		(R) GACGTCGCACTTCATGATGCT	51	

Tissue	Description	Microarray	qPCR
WM	Makorin-1	3.25	1.88
WM	Serpin h1 precursor	-2.38	-2.63
WM	Delta-9-desaturase 1	-6.26	-16.67
RM	Skeletal muscle sodium channel alpha subunit-like	2.22	2.53
RM	Neural cell adhesion molecule isoform 3	1.84	1.74
RM	Membrane-type matrix metalloproteinase	-1.64	-1.75
RM	Annexin a2a	-2.93	-5.26
Heart	Pyruvate dehydrogenase isoenzyme 2	23.60	2.24
Heart	Novel protein similar to vertebrate myelin expression factor 2 (MYEF2)	2.63	1.48
Heart	Androgen receptor	2.21	2.75
Heart	Adiponectin receptor protein 1	-1.76	-2.04

Table 2. Comparison between microarray results and qPCR validation with the indicated tissues and target genes. Data from microarray and qPCR are expressed in fold-change values.

Figure Legends

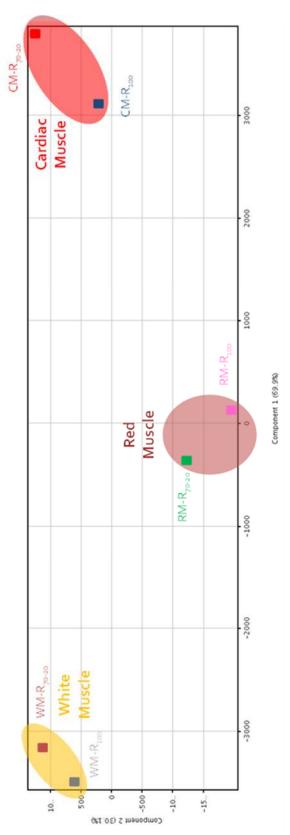

Figure 1. Principal components analysis of white skeletal muscle, red muscle and heart transcriptome after feed restriction.

Figure 2. K-means cluster analysis of differentially expressed genes in (A) skeletal white muscle, (B) skeletal red muscle, and (C) cardiac muscle. In each cluster, the tissue with the lowest expression was used as a reference (value 1.0) for fold-change calculations. Down-regulated genes with restricted feeding are represented by green bars, whereas red bars represent up-regulated genes.

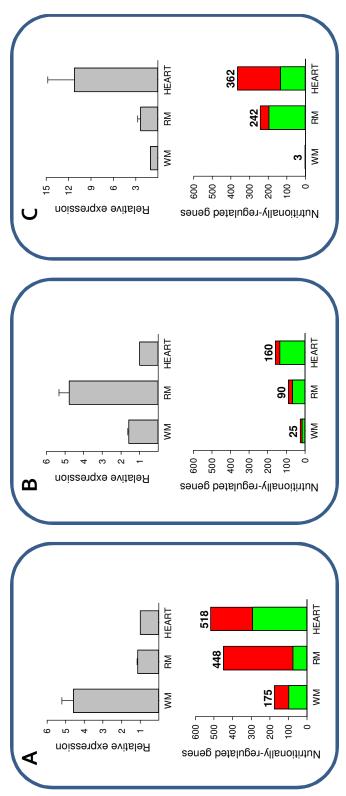
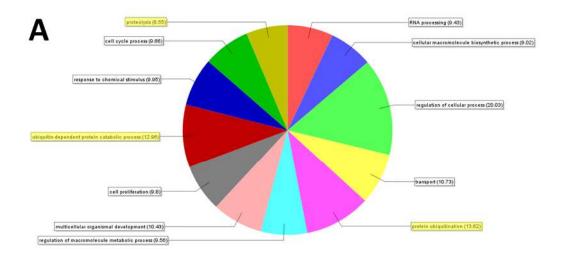
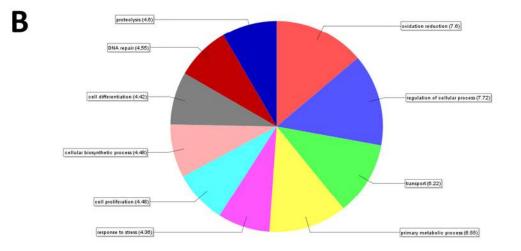

Figure 3. Distribution of GO term profiles (biological process, multilevel) of differentially expressed genes. (A) WM-like cluster genes differentially expressed in white muscle, (B) RM-like cluster genes differentially expressed in red muscle, (C) Heart-like cluster genes differentially expressed in heart. Significantly enriched GO terms (Fisher's test, p) are highlighted in yellow.

Figure 4. Output of Fish and Chips meta-analysis. (A) First round of cluster metaanalysis, mitochondria-related GO terms are highlighted. (B) Second round of cluster meta-analysis, mitochondria-related GO terms are highlighted.





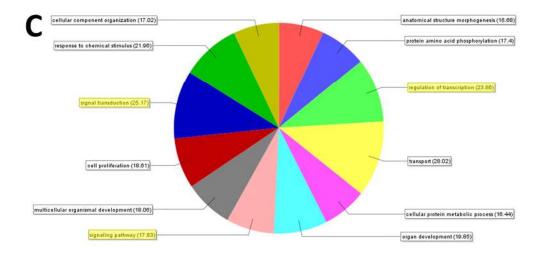


Figure 3

Figure 4

2001 	GO term	
A White muscle cluster 17 (224 genes)	proteolysis involved in cellular protein catabolic process	
	negative regulation of ubiquitin-protein ligase activity	
	positive regulation of ubiquitin-protein ligase activity	
	regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle	
	regulation of ubiquitin-protein ligase activity	
	mitochondrial membrane	
ofile comparison among dataset clusters	ATP synthesis coupled electron transport	
	GO term	
	cellular respiration	
Cardiac muscle cluster 17 (501 genes)	cytoplasmic part	
61 overlapping genes	mitochondrial part	
	mitochondrial translation	
	organelle envelope	
	GO term	
Delever le la terre (n. Denev)	respiratory chain	
Red muscle cluster 40 (398 genes)	oxidation-reduction process	
52 overlapping genes	cellular respiration	
	mitochondrial membrane part	
	cytoplasmic part	

R	GO term
D	cellular respiration
	cytoplasmic part
Cardiac muscle cluster 17 (501 genes)	mitochondrial part
	mitochondrial translation
	organelle envelope
ofile comparison among dataset clusters	
	GO term
	spindle assembly checkpoint
	organelle fission
Early development cluster 4 (1464 genes)	intracellular membrane-bounded organelle
146 overlapping genes	membrane-bounded organelle
-te statishkuig genes	mitotic cell cycle spindle assembly checkpoint
	GO term
Liver – Cortisol administration	cytosolic part
	cytoplasmic part
cluster 40 (139 genes) 41 overlapping genes	intracellular membrane-bounded organelle
	membrane-bounded organelle
41 overlapping genes	mitochondrion

Supplementary data

Supplemental table A1. Datasets included in the bioinformatic meta-analysis tool Fish and Chips.

Supplemental table A2. Genes differentially expressed by restricted ration size in white skeletal muscle. Genes sharing the enriched GO terms "protein ubiquitination", "proteolysis" or "ubiquitin-dependent protein catabolic process" are highlighted in bold.

Supplemental table A3. Genes differentially expressed by restricted ration size in red skeletal muscle.

Supplemental table A4. Genes differentially expressed by restricted ration size in cardiac muscle. Genes sharing the enriched GO terms "regulation of transcription", "signal transduction" or "signaling pathway" are highlighted in bold.

Supplemental table A5. Overlapping annotated genes between clusters in the first and second round of cluster comparison.

Supplemental table A1.

Dataset accession	Dataset description	Species
GSE3667-GPL1319	1, 3, or 5 Day Post Amputation Vehicle or TCDD Exposed	Danio rerio
GSE10766-GPL1319	1Day Post Amputation Vehicle or Beclomethasone Exposed	Danio rerio
GSE10184-GPL1319	2 or 3 Day Post Amputation Vehicle or TCDD Exposed	Danio rerio
GSE24616-GPL6457	A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns	Sparus aurata
GSE15410-GPL2878	AB* zebrafish embryos exposed to 1 ng/mL TCDD from 1d to 5d post-fertilization.	Danio rerio
GSE22462-GPL10169	Acclimation Effects on Acute Thermal Stress in the goby, Gillichthys mirabilis	Gillichthys mirabilis
GSE11893-GPL1319	AHR Activation by TCDD Downregulates Sox9b Expression Producing Jaw Malformation in Zebrafish Embryos	Danio rerio
GSE10157-GPL2878	Altered gene expression in zebrafish embryos exposed to tert-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p- dioxin	Danio rerio
GSE17756-GPL9074	An integrated study to the effects of thermal acclimation in zebrafish	Danio rerio
GSE19041-GPL9663	Analysis of gene expression profiles on 38 days-old sea bass heads	Dicentrarchus labrax
GSE7018-GPL4860	Androgen treatment in female rainbow trout leads to a marked dysregulation of gonadal gene expression profiles	Oncorhynchus mykiss
GSE25328-GPL10679	Anti-in?ammatory e?ects of tetradecylthioacetic acid (TTA) in macrophage-like cells from Atlantic salmon (Salmo salar L.)	Salmo salar
GSE25328-GPL10705	Anti-in?ammatory e?ects of tetradecylthioacetic acid (TTA) in macrophage-like cells from Atlantic salmon (Salmo salar L.)	Salmo salar
E-MTAB-494-A-AFFY-38	Aplexone Targets the HMG-CoA Reductase Pathway and Differentially Regulates Arteriovenous Angiogenesis	Danio rerio
GSE18219-GPL8467	Aquafirst_seabream_pathogen exposure_head kidney	Sparus aurata
E-TABM-1178-A-MEXP-2053	AQUAMAX cod	Gadus morhua
AQUAEXCEL-12	Aquamax foie Dataset	Oncorhynchus mykiss
E-TABM-1156-A-MEXP-2058	Atlantic Cod Early Development	Gadus morhua
GSE3857-GPL2716	Atlantic Salmon Amoebic Gill Disease Study	Salmo salar
GSE1031-GPL966	Atlantic Salmon Head Kidney Study	Salmo salar
E-TABM-1213-GPL2716	Atlantic salmon liver transcriptome response to exposure to three human pharmaceuticals	Salmo salar
GSE1012-GPL966	Atlantic Salmon Macrophage Study	Salmo salar
GSE18830-GPL1319	B1 sox (sox2/3/19a/19b) quadruple knockdown in the zebrafish embryo	Danio rerio
GSE9357-GPL4603	biosensor-series	Danio rerio
GSE6745-GPL3713	Brain transcriptomics in response to beta-naphthoflavone treatment in rainbow trout: The role of AhR signaling.	Oncorhynchus mykiss
GSE17113-GPL7301	Cadmium and temperature probe selection and validation experiment for custom array production	Danio rerio
GSE17082-GPL7301	Cadmium probe selection experiment for custom array production	Danio rerio
GSE17085-GPL7301	Cadmium validation experiment for custom array production	Danio rerio
GSE5091-GPL2899	Cell line stimulated with recombinant cytokines interleukin-1b and interferon gamma.	Oncorhynchus mykiss
AQUAEXCEL-13	Chaains foie muscle Dataset	Oncorhynchus mykiss

GSE18120-GPL6154	Challenge of vaccinated and unvaccinated salmon with Aeromonas salmonicida	Salmo salar
GSE10188-GPL1319	Comparative genomic analysis between adult and larval fin regeneration	Danio rerio
GSE9020-GPL1319	Comparative Genomics Identifies Gene Targets for Retinoic Acid in the Embryonic Zebrafish Hearts	Danio rerio
E-MTAB-406-A-AFFY-38	Comparative transcription profiling of mouse, chicken and zebrafish in the presomitic mesoderms to identify cyclic genes of the segmentation clock	Danio rerio
GSE36860-GPL10705	Comparison of Atlantic salmon individuals with different outcomes of cardiomyopathy syndrome (CMS)	Salmo salar
GSE36860-GPL10706	Comparison of Atlantic salmon individuals with different outcomes of cardiomyopathy syndrome (CMS)	Salmo salar
GSE21539-GPL1319	Comparison of expression data between control and Ovo1 morphant zebrafish embryos	Danio rerio
GSE16721-GPL8731	Comparison of gene expression in the salmon parr precocious and non-precocious testis	Salmo salar
GSE19001-GPL9663	Comparison of gene expression profile between 58 days-old prognatous sea bass jaws and control ones	Dicentrarchus labrax
GSE18915-GPL6467	Comparison of gene expression profile of gilthead seabream mineralization-induced VSa13 cells against controls	Sparus aurata
GSE18941-GPL6467	Comparison of gene expression profile of gilthead seabream mineralization-induced VSa16 cells against controls	Sparus aurata
GSE27067-GPL7301	Comparison of genomic, morphological, and behavioral responses among fathead minnow (Pimephales promelas) and zebrafish (Danio rerio) to acute RDX exposure	Danio rerio
GSE16860-GPL8704	Comparison of precocious and non-precocious salmon	Salmo salar
GSE16860-GPL8731	Comparison of precocious and non-precocious salmon	Salmo salar
GSE16720-GPL8704	Comparison of precocious and non-precocious salmon brain	Salmo salar
GSE22221-GPL6563	Comparison of retinal gene expression in wild-type and XOPS-mCFP (rod degeneration) transgenic zebrafish	Danio rerio
GSE11493-GPL1319	Comparison of transcripts in zebrafish tumors	Danio rerio
AQUAEXCEL-2	Confinement stress Dataset	Oncorhynchus mykis
GSE25584-GPL11206	Confinement stress in HR and LR trout lines	Oncorhynchus mykis
GSE19170-GPL2716	Conservation genomics of Atlantic salmon	Salmo salar
GSE19111-GPL2716	Conservation genomics of Atlantic salmon (Year One)	Salmo salar
GSE19119-GPL2716	Conservation genomics of Atlantic salmon (Year Two)	Salmo salar
GSE20460-GPL7302	Danio spinal cord injury	Danio rerio
GSE20707-GPL1319	Detection of the up-regulated and down-regulated genes in stac mutant of zebrafish by cDNA microarray	Danio rerio
GSE23053-GPL10704	Diclofenac affects global hepatic gene expression in fish at plasma concentrations similar to human therapeutic levels	Oncorhynchus myki
AQUAEXCEL-4	Diet adipose Dataset	Sparus aurata
AQUAEXCEL-5	Diet liver Dataset	Sparus aurata
GSE34578-GPL10706	Dietary soyasaponin supplementation to pea protein concentrate reveals nutrigenomic interactions underlying enteropathy in Atlantic salmon	Salmo salar
GSE8309-GPL2716	Differences found in expression of cell surface & ECM components during development of the rainbow trout ovary & testis.	Oncorhynchus myki

	Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two	Contraction Internation
GSE30555-GPL13225	environments	Salmo salar
GSE2069-GPL1743	Differential expression under hypoxia in zebrafish	Danio rerio
GSE17854-GPL9117	Differential gene expression in Danio rerio during optic nerve regeneration	Danio rerio
GSE12516-GPL7194	Differentially expressed genes in zebrafish vascular development	Danio rerio
GSE8631-GPL2899	Discovery of genes associated with whirling disease infection and resistance in rainbow trout using expression profiling	Oncorhynchus myki
GSE37628-GPL15475	Does ketoprofen or diclofenac pose the lowest risk to fish?	Oncorhynchus myki
GSE16903-GPL2716	Domestication causes large-scale effects on gene expression in rainbow trout	Oncorhynchus myki
GSE16889-GPL2716	Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the brain transcriptome	Oncorhynchus myki
GSE16897-GPL2716	Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the liver transcriptome	Oncorhynchus myk
GSE16901-GPL2716	Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the muscle transcriptome	Oncorhynchus myk
GSE21914-GPL10429	Dynamic transcriptomic profiles of zebrafish gills in response to zinc	Danio rerio
GSE21894-GPL10429	Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion	Danio rerio
GSE21907-GPL10429	Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation.	Danio rerio
GSE1887-GPL1516	early developmental stages of sea bream	Sparus aurata
GSE10981-GPL6154	Effect of dietary immunostimulation in gills and intestine of rainbow trout	Oncorhynchus myk
GSE11949-GPL6154	Effect of dietary immunostimulation in head kidney and spleen of rainbow trout	Oncorhynchus myk
GSE12961-GPL6154	Effect of dietary immunostimulation in the portals of entry of rainbow trout after LPS challenge	Oncorhynchus myk
GSE33715-GPL2716	Effect of nonylphenol on gene expression in Atlantic salmon liver, gill, hypothalamus, pituitary, and olfactory rosettes	Salmo salar
GSE6944-GPL3976	Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss).	Oncorhynchus myk
GSE11107-GPL1319	Effect of starvation on the transcriptomes of the brain and liver in adult female zebrafish (Danio rerio)	Danio rerio
GSE23157-GPL6457	Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio	Danio rerio
GSE15216-GPL6563	Effects of haloperidol on zebrafish and fathead minnow gene expression	Danio rerio
GSE7853-GPL5182	Effects of hypothermia on gene expression in zebrafish gills	Danio rerio
GSE23156-GPL6457	Effects of PKC412 on gene expression and link to physiological effects in zebrafish Danio rerio eleuthero-embryos	Danio rerio
GSE14718-GPL1319	Effects of the Aromatase Inhibitor Fadrozole on Gene Expression in the Zebrafish Telencephalon	Danio rerio
	Effects of the total replacement of fish meal and fish oil with plant protein and oil sources on the hepatic transcriptome	
GSE27649-GPL9663	of two European sea bass (Dicentrarchus labrax) sub-families exhibiting different growth potentials on an all plant-based diet	Dicentrorchus labr
GSE5928-GPL3650	Egg quality after natural and controlled ovulation	Oncorhynchus myk

GSE38763-GPL6154	Estrogen modulates hepatic gene expression and survival of rainbow trout infected with pathogenic bacteria Yersinia ruckeri.	Oncorhynchus mykiss
	Exercise training effects on disease resistance are dependent on training regimes and inherent swimming performance in	
GSE38603-GPL15678	Atlantic salmon	Salmo salar
GSE17655-GPL7302	Experiment 1: Developmental time curve in wild-type and MZspg embryos	Danio rerio
GSE17659-GPL7302	Experiment 2: Pou5f1 and Sox2 overexpression experiments with or without protein synthesis inhibition	Danio rerio
GSE17656-GPL7302	Experiment 3: Comparison of MZspg and Mspg transcriptomes	Danio rerio
GSE17657-GPL1319	Experiment 4: Affymetrix validation array	Danio rerio
GSE24527-GPL1319	Expression analysis of 24hpf zebrafish embryos treated with Leflunomide 6.5uM	Danio rerio
GSE26372-GPL10392	Expression analysis of melanoma harvested after GFP or SETDB1 expression	Danio rerio
GSE21505-GPL10392	Expression analysis of melanoma harvested from GFP versus SETDB1 transgenic zebrafish (Danio rerio)	Danio rerio
GSE24529-GPL1319	Expression analysis of transgenic embryos carrying the mitf-BRAFV600E allele in the presence or absence of p53 function	Danio rerio
GSE28131-GPL13318	Expression Analysis of Trimethyltin Chlorides (TMT) Impact on Embryonic Development	Danio rerio
GSE24528-GPL1319	Expression analysis of zebrafish melanoma and skin from the mitf-BRAFV600E;p53-/- line	Danio rerio
GSE19955-GPL1319	Expression data comparing wild-type and spt mutant zebrafish tissues at two developmental time points.	Danio rerio
GSE5586-GPL1319	Expression data from egy wildtype and mutant embryo comparison	Danio rerio
GSE8800-GPL1319	Expression data from embryos injected with DrC1q-like morpholino and control morpholino	Danio rerio
GSE27569-GPL1319	Expression data from zebrafish depleted of Esco2	Danio rerio
GSE18795-GPL1319	Expression data from zebrafish embryos homozygous mutant for the cohesin subunit Rad21	Danio rerio
GSE13196-GPL1319	Expression data from zebrafish pineal gland	Danio rerio
GSE12116-GPL6467	Expression profiles in two early developmental stages of Sparus aurata	Sparus aurata
GSE16029-GPL3650	Expression profiling of rainbow trout testicular development and spermatogenesis	Oncorhynchus mykis
GSE13482-GPL7556	Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation	Danio rerio
GSE12189-GPL1319	FACS-Assisted Microarray Profiling Implicates Novel Genes and Pathways in Zebrafish Gastrointestinal Tract Development	Danio rerio
GSE8874-GPL1319	Factorial Microarray Analysis of Zebrafish Retinal Development	Danio rerio
GSE13348-GPL1319	Foggy mutant: brain (Guo-1R01NS042626-01A2)	Danio rerio
GSE31871-GPL14375	Gender specific comparisons of gene expression during Zebrafish pectoral fin regeneration	Danio rerio
GSE8724-GPL1319	Gene expression analysis in the zebrafish embryos silenced by zfPGRP-SC	Danio rerio
GSE18566-GPL6563	Gene expression analysis of diet induced obesity model zebrafish	Danio rerio
GSE17773-GPL6457	Gene expression analysis of zebrafish embryos depleted of arrb1 and/or arrb2 at 12 hpf	Danio rerio
GSE28812-GPL13443	Gene expression based on an oligonucleotide microarray for Dicentrarchus labrax	Dicentrarchus labrax
GSE22662-GPL2878	Gene expression changes in the female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury	Danio rerio
GSE11700-GPL5573	Gene expression during hyper and hypoosmotic stress adaptation in Gillichthys mirabilis	Gillichthys mirabilis
GSE5813-GPL2096	Gene expression during tumor enhancement by 3,3'-diindolylmethane in rainbow trout	Oncorhynchus mykis:

GSE5643-GPL2096	Gene expression during tumor enhancement by 3.3'-diindolylmethane in rainbow trout; HCC tumor samples	Oncorhynchus mykis
GSE5644-GPL2096	Gene expression during tumor enhancement by 3,3'-diindolylmethane in rainbow trout: Timecourse	Oncorhynchus mykis
	Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis,	
GSE36072-GPL10706	cortisol implant, and their combination	Salmo salar
GSE1995-GPL1319	Gene expression in foggy mutant. Guo-1R01NS042626-01A2	Danio rerio
GSE6142-GPL4481	Gene expression in homozygous mbl/axin1 zebrafish	Danio rerio
GSE18389-GPL6154	Gene expression in the Atlantic salmon adipose-derived stromal-vascular fraction during differentiation into adipocytes	Salmo salar
GSE2686-GPL2096	Gene expression in trout hepatocellular carcinoma	Oncorhynchus mykis
GSE20137-GPL9998	Gene expression in unfertilized eggs and the MBT stage of zebrafish embryos	Danio rerio
GSE7658-GPL1319	Gene Expression Profile of Hematopoietic Stem Cells during Zebrafish Development	Danio rerio
GSE12955-GPL1319	Gene expression profile of zebrafish kidney side population (SP) cells	Danio rerio
GSE19049-GPL6563	Gene expression profiles after infection of zebrafish with viral haemorrhagic septicemia rhabdovirus (VHSV)	Danio rerio
GSE12140-GPL1319	Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses	Danio rerio
GSE3303-GPL1319	Gene Expression Profiles of Intact and Regenerating Zebrafish Retina	Danio rerio
GSE3522-GPL2899	Gene Expression Profiling Following DNA Vaccination of Rainbow Trout against Infectious Hematopoietic Necrosis Virus	Oncorhynchus mykis
GSE6228-GPL4518	Gene expression profiling in zebrafish embryos exposed to 3,4-dichloroaniline (3,4-DCA)	Danio rerio
GSE36475-GPL10679	Gene expression profiling of soft and firm Atlantic salmon fillet	Salmo salar
GSE5048-GPL1319	Gene Expression Profiling of Zebrafish Embryonic Retinal Pigment Epithelium in vivo.	Danio rerio
GSE19298-GPL1319	Gene expression timecourse in zebrafish whole eye in response to optic nerve crush	Danio rerio
GSE14495-GPL1319	Gene profiling of Müller glia during early stages of zebrafish photoreceptor regeneration	Danio rerio
GSE26609-GPL7302	Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm	Danio rerio
GSE19630-GPL8904	Genetic markers of the immune response of Atlantic salmon (Salmo salar) to Infectious Salmon Anemia Virus (ISAV)	Salmo salar
E-TABM-1089-A-MEXP-1930	Genotype-specific responses in hepatic lipid metabolism to complete dietary fish oil replacement by vegetable oil in Atlantic salmon	Salmo salar
E-TABM-1173-A-MEXP-1930	Genotype-specific responses in intestinal lipid metabolism to complete dietary fish oil replacement by vegetable oil in Atlantic salmon	Salmo salar
AQUAEXCEL-3	Gill cells culture Dataset	Oncorhynchus mykis
AQUAEXCEL-11	Gill salinity Dataset	Oncorhynchus mykis
GSE12909-GPL7338	Global Expression Analysis of Vasculogenesis Induction by Zebrafish Ets1-Related Protein	Danio rerio
G5E9595-GPL2716	Global gene expresssion profiling the gills of amoebic gill disease (AGD) affected Atlantic salmon (Salmo salar)	Salmo salar
GSE37574-GPL15475	Global hepatic gene expression in rainbow trout exposed to sewage effluents	Oncorhynchus mykis

AQUAEXCEL-8	Heart Dataset	Sparus aurata
GSE9870-GPL5573	Heat stress response in Gillichthys mirabilis	Gillichthys mirabilis
GSE19483-GPL2716	Hepatic Gene Expression in Rainbow Trout (Oncorhynchus mykiss) Exposed to Different Hydrocarbon Mixtures	Oncorhynchus mykiss
GSE7671-GPL3713	Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout.	Oncorhynchus mykis
E-TABM-1204-A-MEXP-2065	Hepatic transcriptomic analysis of inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic salmon	Salmo salar
GSE8826-GPL2716	High gene expression of inflammatory markers and IL-17A in Atlantic salmon vaccinated with oil-adjuvanted vaccines	Salmo salar
GSE10951-GPL6563	Hypoxia alters gene expression in the gonads of zebrafish	Danio rerio
GSE24840-GPL11077	Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish	Danio rerio
GSE33257-GPL10770	Identification of a responsive gene set to evaluate the potential impact of seismic exposure on Atlantic salmon (Salmo salar) inner ear	Salmo salar
GSE8226-GPL5478	Identification of a transcriptional fingerprint of estrogen exposure in rainbow trout liver	Oncorhynchus mykis:
GSE16030-GPL3650	Identification of androgen-responsive genes in fish testis	Oncorhynchus mykis:
GSE8076-GPL4609	Identification of differentially-expressed genes between FoxH1 morpholino and control in zebrafish embryos.	Danio rerio
GSE12857-GPL7343	Identification of direct T-box target genes in the developing zebrafish mesoderm	Danio rerio
GSE5199-GPL3721	Identification of downstream targets of zebrafish Hoxb1a	Danio rerio
GSE30632-GPL13908	Identification of Hoxb1b regulated genes in zebrafish embryos	Danio rerio
GSE8654-GPL4609	Identification of mesendoderm precursor- and neurectoderm precursor-enriched genes in Zebrafish embryos	Danio rerio
GSE25042-GPL11151	Identification of novel genes associated with molecular sex differentiation in the embryonic gonads of rainbow trout (Oncorhynchus mykiss)	Oncorhynchus mykis
GSE6853-GPL4375	Identification of sexually dimorphic gene expression in the brain of adult zebrafish (Danio rerio)	Danio rerio
GSE13068-GPL1319	Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebrafish	Danio rerio
GSE25440-GPL11206	Individual variation in confinement response at 168h	Oncorhynchus mykis
GSE9260-GPL3721	Inflammation and degeneration of the olfactory epithelium in an immuno-deficient zebrafish	Danio rerio
GSE10272-GPL6155	Inflammatory response of trout head kidney to in vivo challenge with IHN virus and LPS	Oncorhynchus mykis
GSE17949-GPL1319	Integrated cell-to-cell signaling networks regulate vertebrate axis formation and left-right asymmetry	Danio rerio
AQUAEXCEL-6	Intestine Dataset	Sparus aurata
GSE12991-GPL1319	Isolation of single miRNA-expressing cells from zebrafish embryos	Danio rerio
GSE23613-GPL3713	Juvenile rainbow trout exposed in situ at site receiving different concentrations of municipal wastewater effluent (MWWE) and an upstream reference site	Oncorhynchus mykis
GSE17711-GPL1319	Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt- deficient zebrafish	Danio rerio

GSE2151-GPL1793	Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow-trout	Oncorhynchus mykis
E-MEXP-2415-A-MEXP-1717	LgI2 executes its function as a tumor suppressor by regulating ErbB signaling in the zebrafish epidermis	Danio rerio
GSE12031-GPL3650	Livers from lean or fat muscle lines fed low or high lipid diets	Oncorhynchus mykis
GSE2264-GPL1212	M74 disorder in Baltic salmon	Salmo salar
GSE13197-GPL6154	Macrophages stimulated with LPS and Poly (I:C)	Oncorhynchus mykis
GSE19206-GPL7735	Macrophage-specific gene functions in Spi1-directed innate immunity	Danio rerio
GSE23872-GPL10816	Mapping of H3K4 and H3K27 trimethylation in zebrafish cells	Danio rerio
GSE23679-GPL10816	Mapping of H3K4 and H3K27 trimethylation in zebrafish cells (Gene expression)	Danio rerio
GSE7837-GPL2096	Mechanism for hepatic tumor promotion by PFOA in rainbow trout	Oncorhynchus mykis
GSE18861-GPL2715	Mercury-Induced Hepatotoxicity in Zebrafish	Danio rerio
GSE7220-GPL3548	Microarray analysis in the zebrafish liver and telencephalon after exposure to low concentration of 17a-EE2	Danio rerio
GSE28310-GPL6260	Microarray analysis of differential utilization of plant based diets by rainbow trout	Oncorhynchus mykis
GSE30782-GPL13442	Microarray analysis of transcripts in the liver of gilthead sea bream with high plasma cortisol levels induced by slow- release cortisol implants	Sparus aurata
GSE4787-GPL2899	Microarray gene expression analysis in atrophying rainbow trout muscle: An unique non-mammalian muscle degradation model	Oncorhynchus myki
GSE12214-GPL1319	Microcystin Genomic Effects on Zebrafish Larvae	Danio rerio
GSE6063-GPL4375	Molecular basis of gender and reproductive status in breeding zebrafish	Danio rerio
GSE3519-GPL2715	Molecular Conservation of Zebrafish and Human Liver Tumors.	Danio rerio
GSE25617-GPL4021	Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish	Danio rerio
GSE4859-GPL1319	Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary	Danio rerio
GSE20884-GPL10182	Morphological and molecular evidence that the zebrafish intestine is organized into a small and large intestine	Danio rerio
AQUAEXCEL-7	Muscle Dataset	Sparus aurata
GSE14782-GPL7735	Mycobacterium marinum chronic infection of adult zebrafish	Danio rerio
GSE1894-GPL1319	nck2 vs. wt morpholino	Danio rerio
GSE19478-GPL2716	Normal and shortened photoperiods in liver, ovary, and pituitarty	Oncorhynchus myki
GSE28610-GPL13442	Oligonucleotide microarray for Sparus aurata	Sparus aurata
GSE21756-GPL5182	Over-expression of Akt1 Induces Skin Hypertrophy and Generates an Obesity Model in Zebrafish	Danio rerio
GSE8656-GPL5675	Pair wise comparison between STD-MO and kif4-MO embryos	Danio rerio
AQUAEXCEL-14	PEPPA Dataset	Oncorhynchus myki
GSE15124-GPL8254	Pharmaceutical industry effluent diluted 1:500 affects gene expression, CYP1A activity and plasma phosphate in fish	Oncorhynchus myki
AQUAEXCEL-1	PNA-PVC Dataset	Oncorhynchus myki
GSE17667-GPL1319	Pou5f1 transcription targets in zebrafish	Danio rerio
GSE17667-GPL7302	Pou5f1 transcription targets in zebrafish	Danio rerio

GSE28199-GPL1319	prdm1a mutant vs. wild type	Danio rerio
GSE4871-GPL3650	Preovulatory ovary	Oncorhynchus mykiss
GSE3475-GPL2844	Profiling of Salmo salar in two Atlantic salmon types, a wild type versus transgenic.	Salmo salar
GSE23315-GPL7301	Quantitative analysis of thyroid response in zebrafish embryos	Danio rerio
GSE29308-GPL13537	Raf/MEK signatures in zebrafish liver cells	Danio rerio
AQUAEXCEL-15	RAFOA Dataset	Oncorhynchus mykis
GSE22379-GPL6154	Rainbow trout erythrocytes stimulated with LPS and Poly(I:C)	Oncorhynchus mykiss
GSE21084-GPL2716	Rainbow trout red blood cells (RBCs): Control vs Heat shock, repeated samples from individuals	Oncorhynchus mykis:
GSE6841-GPL3650	Recovery growth	Oncorhynchus mykis
AQUAEXCEL-9	Red muscle Dataset	Sparus aurata
GSE12039-GPL1319	Regulation of endothelial gene expression by miR-126 in human and zebrafish	Danio rerio
GSE12012-GPL1319	Regulation of zebrafish endothelial gene expression by miR-126	Danio rerio
GSE1376-GPL1212	Response to stress in brain and kidney	Oncorhynchus mykis
GSE27013-GPL10705	Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in Atlantic salmon	Salmo salar
GSE27013-GPL10706	Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in Atlantic salmon	Salmo salar
GSE26981-GPL10705	Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in skin of Atlantic salmon	Salmo salar
GSE26984-GPL10706	Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in spleen of Atlantic salmon	Salmo salar
GSE8522-GPL2715	RNA from 3 d and 2 d old embryos of mibta52b, mibm132 and mibtfi91, and RNA from 3 d, 2d and 1 d old embryos of mibta52b	Danio rerio
AQUAEXCEL-16	Salinity Dataset 1	Oncorhynchus mykis
AQUAEXCEL-17	Salinity Dataset 2	Oncorhynchus mykis
AQUAEXCEL-18	Salinity Dataset 3	Oncorhynchus mykis
AQUAEXCEL-16-17	Salinity Datasets 1-2	Oncorhynchus mykis
GSE8526-GPL2844	Salmon Macrophage early response to Aeromonas salmonicida	Salmo salar
GSE13994-GPL7735	Salmonella typhimurium infection of zebrafish embryo	Danio rerio
GSE6924-GPL2899	Salmonid host response to Hematopoietic Necrosis virus: cellular receptors, viral control and novel pathways of defence	Salmo salar
GSE6924-GPL3976	Salmonid host response to Hematopoletic Necrosis virus: cellular receptors, viral control and novel pathways of defence	Salmo salar
GSE19646-GPL10126	SEA BREAM PATH_INTEST	Sparus aurata
GSE16633-GPL8467	SEA BREAM_CONFINEMENT	Sparus aurata
GSE14979-GPL1319	Sex- and gonad-biased gene expression in zebrafish	Danio rerio
GSE8856-GPL1319	Sexual dimorphism in the zebrafish hepatic transcriptome and response to dietary carbohydrate	Danio rerio
GSE8285-GPL3976	Short-term growth hormone treatment on the liver and muscle transcriptome in rainbow trout (Oncorhynchus mykiss)	Oncorhynchus mykis
GSE30717-GPL13926	Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratus	Sparus aurata
GSE14861-GPL6563	Small fish comp tox ZF haloperidol 96 h ovary	Danio rerio
GSE15796-GPL1319	Spatiotemporal Analysis of Transcriptome in the paraxial mesoderm of zebrafish embryos	Danio rerio

GSE15328-GPL7735	Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection	Danio rerio
GSE21077-GPL5182	Stage-specific expression of TNFa regulates bad/bid-mediated apoptosis and RIP1/ROS-mediated secondary necrosis in Birnavirus-infected fish cells	Danio rerio
GSE20849-GPL10169	Steady State Thermal Acclimation in the Eurythermal Goby fish, Gillichthys mirabilis	Gillichthys mirabilis
GSE2064-GPL1516	steady state infernal Acclimation in the convinential Gooy Isin, Gillichthys Initiabilis	Sparus aurata
GSE2004-GPL1510	Swimming down-regulates ovarian transcriptomic response of rainbow trout Oncorhynchus mykiss	Oncorhynchus mykis
GSE12118-GPL6467	Technical replicates to determine array-to-array reproducibility.	Sparus aurata
GSE2277-GPL1212	Temperature acclimation in rainbow trout heart	Oncorhynchus mykis
GSE17083-GPL7301	Temperature probe selection experiment for custom array production	Danio rerio
GSE17085-GPL7301 GSE17086-GPL7301	Temperature validation experiment for custom array production	Danio rerio
	Temperature validation experiment for custom array production Temporal patterns in the transcriptomic response of rainbow trout, Oncorhynchus mykiss, to crude oil	Oncorhynchus mykis
GSE19489-GPL2716 GSE25305-GPL10679	Tetradecylthioacetic acid effect on heart ventricle	Salmo salar
		The second s
GSE25305-GPL10705	Tetradecylthioacetic acid effect on heart ventricle	Salmo salar
GSE13999-GPL1319	The cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration	Danio rerio
GSE16740-GPL1319	The effect of cardiac troponin T2 knockdown on gene expression in zebrafish embryos	Danio rerio
GSE4790-GPL2899	The effects of chronic immune stimulation on muscle growth in rainbow trout	Oncorhynchus myki
GSE6127-GPL1319	The expression of Spt5 targeted genes	Danio rerio
GSE8428-GPL1319	The expression profiles of control embryos and pbx2-MO;pbx4-MO embryos at 10 somites and at 18 somites.	Danio rerio
GSE21134-GPL2878	The gene profile of zebrafish guanine binding protein-like 2 (GnI2) mutant embryos versus wild-type embryos at 22 hours post-fertilization	Danio rerio
GSE27299-GPL10532	The impact of chronic temperature elevation on the spleen anti-viral transcriptomic response in Atlantic cod (Gadus morhua)	Gadus morhua
GSE24934-GPL6457	The knockdown of the maternal estrogen receptor-B2 mRNA (ers2a) affects embryo transcript contents and larval development in zebrafish	Danio rerio
GSE13771-GPL1319	The role of ERbeta2 in zebrafish neuromasts development	Danio rerio
GSE13157-GPL1319	The role of ERbeta2 in zebrafish neuromasts development 15uM	Danio rerio
GSE13158-GPL1319	The role of ERbeta2 in zebrafish neuromasts development 50uM	Danio rerio
GSE22312-GPL10532	The study of Atlantic cod (Gadus morhua) spleen global gene expression response to intraperitoneal injection with formalin-killed atypical Aeromonas salmonicida.	Gadus morhua
GSE14399-GPL7801	The use of zebrafish reward mutants to search for novel transcripts mediating the behavioral effects of amphetamine	Danio rerio
GSE4585-GPL1319	The zebrafish runzel mutant results in a novel muscular dystrophy phenotype due to a titin mutation	Danio rerio
GSE25473-GPL11206	Time course study of confinement stress in HR and LR trout lines	Oncorhynchus myki
G5E6886-GPL3713	Tissue Contaminants and Associated Transcriptional Response in Trout Liver from High Elevation Lakes of Washington	Oncorhynchus myki
GSE3324-GPL966	Toxicogenomic profiling of trout tumor promoters	Oncorhynchus mykis

GSE6416-GPL2716	Toxicogenomic responses in rainbow trout hepatocytes exposed to model chemicals and a synthetic mixture	Oncorhynchus mykiss
GSE20310-GPL10042	Traf6 function in the innate immune response of zebrafish embryos	Danio rerio
GSE3048-GPL2715	Trancriptome Kinetics of Arsenic-induced Adaptive Response in Zebrafish Liver.	Danio rerio
GSE31085-GPL5478	Transcript profiles of PFAAs in trout liver	Oncorhynchus mykiss
GSE23381-GPL1319	Transcription profile of zebrafish hand2 (hanS6 allele) mutant embryos at 19hpf	Danio rerio
E-TABM-1056-A-MEXP-804	Transcription profiling by array of Atlantic salmon fed genetically modified Bt-maize or non-modified parental maize	Salmo salar
E-TABM-1000-A-MEXP-664	Transcription profiling by array of Atlantic salmon head kidney cells infected with infectious pancreatic necrosis virus	Salmo salar
E-TABM-1060-A-MEXP-1790	Transcription profiling by array of Atlantic salmon infected with salmoin alphavirus	Salmo salar
E-TABM-955-A-MEXP-1790	Transcription profiling by array of Atlantic salmon liver from fish exhibiting high and low flesh n-3LC-PUFA levels at harvest	Salmo salar
E-TABM-1065-A-MEXP-1790	Transcription profiling by array of salmon parr brain after exposure to the carbamazepine	Salmo salar
E-MEXP-818-A-AFFY-38	Transcription profiling of animal caps from Danio rerio embryos expressing GFP or vhnf1 and treated with FGF8 or BSA protein	Danio rerio
E-MEXP-1023-A-MEXP-664	Transcription profiling of Atlantic salmon cell line SHK-1 exposed to interferon type 1 and interferon gamma for 6 or 24 hours	Salmo salar
E-TABM-678-A-MEXP-804	Transcription profiling of Atlantic salmon fed with a low, medium or high histidine diet	Salmo salar
E-TABM-478-A-MEXP-664	Transcription profiling of Atlantic salmon following dietary substitution of fish oil with vegetable oils	Salmo salar
E-MEXP-1301-A-AFFY-38	Transcription profiling of brain from zebrafish treated with ethanol or nicotine suggests conservation of neuro- adaptation pathways	Danio rerio
E-MEXP-2381-A-AFFY-38	Transcription profiling of Danio rerio (zebrafish) RPL11 mutant vs siblings	Danio rerio
E-MEXP-2287-A-MEXP-1580	Transcription profiling of Danio rerio livers following chronic waterborne copper exposure	Danio rerio
E-MEXP-2288-A-AFFY-38	Transcription profiling of Danio rerio livers following exposure to combinations of copper, sodium and calcium	Danio rerio
E-TABM-552-A-MEXP-1396	Transcription profiling of dorsal epaxial fast muscle from zebra fish at developmental stages where myotubes are still actively recruited (M+ stage) and where myotube production has ceased (M- stage)	Danio rerio
E-MEXP-1163-A-AGIL-30	Transcription profiling of ERK1 and ERK2 knockdown in zebrafish embryos at blastula stage	Danio rerio
E-TABM-1040-A-MEXP-1865	Transcription profiling of Gadus morhua pituitary gland, pylorus, spleen and testis to validate the IMR Atlantic Cod 16k cDNA array	Gadus morhua
E-MEXP-1396-A-MEXP-664	Transcription profiling of gill from ameobic gill disease resistant and susceptible Atlantic salmon	Salmo salar
E-MEXP-1267-A-MEXP-664	Transcription profiling of gill, kidney and brain from Atlantic salmon at different developmental stages to identify genes involved in freshwater to salt water adaptation	Salmo salar
E-MEXP-1286-A-MEXP-664	Transcription profiling of gill, liver and kidney from amoebic gill disease infected and disease-free Atlantic salmon	Salmo salar
E-MEXP-1149-A-MEXP-804	Transcription profiling of liver from rainbow trout treated with estrogen to identify biomarkers of estrogenic compound exposure	Oncorhynchus mykis

	Transcription profiling of male zebra fish exposed to E2 and liver from non-vitellogenic and vitellogenic females to	
E-MEXP-1683-A-MEXP-1374	identify genes associated with vitellogenisis	Danio rerio
E-MEXP-1593-A-AGIL-30	Transcription profiling of rac1 knock-down zebrafish embryos	Danio rerio
E-MEXP-622-A-MEXP-309	Transcription profiling of rainbow trout liver in response to standardized handling stress	Oncorhynchus mykis
E-MEXP-946-A-MEXP-619	Transcription profiling of Salmo salar (Salmon) hepatocytes treated with DMSO (control), nonylphenol and 3,3,4,4- tetrachlorobiphenyl to identify interactions between estrogen and aryl hydrocarbon receptor signalling pathways	Salmo solar
E-MEXP-181-A-MEXP-110	Transcription profiling of sea bream during early development	Sparus aurata
E-MEXP-737-A-AFFY-38	Transcription profiling of two 24 hour old zebrafish embryos from the Tuebingen line	Danio rerio
E-MEXP-1685-A-MEXP-1048	Transcription profiling of zebra fish liver after water-borne exposure to polycyclic aromatic hydrocarbons and alkylphenols	Danio rerio
E-MEXP-775-A-MEXP-536	Transcription profiling of zebra fish squint mutant and wild type embryos following a temperature shift in development to investigate environmental and genetic modifiers of squint penetrance	Danio rerio
E-MEXP-405-A-AFFY-38	Transcription profiling of zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection	Danio rerio
	Transcription profiling of zebrafish cls/sox10 mutants at 4dpf compared to their wild type siblings at 4 day identifies	88 30 30
E-MEXP-2215-A-AFFY-38	Indc1 as a novel factor in Schwann cell development	Danio rerio
E-TABM-33-A-AFFY-38	Transcription profiling of zebrafish development	Danio rerio
E-MEXP-1879-A-MEXP-1050	Transcription profiling of zebrafish embryos injected with Ofd1 morphlino compared to wild type	Danio rerio
E-TABM-354-A-AFFY-38	Transcription profiling of zebrafish embryos with dpf3 knocked down for morpholino	Danio rerio
E-MEXP-171-A-AFFY-38	Transcription profiling of zebrafish germ layer morphogenesis	Danio rerio
E-TABM-105-A-AFFY-38	Transcription profiling of zebrafish livers following exposure to 17 alpha-ethynylestradiol (EE2) at 0, 15, 40, or 100 ng/L	Danio rerio
E-MEXP-1272-A-MEXP-838	Transcription profiling of zebrafish ovary, testis, brain, kidney and whole body to identify gonad-expressed genes and their expression in various organs	Danio rerio
E-MEXP-2365-A-MEXP-1048	Transcription profiling of zebrafish wild type and prion protein prp2-morphants injected early embryos.	Danio rerio
E-MEXP-736-A-AFFY-38	Transcription profiling of zebrafish ZF4 and PAC2 cell lines cultured in medium with or without FCS	Danio rerio
E-MEXP-1239-A-AFFY-38	Transcription profiling time series of Danio rerio heart regeneration	Danio rerio
E-MEXP-758-A-AFFY-38	Transcription profiling time series of zebrafish hearts treated with dioxin (TCDD)	Danio rerio
GSE20179-GPL6457	Transcriptional profiling of embryonic zebrafish expressing a mutant TNNT2	Danio rerio
GSE12655-GPL7244	Transcriptional profiling of rag1 deficient (rag1-/-) and rag1 heterozygous (rag1+/-) zebrafish kidney and intestine	Danio rerio
E-MEXP-3062-A-MEXP-1048	Transcriptional Regulation in liver Associated with Developmental and Reproductive Effects in Female Zebrafish Exposed to Natural Mixtures of Persistent Organic Pollutants from Lake Mjosa	Danio rerio
E-MEXP-3061-A-MEXP-1048	Transcriptional Regulation in Testis Associated with Developmental and Reproductive Effects in Male Zebrafish Exposed to Natural Mixtures of Persistent Organic Pollutants from Mjosa Lake	Danio rerio
GSE28357-GPL7303	Transcriptional response of Atlantic salmon (Salmo salar) after primary versus secondary exposure to Infectious Salmon Anemia Virus (ISAV)	Salmo salar

E-TABM-449-A-MEXP-664	Transcriptional response of Atlantic salmon (Salmo salar) to fish oil vs vegetable oil based diets	Salmo salar
GSE13050-GPL3209	Transcriptome Analysis of the Zebrafish Mind Bomb Mutant	Danio rerio
GSE13371-GPL1319	Transcriptome analysis of the zebrafish pineal gland	Danio rerio
GSE19754-GPL1319	Transcriptome analysis of zebrafish mononuclear myogenic cells (zMNCs) during myogenic differentiation	Danio rerio
GSE8651-GPL5692	Transcriptome analysis of zebrafish yquem/urod mutant	Danio rerio
GSE13570-GPL2716	Transcriptome profiling of embryonic development rate in rainbow trout advance backcross introgression lines	Oncorhynchus mykiss
GSE28843-GPL10679	Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon	Salmo salar
GSE28843-GPL10705	Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon	Salmo salar
GSE11160-GPL6154	Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells	Salmo salar
GSE29669-GPL7302	Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma	Danio rerio
E-TABM-1207-A-MEXP-2065	Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar)	Salmo salar
GSE36339-GPL6154	Transcriptomic response of skeletal muscle to lipopolysaccharide in the gilthead seabream (Sparus aurata)	Sparus aurata
GSE22330-GPL6154	Trout macrophages: Control vs. Escherichia coli PGNs from strains 0111:B4 and K12	Oncorhynchus mykis
GSE16577-GPL3650	Trout Muscle diet&selection	Oncorhynchus mykis
GSE36332-GPL13225	Vaccination against versiniosis induces a specific gill transcriptome biosignature in Atlantic salmon	Salmo salar
E-MEXP-2948-A-MEXP-1926	VM-zfiFNg	Danio rerio
AQUAEXCEL-10	White muscle Dataset	Sparus aurata
GSE20424-GPL10074	Zebrafish (Danio rerio) 72hpf, WT control vs. MO-Prpf31 injected	Danio rerio
GSE12826-GPL1319	Zebrafish 24hpf mutant sk8 gene expression	Danio rerio
GSE26707-GPL7735	Zebrafish 27hpf embryos: hdac1 mutant (hi1618) vs sibling	Danio rerio
GSE16264-GPL1319	Zebrafish embryos treated with Retinoic Acid or Retinoic acid antagonist during gastrulation and early somitogenesis.	Danio rerio
GSE18522-GPL7302	Zebrafish embryos: Control vs. 5-aza-2'-deoxycytidine treated	Danio rerio
GSE21680-GPL10387	Zebrafish embryos: exposure to 3,4-dichloraniline, 2,4-dichlorophenol, pentachlorophenol, and cadmium chloride	Danio rerio
GSE26708-GPL7735	Zebrafish embryos: hdac1 Morphants vs Standard control morphants	Danio rerio
GSE26709-GPL7735	Zebrafish embryos: hdac1 Morphants vs Standard control morphants at 12, 18 and 27 hpf	Danio rerio
GSE26710-GPL7735	Zebrafish hdac1 mutant and morphant embryos	Danio rerio
GSE17993-GPL1319	Zebrafish heart regeneration	Danio rerio
GSE4989-GPL1319	Zebrafish Hypoxia study Heart array	Danio rerio
E-MTAB-381-A-AFFY-38	Zebrafish Light Pulse	Danio rerio
GSE29307-GPL13537	zebrafish liver tumor signatures	Danio rerio
GSE29351-GPL13537	Zebrafish liver tumors	Danio rerio
GSE4201-GPL1319	Zebrafish microRNA miR-430 promotes deadenylation and clearance of maternal mRNAs	Danio rerio
GSE16857-GPL1319	Zebrafish response to microbiota	Danio rerio

GSE8327-GPL1319	Zebrafish response to Mycobacterium marinum infection (Affymetrix series)	Danio rerio
GSE8846-GPL5720	Zebrafish response to Mycobacterium marinum infection (Compugen series)	Danio rerio
GSE14866-GPL6563	Zebrafish von Hippel-Lindau (vhl) tumor suppressor mutants compared to siblings at 7 dpf	Danio rerio
GSE27707-GPL2715	Zebrafish: Estrogen induced gene expression	Danio rerio

Supplementaferable A2.	Fold-change	Gene Name	Fold-change
Supplemental table A2.	-1.43	Guanidinoacetate N-methyltransferase	1.73
26S proteasome complex subunit DSS1	-1.49	H2A histone member Y	-1.72
26S protease regulatory subunit 6A	-1.67	Haloacid dehalogenase-like hydrolase domain-	
26S protease regulatory subunit S10B	-2.00	containing protein 1A	-1.92
26S proteasome non-ATPase regulatory subunit 14	-1.99	Heparin-binding EGF-like growth factor	1.73
4SNc-Tudor domain protein short form	1.90	Histone	-2.37
60S ribosomal export protein NMD3	1.81	HNI male sex-determining protein (DMRT1Y)	1.86
60S ribosomal protein I37	1.90	Importin 7	1.41
60S ribosomal protein I9	1.41	Importin 9	2.03
ADP-ribosylation factor-like 6 interacting protein	-3.02	Inorganic pyrophosphatase	-2.04
Alpha-n-acetylgalactosaminidase	-1.30	Inositol -1(or 4)-monophosphatase 1	-2.14
Aminopeptidase-like 1	-1.74	Integrin alpha-6	2.16
AP-4 complex subunit sigma-1	-1.36	Isochorismatase domain-containing protein 2	1.58
APEX nuclease (multifunctional DNA repair enzyme)	-2.32	Isopentenyl-diphosphate delta-isomerase 1	-1.90
Basic transcription factor 3	1.50	KIAA1143 homolog	1.54
Beta-galactosidase	-3.77	Laminin alpha 4	1.61
BolA-like protein 2	-1.82	Leukotriene A-4 hydrolase	-1.95
C2orf76 protein	-1.88	LIN-52 homolog	1.57
Calpain 3	-2.08	Makorin-1	3.25
Calpastatin	2.05	MAP microtubule affinity-regulating kinase 3	1.47
Capping protein muscle Z-line alpha 1	-1.73	Methyltransferase like 11A	-1.74
Capping protein muscle Z-line alpha 2	-1.43	Mitogen-activated protein kinase 6	-1.65
Carbonic anhydrase	-2.80	Muscle specific RING finger protein 1-like	-1.48
Caveolin 2	-1.72	Muscleblind-like 1 isoform 1D	1.66
CCR4 carbon catabolite repression 4-like	-2.18	Muskelin intracellular mediator containing	
Cell division cycle 5-like protein	1.63	kelch motifs	1.30
Cholinephosphotransferase 1	-1.71	Myosin heavy chain 9	3.12
Chromatin-modifying protein 6	-1.30	Nascent polypeptide-associated complex	
Chromosome 1 open reading frame 156	2.74	subunit alpha	1.57
CI085 protein	2.12	NEDD8 precursor	-1.72
Cirhin	2.61	Neural precursor cell developmentally down-	
Coenzyme Q10 homolog B	-9.79	regulated 4-like	1.65
Coiled-coil domain containing 47	-2.10	N-myristoyltransferase 1a	-1.93
Cold shock domain-containing protein E1	1.90	Nucleolar and coiled-body phosphoprotein 1	1.80
Copper homeostasis protein cutC homolog	-1.86	Nucleolar GTP-binding protein 1	2.63
Cornichon homolog 4	-1.94	Nucleolar protein 5	2.11
Crystallin, zeta (quinone reductase)	1.41	Nucleolar protein 5A	1.53
CTP synthase	1.87	Nucleoside diphosphate kinase 3	-3.11
Cullin 2	-1.44	PABPC4 protein	1.28
Cyclin G2	-2.38	Peptidase D	1.51
Cyclin-dependent kinase inhibitor 3	-3.18	Peptidyl-tRNA hydrolase domain containing 1	-1.94
DCN1-like protein 1	1.49	Phosducin-like protein 3	1.91
DCN1-like protein 5	-1.77	Phosphofurin acidic cluster sorting protein 2	1.88
DEAD (Asp-Glu-Ala-Asp) box polypeptide 39	-1.82	Plasminogen activator inhibitor type 1-like	-1.55
Delta-9-desaturase 1	-6.26	Prefoldin subunit 6	-1.52
Der1-like domain member 1	-1.66	Probable ATP-dependent RNA helicase DDX10	1.66
Dihydrofolate reductase	-1.79	Probable ATP-dependent RNA helicase DDX41	1.44
Dimethylglycine dehydrogenase	1.95	Probable ribosome biogenesis protein NEP1-like	1.91
DNA-directed RNA polymerase III subunit RPC5	1.85	Probable rRNA-processing protein EBP2	1.50
EF-hand calcium-binding domain-containing		Profilin-2	-1.96
protein 7	-3.67	Programmed cell death 5	-1.56
Endothelial differentiation-related factor 1	-1.34	Proteasome (macropain) 26S, ATPase, 4	-2.16
Erythropoietin	1.81	Proteasome (macropain) 26S non-ATPase, 12	-1.70
Eukaryotic translation initiation factor isoform 1B	-1.27	Proteasome subunit alpha type-5	-2.06
Eukaryotic translation initiation factor subunit D	1.26	Proteasome subunit beta type-1-A	-1.60
Farnesyltransferase alpha subunit	-1.59	Protein	-1.35
F-box protein 31	1.42	Protein DJ-1	-2.06
F-box protein 9	-2.46	Protein-L-isoaspartate (D-aspartate)	
Fibropellin partial	2.08	O-methyltransferase	-1.92
FK506-binding protein	-2.12	PRP6 pre-mRNA splicing factor 6 homolog	1.35
Fragile X mental autosomal homolog 2	1.64	Purinergic receptor G-protein 5	3.80
General transcription factor IIH subunit 5	-1.59	QIL1	-1.63
Glycogenin 1	2.10	Reticulon 1	-1.92
Golgi reassembly stacking protein 1	-2.23	Ribosomal RNA processing protein 1 homolog B	1.90
Growth inhibition and differentiation related		Ribosome biogenesis protein NSA2 homolog	1.65
protein 86	1.54	RING-box protein 1	-1.43

Gene Name	Fold-change	Gene Name	Fold-change
RIO kinase 1	1.93	Transmembrane emp24 domain-containing protein 9	-1.46
RNA polymerase-associated protein CTR9 homolog	1.34	Transmembrane protein 188	-1.58
RNA-binding protein PNO1	2.28	Trimeric intracellular cation channel type A	1.36
S-adenosylhomocysteine hydrolase	1.84	TTF1 protein	1.95
Selenophosphate synthetase 2	-1.80	Type I cytokeratin, enveloping layer	15.96
Serine/ threonine kinase 19	-4.75	Tyrosine 3-monooxygenase/tryptophan 5-	
Serine/ threonine-protein kinase VRK3	-2.16	monooxygenase activation epsilon polypeptide	-1.40
Serpin H1	-2.38	Tyrosyl-tRNA synthetase	-2.37
Signal peptidase complex subunit 1	-1.47	U6 snRNA-associated Sm-like protein LSm5	-1.40
Small nuclear ribonucleoprotein E	-1.88	U6 snRNA-associated Sm-like protein LSm6	-1.76
Small VCP/ p97-interacting protein	1.83	Ubiquitin carboxyl-terminal hydrolase 14	-1.77
Splicing factor 3a subunit 1 isoform 2	1.30	Ubiquitin carboxyl-terminal hydrolase isozyme L3	-2.65
Surfeit 2	1.59	Ubiquitin domain-containing protein UFD1	-1.20
Surfeit 6	1.71	Ubiquitin-conjugating enzyme E2 A	-1.54
THAP domain-containing protein 2	1.73	Ubiquitin-conjugating enzyme E2 D2	-1.73
Thioredoxin domain-containing protein 17	-2.05	Ubiquitin-conjugating enzyme E2 L3	-1.77
Thioredoxin-like 1	-1.81	Ubiquitin-conjugating enzyme E2 variant 2	-1.52
Titin-like	1.32	Ubiquitin-conjugating enzyme E2A isoform 1	-1.55
TOB1 protein	2.24	Ubiquitin-conjugating enzyme E2N	-1.67
TRAF and TNF receptor-associated protein	-1.43	Uncharacterized protein C19orf12-like protein	-2.70
Transcription factor Dp-1	-1.35	UPF0466 protein mitochondrial-like	-1.80
Transcriptional repressor protein YY1	1.44	Voltage-dependent anion channel 2	1.66
Transducer of 1A	2.81	WD repeat-containing protein 75	2.19
Transducer of ERBB2	3.01	Zinc finger MYND domain-containing protein 17	1.69
Translational activator GCN1	1.97	Zinc transporter ZIP13	1.42
Translocon-associated protein subunit delta	-1.49		

Supplemental table A3.

Gene Name	Fold-change	Gene Name	Fold-change
5 -nucleotidase domain-containing protein 1	1.62	Mitochondrial ornithine transporter 1	-3.46
Acetyl-coenzyme A synthetase 2, mitochondrial-like	-1.59	Mitochondrial translation optimization 1 homolog,	
Acyl-CoA desaturase	-5.53	isoform 1	-1.82
Acyl-CoA binding domain containing protein 7	-1.56	Mitochondrial-processing peptidase subunit beta	-1.37
Adenosine kinase A	-1.59	Mitoferrin-2	1.31
Aldehyde dehydrogenase 7 family member A1	-1.85	Mitosis-specific chromosome segregation protein	
Annexin A13	-1.97	SMC1 homolog	1.42
Annexin A2a	-2.93	Multidrug resistance associated protein 2	-1.53
Anoctamin-8-like	1.67	NADH-cytochrome b5 reductase 2	-2.32
Aspartate aminotransferase 1	1.51	Nattectin	-2.68
ATP synthase lipid-binding protein mitochondrial	-1.51	Neural cell adhesion molecule isoform 3	1.84
ATP synthase mitochondrial F1 complex assembly		Phosphoglucomutase 5	-1.38
factor 2	-1.65	Pitrilysin metalloproteinase	-2.10
ATP synthase FO subunit 6	1.47	Proliferating cell nuclear antigen	-1.85
Beta-actin	-1.38	Prolylcarboxypeptidase (angiotensinase C)	-1.42
Bromodomain adjacent to zinc finger domain		Propionyl-Co A carboxylase, alpha polypeptide	-1.96
protein 2B	1.28	Protein FAM101B-like	-1.49
Carboxymethylenebutenolidase homolog	-2.36	Protein FAM26E-like	-1.29
Cell death activator cide-3	-3.81	Rab interacting lysosomal protein 1	1.97
Coiled-coil-helix-coiled-coil-helix domain	5.01	Ras GTPase-activating protein 1	1.81
containing 3	-1.76	Ras-related C3 botulinum toxin substrate 1 (Rac1)	-1.71
Complement C1g tumor necrosis factor-related	-1.70	Ras-related protein Rap-1b	-1.29
protein 5	-1.48	Repulsive guidance molecule-A	-1.33
CTD small phosphatase-like protein	1.46	Ring finger protein 220	1.52
Cytochrome c oxidase subunit l	1.40	Saccharopine dehydrogenase	-1.90
Cytochrome c oxidase subunit mitochondrial	-2.54	Selenoprotein H	-2.91
Dehydrogenase/ reductase SDR family member 1	-2.54	Septin 8a	-2.31
Denytrogenase/reductase SDK family member 1 Dipeptidyl peptidase 3	-3.43	Serine/threonine-protein kinase SGK1	-1.50
	-2.28		-1.94
DnaJ homolog subfamily C member 11		Short-chain dehydrogenase/reductase family protein	-1.91
DnaJ homolog subfamily C member 17	-3.04	Skeletal muscle sodium channel alpha subunit-like	
Fibronectin leucine rich transmembrane protein 3	-1.56	SKI protein (class I)	1.29
FUN14 domain containing 1	-1.50	Solute carrier family member B3	7.41
Gap junction alpha-1 protein	-1.52	Sorting and assembly machinery component 50	
Glucose-6-phosphate 1-dehydrogenase	-2.65	homolog	-1.91
Guanine nucleotide-binding protein GI/GS/GT		Stem-loop binding protein	-2.24
subunit beta-1	-1.42	Telomerase protein component 1	-1.17
High mobility group protein B1	-1.32	Thioredoxin	-1.34
Histone deacetylase 1B	-1.37	Thymine-DNA glycosylase	-1.72
Hypoxanthine phosphoribosyltransferase 1		Thymosin beta 4, X-linked	-1.17
(Lesch-Nyhan syndrome)	1.46	Transcription elongation factor mitochondrial	4.84
Isocitrate dehydrogenase 3 (NAD+) gamma	-1.78	Translocon-associated protein subunit alpha	1.72
Isoform CRA_a	-1.52	Transmembrane protein C10orf57 homolog	-1.64
Keratin 18	-1.56	tRNA-nucleotidyltransferase 1, mitochondrial	-1.74
Long-chain-fatty-acid-CoA- ligase ACSBG2	-5.10	Tubulin beta-1	-1.59
LYR motif-containing protein 4	-1.48	Uncharacterized glycosyltransferase AER61-like	-1.52
Mediator of RNA polymerase II transcription		Uncharacterized protein C7orf44-like isoform 1	-1.60
subunit 1	3.53	Vav-3 protein	4.57
Membrane-type matrix metalloproteinase	-1.64	WD repeat and FYVE domain-containing protein 1	5.33
Methylmalonic aciduria (cobalamin deficiency)		ZCCHC8 protein	-2.22
cblD with homocystinuria	-1.62	Zinc finger E-box-binding homeobox 2 (Zeb2)	-1.35
Mitochondrial import receptor subunit TOM5			
homolog	-1.47		

Supplemental table A4.

Gene Name	Fold-change	Gene Name	Fold-change
3-mannosyl-glycoprotein		Chromobox protein homolog 5	-1.39
2-beta-N-acetylglucosaminyltransferase	-1.51	Chromodomain helicase DNA binding protein 4	2.35
5 -AMP-activated protein kinase catalytic subunit	1.55	Chromosome 5 open reading frame 24	-2.36
alpha-1		Churchill domain containing 1	-1.30
60S ribosomal protein L38	-1.71	CLASP1 protein	1.56
A230067G21Rik	2.12	Clathrin, light chain A	-1.32
Abnormal spindle-like microcephaly-associated		Coatomer subunit beta'- 2	-1.56
protein homolog	1.61	Cohesin subunit Rad21	1.19
Actin-related protein 10	-1.34	Coiled-coil domain-containing protein 75	-2.26
Acyl-CoA synthetase long-chain family member 1	1.81	COMM domain-containing protein 2	-1.34
Adiponectin receptor protein 1	-1.76	Component of oligomeric golgi complex 7	-1.61
Alcohol dehydrogenase	-1.47	Copper transport protein ATOX1	-1.63
Alpha 3 (Goodpasture antigen) binding protein	2.31	Coproporphyrinogen oxidase	-1.95
Alpha tubulin	-2.26	Cornifelin homolog B	-1.99
Alpha-1 globin	-8.66	Creatine kinase, testis isozyme	-1.82
Alpha-2 globin	-1.65	CREB/ATF bZIP transcription factor	1.51
Alpha-2,6-sialyltransferase	2.22	Cyclin L1	1.67
Amyloid beta A4 protein	1.92	Cyclin-dependent kinase 2	-2.43
Androgen receptor	2.21	Cyclin-dependent kinase 6	3.77
Anion exchange protein 2	1.64	Cyclin-dependent kinase 7	-1.23
AP-4 complex subunit beta-1	1.84	Cysteine and histidine-rich domain-containing	
Apoptosis-related protein 3	-1.80	protein 1	1.47
Aguaporin	1.61	Cysteine-rich secretory protein LCCL	
Arrestin domain containing 1	1.83	domain-containing 2	4.05
Arrestin TRCarr	2.52	Cytochrome b5	1.3
Arsenate-resistance protein 2	1.43	Cytochrome c oxidase subunit 7A	2.3
ASC protein	1.34	Cytochrome c oxidase, subunit VIII	-1.9
ATPase family AAA domain-containing protein 2	-2.23	Cytochrome P450 1A1	-1.9
ATPase, aminophospholipid transporter, class I,		Cytochrome P450 3C1	1.2
type 8B, member 1	2.34	Cytohesin-1	1.4
AXIN1 Up-regulated 1	1.87	Danio rerio clone 1K20	1.6
Basic helix-loop-helix domain-containing protein	1.07	DDX5 protein	2.2
KIAA2018	-1.26	DEAD (Asp-Glu-Ala-Asp) box polypeptide 5	2.5
	3.18		1.28
Basic leucine zipper transcriptional factor ATF-like Bloodthirsty	1.82	Delangin isoform 3	-1.3
	1.82	Deoxyribose-phosphate aldolase-like	-1.5
Bridging integrator 3		Diaphanous homolog 2	
Bromodomain 4	1.56	Digestive cysteine proteinase 2	2.8
Bromodomain-containing protein 4	1.25	DNA mismatch repair protein	-1.8
BSG protein	-1.65	DNA polymerase delta catalytic subunit	-2.1
C18orf32 homolog	-1.29	DNA replication complex GINS protein PSF2	-2.7
cAMP-dependent protein kinase catalytic subunit		DNA-(cytosine5)-methyltransferase	-2.2
beta	-1.48	DNA-directed rRNA polymerase II subunit RPB7	-2.2
Carbamoyl-phosphate synthetase 2, aspartate		DnaJ (Hsp40) homolog, subfamily B, member 9	-2.1
transcarbamylase, and dihydroorotase	-2.93	Dnaj homolog subfamily B member 14	-1.1
Carboxy-terminal domain, RNA polymerase II,		Dual-specificity tyrosine-(Y)-phosphorylation-	
polypeptide A	1.47	regulated kinase 1A	1.49
Caspase recruitment domain member 4 isoform 2	1.96	Dynamin 1-like	-1.9
Caspase-3 precursor	-1.95	Dynamin 2	2.0
Catechol-O-methyltransferase domain-containing		EF-hand domain family, member A1	1.6
protein 1	-1.29	EF-hand domain-containing protein KIAA0494-like	1.4
Catenin (cadherin-associated protein), delta 1	2.22	ELAV-like protein 1	1.7
Cathepsin C	-1.46	Enhancer of polycomb homolog 1	1.4
Cathepsin L	-1.65	Ethanolamine kinase 1	2.5
CD151 antigen	-2.68	Ethylmalonic encephalopathy 1	1.5
CDP-diacylglycerolserine		Ets variant gene 5 (ets-related molecule)	-1.6
O-phosphatidyltransferase	2.74	Eukaryotic translation initiation factor 4 gamma 2	1.8
CEF-10	2.62	Exostosin-2	-1.4
Cellular retinoic acid-binding protein	-2.27	FAM49B protein	1.6
Centaurin, beta 5, isoform CRA_b	2.48	Family with sequence similarity, member A	2.3
Centromere protein m	-2.70	Family with sequence similarity, member B	2.2
Cerebral cavernous malformation 2	-1.61	Fatty acid synthase (Oleoyl-[acyl-carrier-protein]	
Chain C crystal structure of human G i1 bound to the		hydrolase)	-1.88
GoLoco motif of RGS14	1.48	Flotillin-1	-1.2
Chibby homolog 1	-1.82	Folliculin-interacting protein 1	4.2
CHK1 checkpoint homolog	-1.51	Forkhead-related transcription factor 1B, transcript	4.2

Gene Name	Fold-change	Gene Name	Fold-change
Four and a half LIM domains protein 2	-1.74	Lysosome-associated membrane glycoprotein 2	-1.60
Friend leukemia integration 1 transcription factor	1.86	Major facilitator superfamily domain-containing	
Fructose-bisphosphate aldolase C	-1.52	protein 5	-1.54
G protein-coupled receptor kinase interactor 2,		Mannose 6-phosphate receptor	-1.19
isoform CRA_b	2.01	Mannose-P-dolichol utilization defect 1	-1.34
GA binding protein transcription factor, alpha		Mannoside acetylglucosaminyltransferase 2	1.75
subunit 60kda	-1.39	Maturation-inducing protein	1.89
Galactokinase 2	-1.71	Member of RAS oncogene family-like 2A	2.93
Galactosidase, beta 1-like	2.06	Member RAS oncogene family	1.52
Gamma-glutamyltransferase 5	2.24	Mesp	1.69
GC-rich sequence DNA-binding factor candidate		Mitochondrial cytochrome C oxidase subunit Vb	-1.60
isoform 1	1.66	Mitochondrial uncoupling protein 2	2.07
Gibelio Dazl	2.08	Mitotin	-3.41
GJ11255	2.41	MON2 protein	1.58
GL23181	1.51	Myelin expression factor 2 (MYEF2)	2.63
Glucosamine-6-phosphate deaminase 1	-1.62	Myogenic factor MYOD2	1.94
Glutathione peroxidase	-1.96	NAD+ poly (ADP-ribose) polymerase	-1.47
Glutathione S-transferase	-2.18	NADH dehydrogenase 1 alpha subcomplex	1.00
Glycosyltransferase 8 domain containing 1	-1.45	subunit 11	1.99
Granulito	-1.40	Natural killer enhancing factor	-1.93
Growth factor receptor-bound protein 14	2.16	NECAP endocytosis associated 2	-1.20
Guanine nucleotide binding protein (G protein) beta		NEDD8	-1.47
polypeptide 4	1.35	Neural precursor cell expressed, developmentally	
Guanine nucleotide-binding protein G subunit		down-regulated 4	1.32
alpha-2	2.13	Nicotinamide phosphoribosyltransferase-like	1.88
Heat shock protein 90kda, 1 beta isoform b	1.80	Notch homolog 2	1.95
Hemoglobin subunit beta-1	-5.68	Novel transposase	1.57
HIRA interacting protein 3	-1.98	Nuclear prelamin A recognition factor	-2.10
Histidine triad nucleotide-binding protein 2	-1.25	Nuclease HARBI1-like	1.68
Histidine triad nucleotide-binding protein 3	-1.47	Nucleoredoxin-like protein 2	1.87
Histone deacetylase 11	2.45	Origin recognition complex, subunit 2	-1.49
HK domain containing, RNA binding, signal		Ornithine decarboxylase antizyme 2	-1.24
transduction associated 1	2.22	Osteocalcin	-1.35
Homeodomain protein HOMEZ	1.78	Perforin	1.53
Hox gene cluster	2.59	Phosphatase and actin regulator 1	1.77
HoxAb gene cluster	1.52	Phosphatidylinositol 4-kinase type 2-alpha	4.59
Hyaluronidase-2	2.34	Phosphatidylinositol 4-kinase type II	-1.72
Hyaluronoglucosaminidase 2	1.50	Phosphatidylinositol binding clathrin assembly	
Hypothetical protein TRIADDRAFT_58549	1.88	protein	1.54
IL-6 subfamily member ciliary neurotrophic		Phosphatidylinositol	1.00
factor-like	-1.64	N-acetylglucosaminyltransferase subunit H	-1.83
Immediate early response 3	1.70	Phosphatidylinositol transfer protein beta isoform	1.80
Influenza virus NS1A-binding protein homolog A	1.66	Phosphoglucose isomerase	-1.68
Inhibitor of growth family, member 5	-1.57	Phospholipase B domain containing 2	-1.50
Interleukin enhancer-binding factor 3 homolog	1.81	Pituitary adenylate cyclase activating polypeptide	4.05
Intraflagellar transport protein 122 homolog	1.43	receptor 1A	1.85
Iodothyronine deiodinase type I	-1.43	Pituitary tumor-transforming gene 1	
Isocitrate dehydrogenase	-1.91	protein-interacting protein	1.48
Isthmin 1	3.04	PL10-related protein	1.93
KIAA0528 protein	2.30	PL-5283 protein	-1.52
Kinesin family member 13B	2.19	Pol-like protein	1.93
Latexin	-1.67	Poly (ADPribose) polymerase family, member 6,	
Ldb1a protein	2.43	isoform CRA_e	2.32
Leucine rich repeat containing 45	2.41	Poly A binding protein, cytoplasmic 1 b	1.84
Leucine-rich repeats and calponin homology domain		Polymerase (DNA directed), delta 2, regulatory	
containing 4	1.73	subunit 50kDa	-1.77
Leucine-zipper-like transcription regulator 1	-1.50	Pre-mRNA-processing factor 39	2.09
LINE-1 reverse transcriptase homolog	1.54	Probable G-protein coupled receptor 125	1.53
Lithognathus mormyrus clone lithmor1162	1.62	Proline rich Gla (G-carboxyglutamic acid) 4	1.96
Liver carboxylesterase 2-like	3.66	Proline-serine-threonine phosphatase-interacting	
LON peptidase N-terminal domain and RING finger		protein 2	2.14
protein 1	1.80	Prosaposin	1.51
Lysine-specific demethylase 5B	1.76	Proteasome subunit, beta type-8	-1.89
Lysine-specific demethylase 5B-like	2.04	Protein Dok-7-like	-1.44
Lysine-specific demethylase 6B	1.27	Protein inhibitor of activated STAT, 3, isoform CRA_a	1.68
Lysophosphatidic acid phosphatase type 6	-1.66	Protein ITFG3	-1.54

Gene Name	Fold-change	Gene Name	Fold-chang
Protein kinase, cAMP-dependent, regulatory, type II,		Takifugu rubripes clone 214J14	1.7
alpha A	2.29	Talin 1	1.9
Protein LAP2 isoform 1	1.78	TANK-binding kinase 1	-1.4
Protein NLRC3-like	1.91	Targeting protein for Xklp2	-2.1
Protein phosphatase 1 regulatory subunit 12C	-1.22	Taurine transporter	-1.4
Protein tyrosine phosphatase, non-receptor type 2	2.12	Tax1 (human T-cell leukemia virus type I) binding	
Protein-glutamine gamma-glutamyltransferase 2	-2.03	protein 1B	2.2
Protein-kinase, interferon-inducible double stranded		Tc1-like transporase	1.7
RNA dependent inhibitor, repressor of	-1.62	Telomeric repeat binding factor (NIMA-interacting) 1	1.5
(p58 repressor) PRPF39 protein	-1.62	Telomeric repeat binding factor 2 Tetraspanin 5	-1.3
Pumilio-like protein 1	1.49	TGF-beta receptor type-2	1.
Pyruvate dehydrogenase kinase, isoenzyme 2	23.60	Thioredoxin domain containing 4 (endoplasmic	1
Pyruvate dehydrogenase kinase, isochzyme 2 Pyruvate dehydrogenase kinase, isozyme 3	1.62	reticulum)	2.0
Rab3 GTPase-activating protein non-catalytic subunit	2.00	Thioredoxin reductase 1	-1.4
Rad50-interacting protein 1	1.53	Thiosulfate sulfurtransferase KAT	-1
Ran-binding protein 3	1.70	Thymidylate kinase	-2.
Rapunzel 4	-1.60	Tight junction protein 1 isoform b	1.9
Ras association domain-containing protein 1	1.63	Titin-L1 fusion protein	1.
Ras-related protein Rab-37	2.43	T-lymphocyte 1 antigen-like protein	-2.
Regulator of chromosome condensation and BTB	25	TP53 apoptosis effector	1.
domain containing protein 1	1.49	TRAF-type zinc finger domain-containing protein 1	-1.
Regulator of G-protein signaling 3	1.87	Transcription factor CP2	2.
Renin receptor	-1.34	Transcription factor SOX12	-2.
ReO 6	1.91	Transient receptor potential cation channel	
Replication factor C (activator 1) 37kDa	-1.95	subfamily M member 4	-1.
Retinoblastoma binding protein 6	2.64	Transmembrane 9 superfamily member 2	1.
retinoic acid receptor alpha	1.91	Transmembrane BAX inhibitor motif-containing	
Retinol dehydrogenase 14	2.29	protein 1	1.
Rho GTPase-activating protein 29	2.50	Transmembrane protein 134, isoform CRA d	-1.
Riboflavin kinase	2.22	Transposable element Tcb1 transposase	1.
RNA binding motif protein 39	2.08	Transposase	3.
RNA-binding protein 40	2.40	Tripartite motif-containing 8	1.
RNase K b	-1.73	TRNA selenocysteine 1-associated protein 1-like	1.
Sal-like 1a	1.64	Tropomyosin alpha-4 chain	2.
Scaffold attachment factor B	1.49	Truncated FBP32II and FBP32	2.
Securin	-6.88	Tubulin-folding cofactor B	1.
Sentrin-specific protease 2	1.34	Tumor necrosis factor receptor associated factor 2	2.
Septin 2	-1.28	Tyrosine-protein kinase JAK1	1.
Serine carboxypeptidase 1	-1.39	U1 small nuclear ribonucleoprotein 70 kDa	2.
Serine/threonine-protein kinase 16	1.43	U2-associated protein SR140-like	1.
Serine/threonine-protein phosphatase 2A,		Ubiquitin carboxyl-terminal hydrolase 22	2.
regulatory subunit B subunit alpha isoform 2	-1.49	Ubiquitin specific peptidase 33	1
Serpin peptidase inhibitor, clade A (alpha-1		Ubiquitin specific protease 48	1.
antiproteinase, antitrypsin), member 10a	-1.51	Ubiquitin-conjugating enzyme E2 D4	1.
SET translocation (myeloid leukemia-associated)	1.75	Ubiquitin-conjugating enzyme UbcH5	2.
SH3 domain and tetratricopeptide		Ubiquitin-like modifier-activating enzyme 1	1.
repeats-containing protein 1	2.18	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase,	
Signal peptidase complex subunit 3	-1.25	polypeptide 4	1.
Signal-induced proliferation-associated 1	2.07	UDP-N-acetylglucosamine-peptide	
Sodium- and chloride-dependent taurine transporter	2.39	N-acetylglucosaminyltransferase 110 kDa subunit	1.
Sorbin and SH3 domain containing 2 isoform 8	1.62	Uncharacterized protein C10orf18-like	2.
Sorting nexin-5	-1.38	UPF0462 protein C4orf33 homolog	-1.
SOSS complex subunit C	-2.09	Vacuolar protein sorting-associating protein 4B	1.
Spectrin repeat containig, nuclear envelope 1	2.40	vacuolar-type H+ transporting ATPase B1 subunit	1.
Splicing factor 3a, subunit 3, 60kda	1.31	Venom dipeptidylpeptidase IV	-2.
Splicing factor 3b subunit 1, 155kDa	1.59	V-erb-a erythroblastic leukemia viral oncogene	
Splicing regulatory glutamine/lysine-rich protein 1	2.01	homolog 4	3.
Sterol carrier protein-2	2.01	Very long-chain acyl-CoA-synthetase	2.
Stromal interaction molecule 1	1.73	Vesicle-associated membrane protein 3	1.
Structural maintenance of chromosomes protein 1A	1.79	Vesicle-associated membrane protein 5	-1.
Sulfiredoxin 1 homolog	-1.44	Voltage-dependent anion channel 1	-1.
Suppressor of fused homolog	1.80	V-type proton atpase subunit E 1	-1.
Synaptosomal-associated protein 23	1.43	WD repeat domain 13	-1.
Synaptosomal-associated protein 29	-1.42	WD repeat domain phosphoinositide-interacting	
Syndecan binding protein	-1.41	protein 3	1.
Syntaxin 4 isoform Taeniopygia guttata similar to hCG2019360	1.63	Wilms tumor 1 associated protein XRCC5 protein	1.
	4.97		1.

Gene Name	Fold-change	Gene Name	Fold-change
Zinc finger (C2H2 type) family protein	-1.34	Zinc finger protein 36, C3H type-like 1	1.35
Zinc finger BED domain-containing protein 4	2.19	Zinc finger protein 518A	1.42
Zinc finger CCCH domain-containing protein 7A	1.59	Zinc finger protein 572	2.00
Zinc finger protein	2.34	Zinc finger protein ubi-d4	1.26
Zinc finger protein 207	2.04	zinc finger protein, X-linked (ZFX)	2.24
Zinc finger protein 292	1.53		