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Abstract

Background: Third-stage larvae (L3) of the canine hookworm, Ancylostoma caninum, undergo arrested development
preceding transmission to a host. Many of the mRNAs up-regulated at this stage are likely to encode proteins that facilitate
the transition from a free-living to a parasitic larva. The initial phase of mammalian host invasion by A. caninum L3 (herein
termed ‘‘activation’’) can be mimicked in vitro by culturing L3 in serum-containing medium.

Methodology/Principal Findings: The mRNAs differentially transcribed between activated and non-activated L3 were
identified by suppression subtractive hybridisation (SSH). The analysis of these mRNAs on a custom oligonucleotide
microarray printed with the SSH expressed sequence tags (ESTs) and publicly available A. caninum ESTs (non-subtracted)
yielded 602 differentially expressed mRNAs, of which the most highly represented sequences encoded members of the
pathogenesis-related protein (PRP) superfamily and proteases. Comparison of these A. caninum mRNAs with those of
Caenorhabditis elegans larvae exiting from developmental (dauer) arrest demonstrated unexpectedly large differences in
gene ontology profiles. C. elegans dauer exiting L3 up-regulated expression of mostly intracellular molecules involved in
growth and development. Such mRNAs are virtually absent from activated hookworm larvae, and instead are over-
represented by mRNAs encoding extracellular proteins with putative roles in host-parasite interactions.

Conclusions/Significance: Although this should not invalidate C. elegans dauer exit as a model for hookworm activation, it
highlights the limitations of this free-living nematode as a model organism for the transition of nematode larvae from a free-
living to a parasitic state.
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Introduction

Parasitic nematodes are of considerable medical, veterinary and

agricultural importance. For example, it is estimated that the

morbidity attributable to hookworms, Trichuris and Ascaris, the

three most prevalent parasitic nematodes in humans globally,

could be as high as 39 disability adjusted life years (DALY) [1].

This assessment takes into account the long-term impact of

infection on cognitive and physical development and the overall

health of the host. World-wide, ,1.3 billion people are infected

with at least one of these geohelminths [2]. The prevalence of the

human hookworms, Ancylostoma duodenale and Necator americanus,

alone approaches 740 million, with the foci predominantly within

Asia, sub-Saharan Africa, and Latin America [3].

Facultative developmental arrest in the free-living nematode,

Caenorhabditis elegans, can occur transiently in the first larval stage

(L1) as well as for prolonged periods at the L3 stage.

Developmental arrest (often referred to as the dauer stage) in the

L3 is triggered in response to conditions, such as crowding, scarcity

of food and elevated temperature [4]. When the environment

improves, worms exit the arrest to resume development. However,

under permissive conditions, arrest is bypassed and adult and

reproductive development is favoured. For many parasitic

nematodes, arrest at the L3 facilitates survival in the environment.
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The exit from arrest marks the return to growth and development

as well as the transmission of the parasite to its host. Larvae invade

a suitable host and undergo a migration through particular tissues

to then establish in a target organ and complete the life cycle or

arrest in specific tissues. The infective L3 of many parasitic

nematodes produce mRNAs which are thought to relate to

invasion, migration, and/or survival [5–10]. Therefore, the

characterization of mRNAs transcribed in the L3 during its

transition from the free-living to the parasitic stage may aid in the

identification of genes associated with these processes. An

attractive parasite model in which to experimentally study this

transition is the dog hookworm, Ancylostoma caninum, for which an

in vitro serum-stimulation assay exists [11].

Several molecular aspects associated with serum stimulation

have been investigated previously in A. caninum. Some researchers

have focused on the release of activation-associated proteins; these

molecules include the pathogenesis related protein (PRP) super-

family members Ac-ASP-1 [12] and Ac-ASP-2 [13], and the

metalloprotease Ac-MTP-1 [14], all of which represent the most

abundant excreted/secreted proteins released by serum-stimulated

(activated) L3. Other workers have studied activation-associated

genes of hookworms using a transcriptomic approach. For

instance, Mitreva et al. [8] generated expressed sequence tags

(ESTs) for A. caninum (serum stimulated, unstimulated and tissue-

arrested L3) and A. ceylanicum (unstimulated L3 and adults), being

the first systematic study of genes associated with the host invasion

process. However, this study had some limitations in that (1)

comparative analyses made between larval stages were qualitative

rather than quantitative; (2) some of the observed differences in the

abundance of ESTs between activated and non-activated A.

caninum L3 seemed to be attributable to differences in the

procedures employed for the construction of the cDNA libraries

from these life-cycle stages; and (3) the study included a relatively

small number of randomly generated sequences available at the

time for A. caninum (n = 3840) and A. ceylanicum (n = 3149). Moser et

al. [7] addressed the first two points by conducting a quantitative

microarray analysis of A. caninum genes associated with the

transition to parasitism, focusing on decreased transcription after

serum stimulation (i.e., those mRNAs which are ‘‘switched off’’ or

reduced in transcription upon host entry). However, this study was

also limited to known ESTs available in the public databases.

To infer the mRNAs involved in the infective process of A.

caninum, we conducted herein a quantitative study of all known A.

caninum sequences as well as newly identified genes discovered

through suppressive-subtractive hybridisation (SSH) of activated

versus non-activated L3 of A. caninum. The method of SSH was

employed to selectively enrich differentially transcribed genes [15].

In summary, 242 potentially up-regulated and 109 potentially

down-regulated mRNAs were identified by SSH. There were

many mRNAs that were differentially expressed but not identified

by SSH, although this might be a function of the number of clones

randomly sequenced from our subtracted libraries. The final

repertoire of activation-associated genes consisted of 240 up-

regulated and 362 down-regulated mRNAs. Among these nearly

600 activation-associated genes were numerous (often substantially

up-regulated) mRNAs encoding PRPs and three of the major

catalytic classes of proteases (metallo-, cysteine, and aspartic).

Several mRNAs encoding novel secreted proteins without any

known homologues were also identified. These mRNAs, if

demonstrated to be integral to the parasitic process, could

represent a new generation of potential vaccine antigens and

drug targets against hookworms.

Methods

Parasitological methods
A. caninum L3 were isolated from the faeces of stray dogs in the

greater Brisbane area and surrounding towns in Queensland,

Australia, using a standard charcoal coproculture method.

Cultures were incubated at ,23uC in a humidified chamber for

one week, after which L3 were concentrated using a modified

Baermann technique and purified through a nylon filter (20 mm).

Larvae were stored for up to four weeks in 50 mM Na2HPO4,

22 mM KH2 PO4, 70 mM NaCl, pH 6.8 [16] in 12.5 cm2 vented

tissue culture flasks in the dark at room temperature until use. In

total, four separate groups of L3 representing four separate

infections from different geographical locations were obtained.

The first group was used for SSH and time course studies, whereas

the others were employed as biological replicates in microarray

validation and real-time PCR analyses (Figure 1).

Verification of the specific identity of A. caninum L3
The specific identity of the parasite material was confirmed by

PCR amplification of the first and second internal transcribed spacers

(ITS-1 and ITS-2) of nuclear ribosomal DNA (as described by [17])

and automated sequencing (using BigDye chemistry, ABI). The

sequences determined were required to be identical to those with

GenBank accession numbers Y19181 (ITS-1) and AJ001591 (ITS-2).

In vitro activation of larvae
Prior to in vitro activation (serum-stimulation), ensheathed L3

were incubated in 1% HCl for 30 min at ,23uC and then

resuspended in RPMI-C (RPMI-1640 tissue culture medium

supplemented with 25 mM HEPES (pH 7.0), 100 IU/ml of

penicillin, 100 mg/ml of streptomycin, and 40 mg/ml of gentamy-

cin) [12]. To each well of a 24-well tissue culture plate, 5,000 L3

were added. For the SSH, a total of 40,000 L3 were activated in

Author Summary

Hookworms are soil-transmitted nematodes that parasitize
hundreds of millions of people in developing countries.
Here we describe the genes expressed when hookworm
larvae make the transition from a developmentally
arrested free-living form to a tissue-penetrating parasitic
stage. Ancylostoma caninum can be ‘‘tricked’’ into thinking
it has penetrated host skin by incubating free-living larvae
in host serum – this is called ‘‘activation’’. To comprehen-
sively identify genes involved in activation, we used
suppressive subtractive hybridization to clone genes that
were up- or down-regulated in activated larvae, with a
particular focus up-regulated genes. The subtracted genes,
as well as randomly sequenced (non-subtracted) genes
from public databases were then printed on a microarray
to further explore differential expression. We compared
predicted gene functions between activated hookworms
and the free-living nematode, Caenorhabditis elegans,
exiting developmental arrest (dauer), and found enormous
differences in the types of genes expressed. Genes
encoding secreted proteins involved in parasitism were
over-represented in activated hookworms whereas genes
involved in growth and development dominated in C.
elegans exiting dauer. Our data implies that C. elegans
dauer exit is not a reliable model for exit from
developmental arrest of hookworm larvae. Many of these
genes likely play critical roles in host-parasite interactions,
and are therefore worthy of pursuit for vaccine and drug
development.
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15% serum and 25 mM S-methylglutathione in RPMI-C, whereas

25,000 L3 were incubated in RPMI-C alone (non-activated

control). Five thousand L3 were sampled at each of four time

points during the activation (1, 6, 13, and 24 h), in order to

perform a time-course analysis of transcripts using real-time PCR

(described in ‘‘Validation of transcription via real-time PCR’’). The

same number of non-activated control L3 were separately

prepared for this analysis, leaving 20,000 activated and 20,000

non-activated worms for SSH.

For the microarray analysis, activated and non-activated L3

(50,000 of each) were prepared from each of two separate

populations of A. caninum. Also, activated and non-activated L3

(5,000 of each) were prepared for real-time PCR. For the in vitro

activation, L3 were incubated overnight at 37uC in 5% CO2;

pharyngeal pumping in activated L3 was verified by feeding ,100

of them with FITC-BSA (10 mg/ml) for 3 h and fluorescence was

detected using a Leica DM IRB inverted microscope with a Leica

DC 500 high-resolution digital camera [11]. Activated and non-

activated L3 were each washed twice in phosphate-buffered saline

(PBS, pH 7.4; 23uC) and immediately frozen at 280uC. For RNA

isolation, larvae were resuspended in 100 ml of Trizol reagent and

homogenized in a 1.5 ml tube using an RNase-free, disposable, in-

tube pestle and subjected to three rapid (1 min) freeze/thaw

cycles. Trizol was added to a final volume of 500 ml, before snap

freezing in liquid nitrogen. These samples were stored for

#1 month at 280uC before RNA was isolated.

RNA isolation
Frozen samples of L3 in Trizol were brought to 4uC and

centrifuged (16,0006g at the same temperature) for 10 min to

remove insoluble debris and residual genomic DNA. RNA was

then extracted with chloroform, precipitated with isopropanol,

washed with absolute ethanol and resuspended in 50 ml of RNAse-

free water. Each RNA sample was treated with 2 U of DNase I

(Promega) prior to heat denaturation of the enzyme (75uC for

5 min) and frozen immediately at 280uC. The integrity of RNA

was verified to have an RNA Integrity Number .8.0 using an

Agilent 2100 Bioanalyzer and RNA 6000 LabChip Kit (Agilent

Technologies). RNA used for microarray analysis was stored as an

ethanol precipitate in 75% ethanol at 280uC.

Suppression subtractive hybridisation (SSH)
First strand cDNA was synthesized from 1 mg of total RNA

using the SuperSmart cDNA synthesis kit (Clontech), according to

the manufacturer’s protocol. Subsequently, double stranded

cDNA was produced through 17 rounds of PCR amplification

and purified by phenol:chloroform:isoamyl alcohol (25:24:1)

extraction, followed by sodium acetate precipitation. SSH was

carried out using the PCR Select cDNA subtraction kit (Clontech)

according to the manufacturer’s protocol. Briefly, cDNA from

activated or non-activated A. caninum L3 was digested with the

endonuclease Rsa I and ligated to adapters, yielding tester cDNAs

for each treatment. Activated tester cDNA was denatured and

Figure 1. Experimental design. Suppressive subtractive hybridisation (SSH) was performed on one group of Ancylostoma caninum larvae and
subsequently validated by real-time PCR and microarray experiments using three additional groups of larvae from separate infections. Bioinformatic
analysis was conducted on the validated pool of activation-associated genes.
doi:10.1371/journal.pntd.0000130.g001
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allowed to re-hybridize in an excess of non-activated ‘‘driver’’

cDNA. This hybridization was termed the forward subtraction

and enriched for cDNAs with a higher abundance in activated

worms. A reverse subtraction was also performed which enriched

for cDNAs which were more abundant in the non-activated

worms. Also, an unsubtracted control was prepared according to

the standard protocol. Hybridized cDNAs were amplified via two

rounds of PCR (according to the recommended protocol), purified

by spin-column (QIAGEN) and then cloned into the plasmid

vector pGEM-T (Promega). Chemically competent Escherichia coli

(TOP 10) were transformed and grown for 8 h at 37uC in Luria

Bertani medium (LB) with 100 mg/ml ampicillin. Stocks were

stored in glycerol (20%) at –80uC. Immediately prior to

sequencing, 50 ml of LB (22uC) was added to each E. coli stock

and grown overnight on LB agar plates containing 100 mg/ml of

ampicillin. Recombinant colonies were isolated by blue/white

selection and then arrayed on a grided LB plate containing

100 mg/ml of ampicillin. Inserts amplified using the TempliPhi

DNA Sequencing Template Amplification kit (GE Healthcare Life

Sciences) were sequenced unidirectionally using the T7 vector

primer in an ABI 3730X1 DNA analyser.

EST sequencing and bioinformatic analysis
The chromatograms for all raw ESTs were inspected and

processed to remove poor quality sequence, with subsequent

removal of contaminating vector sequences using BioEdit software

v.7.0.1. Following this pre-processing, ESTs were organized into

contigs and clusters through an iterative approach using the Cap

contig assembly facility in BioEdit under strict conditions,

requiring at least a 100 bp overlap and 95% identity among

sequences. The resultant contigs and singletons were named

according to a simple convention. A ‘‘C’’ in the sequence name

identifies sequences composed of multiple ESTs while singletons

are indicated with an ‘‘S’’. Sequences from the forward-subtracted

library have four digit identifiers, whereas those from the reverse-

subtracted library have three digits. For example, Ac_SSH_C_

0056 indicates that the SSH sequence 0056 is composed of

multiple ESTs from the forward subtracted library. SSH

sequences were compared with existing sequences in GenBank

and Wormbase (www.wormbase.org) via BLASTx through NCBI

(www.ncbi.nlm.nih.gov/BLAST/) and WU-BLAST (www.ebi.ac.

uk/blast2). Alignments were considered statistically significant if

an E- or P-value was #161025. Neural networks and hidden

Markov models were used to predict signal peptides and

transmembrane domains by way of the SignalP 3.0 (www.cbs.

dtu.dk/services/SignalP/) and TMPred (www.ch.embnet.org/

software/TMPRED.form.html) interfaces, respectively. Conserved

protein motifs of activation-associated ORFs were identified using

the InterProScan website (www.ebi.ac.uk/InterProScan). Potential

proteases were classified using the MEROPS protease database

(http://merops.sanger.ac.uk/index.htm). Contigs were also

mapped to gene ontology (GO) terms based on sequence

similarity using the BLAST2GO platform (www.blast2go.de)

which compares all contigs with sequences available in several

databases, including Wormbase and Uniprot [18]. Only BLASTx

hits with a maximum E-value #1610210 and a minimum of

50% similarity (default software settings) were selected for

annotation. A modified one-tailed Fisher exact test based on a

hypergeometric distribution was employed in the identification of

GO terms for differentially transcribed genes, which were

significantly over-represented [19]. This assessment was made

relative to the total number of A. caninum genes which had been

GO-annotated. Setting the ‘‘false discovery’’ rate limit to 0.5

aided in controlling for multiple testing errors [18].

Microarray: probe design
Sequence data for 9,618 A. caninum ESTs were obtained from

the Washington University Genomics Department via the NCBI

sequence database (http://www.ncbi.nlm.nih.gov/Genbank/

index.html). Chromatograms were pre-processed with the Phred

software [20,21] and organized into contigs and clusters with the

Cap3 contig assembly program [22], employing a minimum

sequence overlap length of 30 bases and an identity threshold of

95%. Contigs (n = 1311) were assembled from the ESTs and are

hereafter designated with ‘‘Contig’’, followed by a number

between 1 and 1311. The remaining singletons were filtered by

BLAST E-values (,0.001) to remove potentially spurious

sequences and are henceforth referred to by their GenBank

accession number. In total, 2,889 individual sequences were

identified from the total EST dataset for A. caninum. Sequences

representing individual clusters assembled from the sequence data

from the forward and reverse subtracted cDNAs as well as the

publicly available repository were combined. The combined

dataset (a total of 3,100 representative sequences) were submitted

for the design of 60-mer oligonucleotides using eArray (Agilent). A

total of 9,288 oligonucleotides (3 per target) were proposed for

3,096 contigs. Of these oligonucleotides, 3,443 possessed a non-self

perfect match, resulting in 5,845 representing 1,967 genes suitable

for microarray analysis. These 5,845 oligonucleotide probe

sequences were electronically submitted using eArray for ink-jet

in-situ synthesis onto glass slides by Agilent Technologies.

Microarray: cRNA preparation, hybridization and data
analysis

To generate cRNA, 200 ng of total RNA extracted from each

activated and non-activated L3 population of A. caninum was

reverse transcribed and simultaneously labelled with Cy3 or Cy5

(Agilent). Immediately prior to hybridisation, 500 ng of labelled

cRNAs from each of activated and non-activated worms were

quantified using a NanoDrop ND-1000 UV-VIS spectrophotom-

eter (NanoDrop), assessed for size distribution and Cy5-dye

incorporation using an Agilent 2100 Bioanalyzer and RNA 6000

LabChip Kit (Agilent), mixed together and fragmented. The

cRNA from the combined treatments for each population was

hybridised to the array in duplicate, with the second hybridisation

representing a dye swap to control for any bias in signal intensity

between the two dyes. Hybridisations and washes were conducted

as per Agilent’s Two-colour Gene Expression Hybridisation

protocol version 5.0.1. Briefly, 250 ml of hybridisation solution

was applied and the microarrays were hybridised for 17 hours at

65uC, 10 rpm. Slides were then washed for 1 minute in Wash

Buffer 1 (RT), 1 minute in Wash Buffer 2 (37uC), 1 minute in

Acetonitrile (RT) and 30s in Stabilisation and Drying Solution

(RT). Slides were scanned using a DNA Microarray Scanner

(Agilent). Scanning and feature extraction were performed using

Feature Extraction software version 9.1 (extraction protocol GE2-

v4_91; Agilent). During extraction, signal intensities were Linear

and Lowess-normalized, dye-corrected, and adjusted for local

background. Data handling and analysis were carried out using

the program SAS v.8.0 (SAS Institute). Processed signal intensities

for each probe were averaged across genes, replicates and

populations for comparison between treatments by a two-sided t-

test with a Type I error rate of 0.01. Only signals differing by at

least 1.5 fold (P#0.01) for each population were considered to

represent molecules differentially transcribed in A. caninum as a

consequence of serum stimulation in vitro. The effects of dye and

probe on the mean signal were assessed graphically. Fold changes

in hybridisation were expressed as log2-transformed ratios. The

absolute log2 ratios within each level-three GO category were

Hookworm Parasitism Genes
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averaged and divided by the mean absolute log2 ratio of all spots

on the chip to derive an expression quotient (EQ). The EQ

provides an indication of the degree of differential expression

associated with a specific GO term.

Validation of transcription via real-time PCR
Reverse transcription real-time PCR was used for the validation

of microarray data and for studying levels of transcription in L3 at

different time points during the course of serum stimulation in vitro.

Ten target sequences were chosen at random and seven others

were selected to represent contigs with high, medium and low

levels of hybridisation in the microarray. The sequences of all of

the primers used in the real-time PCR are listed in Table S2. The

single-stranded cDNA template was quantified spectrophotomet-

rically and diluted to an appropriate concentration (2 ng/ml). Two

ng of cDNA from each activated and non-activated A. caninum L3

population were subjected to PCR in the presence of 100 nM of

the forward and reverse primers in 16 Platinum SYBR Green

qPCR SuperMix-UDG (Invitrogen). All experiments were repeat-

ed three times with two replicates in each using a Rotor-Gene

6000 Series 2-Plex real-time PCR thermal cycler (Corbett Life

Science) employing the following cycling parameters: 50uC for

2 min, 95uC for 2 min, and 40 cycles of 95uC for 15 sec and 60uC
for 30 sec. A melt curve analysis was performed from 60uC to

95uC in 1uC intervals to demonstrate the specificity of each

amplicon and to identify the formation of primer dimers.

Amplicons were also inspected on a 1.2% agarose gel and

subjected to automated sequencing to prove their identity. Fold

changes in transcripts between activated and non-activated L3

were normalized to the 60S acidic ribosomal protein gene

(accession number BF250585) [23] according to an established

method [24,25]. The standard error of the log2 ratios was

calculated from the error of the crossing points and observed

reaction efficiencies propagated through the calculation of the

ratio. Non-parametric statistical inference testing of log2-trans-

formed ratios was performed using a pairwise fixed reallocation

randomisation approach with 10,000 simulations which calculated

the probability of observing ratios of randomly assigned control

Figure 2. Example of A. caninum third-stage larvae (L3) ingesting fluorescein-conjugated bovine serum albumin (FITC-BSA)
following serum-stimulation activation in vitro. Ensheathed (non-activated) L3 do not ingest FITC-BSA (A) whereas serum-stimulation activated
L3 ingest the dye and exhibit strong fluorescence from the gut (B-1006magnification; C-4006magnification).
doi:10.1371/journal.pntd.0000130.g002

Hookworm Parasitism Genes
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and treatment pairs greater than or equal to the treatment effect

observed.

Results

Activation and feeding
Approximately 120,000 activated and 120,000 non-activated L3

of A. caninum were prepared for RNA extraction. As evidenced by

the ingestion of FITC-BSA, .95% of all activated L3 resumed

feeding, whereas ,4% of the non-activated L3 fed (Figure 2). L3

that failed to feed in the presence of the serum stimulus or those

that fed in the absence of the stimulus could not be separated from

each other.

SSH cDNA libraries and general characteristics of the ESTs
The RNAs from activated and non-activated L3 were extracted,

processed, subjected to forward and reverse SSH and cloned into a

plasmid vector. A total of 958 sequencing reactions from the

forward library and 171 from the reverse library yielded high

quality ESTs. The sequences were deposited in GenBank

(accession numbers ES671894–ES672870) and dbEST (accession

numbers 46880363 – 46881339) databases. Clustering of these

SSH ESTs yielded totals of 242 forward subtracted and 109

reverse-subtracted contigs (Table 1). Approximately half of all

forward subtracted sequences were represented by a single EST,

although this figure was ,80% for reverse subtracted sequences.

The minimum and maximum lengths of the ESTs were 100 bp

and 1500 bp, respectively, with the forward subtracted contigs

being slightly larger (571 bp) than those from the reverse

subtracted contigs (499 bp). Contigs assembled from the publicly

available ESTs for A. caninum had a similar size distribution

compared with those assembled from the subtracted ESTs.

From the SSH-derived ESTs, almost 30% of all contigs from

both libraries lacked significant sequence similarity to any of the

ESTs generated previously for this species [8]. Furthermore, 64–

70% of the ESTs from the forward and reverse subtracted libraries

respectively did not exhibit significant similarity (at both the

nucleotide and protein levels) to sequences within the databases

queried (GenBank, EMBL and WormBase) (Table 2). Most

mRNAs identified by SSH (63.8%) had a predicted ORF of

.50 amino acids. Of these, 19% from the forward subtracted

contigs had ORFs with a predicted signal sequence as compared

with 6% from the reverse subtracted contigs.

Microarray validation of SSH
The differential hybridisation of forward and reverse subtracted

contigs identified by SSH was verified using a custom designed

oligonucleotide microarray. In order to assess the sensitivity and

specificity of SSH, we clustered the entire A. caninum EST dataset

(9,618 ESTs) and submitted the union of the public ESTs and the

SSH contigs for oligonucleotide design. Slides were hybridised

with cRNA derived from two separate populations of hookworms

(Groups III and IV; Figure 1). The number of L3 obtained from

Group III was sufficient to produce two separate pools, serving as

a technical replicate for RNA extraction. In total, eight separate

hybridisations were performed, one for each of the three RNA

samples, plus a dye swap as well as two self-hybridisations, in

which Cy3 and Cy5 probes generated from the same RNA stock

were used together to hybridise to the slide. For the two

populations of A. caninum L3 used, the response to serum

stimulation was very similar, as can be seen from the Magnitude

(M) versus Amplitude (A) plots generated for each population

(Figure 3). The three different oligonucleotides designed for each

target yielded consistent log2 ratios among the 50 A. caninum

control genes (data not shown). Similar log2 ratios were also

observed between arrays and dye-swaps (Figure S1). Furthermore,

real-time PCR analysis, performed on 17 randomly chosen SSH-

derived sequences, demonstrated the validity of the microarray

data. However, the microarray consistently under-estimated the

log2 ratio for highly abundant mRNAs, most likely attributable to

probe saturation at both the 100% and 50% scans (data not

shown). The data discussed in this publication have been deposited

in NCBIs Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/) and are accessible through GEO Series accession

number GSE8155

Table 1. Cluster summary of Suppression Subtractive Hybridization expressed sequence tags

Source Number of sequences Sequence length

ESTs Contigs Singletons Total Mean Min Max

Forward subtracted library 958 110 132 242 570.6 96 1454

Reverse subtracted library 171 18 91 109 499.4 100 1492

Population 9618 1311 1578 2889 495.8 108 1984

The term ‘‘population’’ refers to the 9618 publicly available A. caninum expressed sequence tags.
doi:10.1371/journal.pntd.0000130.t001

Table 2. Characteristics of Suppression Subtractive
Hybridization sequences

Total
Forward
SSH

Reverse
SSH

n % n % n %

New A. caninum sequences 103 29.3 69 28.5 34 31.2

New and unique sequences 68 19.4 44 18.2 24 22.0

Similar sequences in GenBank (nr) 213 60.7 147 60.7 66 60.6

Similar nematode ESTs in dbEST 193 55.0 136 56.2 57 52.3

ORF $50 amino acids 224 63.8 174 71.9 50 45.9

Predicted signal peptide 53 15.1 46 19.0 7 6.4

Predicted transmembrane domain 18 5.1 13 5.4 5 4.6

Gene ontology annotation 110 31.3 76 31.4 34 31.2

A. caninum sequences identified by Suppression Subtractive Hybridization (SSH)
were considered to be new if they shared less than 95% identity and at least 30
base pairs of overlap with any of the publicly available A. caninum expressed
sequence tags. SSH sequences were considered to be unique to A. caninum if a
similar sequence could not be identified from another species (E-value cut-off,
161026) in dbEST, GenBank, or Swissprot.
doi:10.1371/journal.pntd.0000130.t002
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Activation associated mRNAs
In total, 602 mRNAs were associated with log2 transcription

ratios significantly greater than zero (P#0.01). A total of 103

mRNAs new to A. caninum (not in the public databases prior to this

study) were identified by SSH, of which 79 had microarray data

available. More than 60% of these mRNAs exhibited no signifi-

cant similarity to any sequences other than A. caninum nor did they

have any homologues/orthologues in the publicly available

sequences for the congeneric hookworm, A. ceylanicum, or other

strongylid nematodes. Sixty-three percent of unique genes, which

were up-regulated upon serum stimulation, possessed a signal

sequence, in comparison with 33% for down-regulated mRNAs

(Table 3). The ten most abundant mRNAs in activated and non-

activated L3 are listed in Table 4. Cytochrome c oxidase large

subunit of nuclear ribosomal RNA and two novel mRNAs were

amongst the most highly expressed mRNAs in both activated and

non-activated larvae, with all but the two novel mRNAs being

slightly, albeit significantly (P#0.01) up-regulated upon stimula-

tion. One of the most abundant mRNAs in non-activated larvae

was Ac-mtp-1, encoding a metalloprotease involved in skin

penetration [26], and this was the only molecule to also exhibit

dramatic differential transcription upon stimulation (Table 4).

The types of proteins encoded by mRNAs that were up-

regulated upon serum stimulation are very different from those

that were down regulated (Tables 5 and 6). Among the 30 most

highly up-regulated mRNAs, 17 encoded members of the PRP

superfamily [27]. In addition .30% of these mRNAs were

predicted to encode secreted proteins. In contrast, most mRNAs

that were highly down regulated upon serum stimulation did not

possess signal sequences and represented a more diverse group of

molecules, including two heat-shock proteins, three PRPs, several

novel sequences and a cytochrome P450. Thirteen mRNAs

encoding proteases representing all four mechanistic classes, as

determined from the MEROPS database [28], were also different-

ially expressed following serum stimulation (Table 7). In general,

the most abundantly represented group of mRNAs associated with

activation was the PRPs. Sixty-one different PRP transcripts were

identified among the publicly available ESTs and the SSH dataset

herein. Thirty-two of these PRPs were associated with activation,

21 of which shared greater than 50% amino acid identity with at

Figure 3. Magnitude (M) versus Amplitude (A) plot of array data summarized by population. Data points are colour-coded to highlight
the difference between significant and non-significant log ratios as well as agreement with predictions based on results achieved using suppressive
subtractive hybridisation. Yellow, pink, and white points represent sequences with log2 ratios which were not significantly different from zero
(P.0.01). All other points denote sequences with log2 ratios significantly different from zero (P,0.01). Results for worms from Group III (A) and Group
IV (B).
doi:10.1371/journal.pntd.0000130.g003
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least one of the other activation-associated PRPs. All but three of

the activation-associated PRPs, Ac-asp-2 (AW626807), an mRNA

similar to Ac-asp-1 (SSH Contig 017), and un-clustered A. caninum

EST (BQ667555), were up-regulated upon serum stimulation.

Time course of activation-associated mRNAs
Selected mRNAs were examined at different time points

throughout the course of serum stimulation (Table 8). Four

mRNA’s were up-regulated and 4 were down-regulated within 1

hour of stimulation, then a further 80 responded to stimulation

after 6–13 hours.The mRNAs that were rapidly up- or down-

regulated following activation included the heat shock protein

gene, hsp 12.6, the cysteine protease Ac-cp1, a metalloprotease and

an mRNA similar to the Onchocerca related antigen (ora-1) from C.

elegans. Several PRPs, as well as the metalloprotease Ac-mtp-1 and a

neuropeptide-like protein exhibited obvious differential transcrip-

tion after at most 6 h. Interestingly, Ac_SSH_0042_A, one of the

most highly up-regulated activation-associated PRPs, did not

appear to increase in transcription until after 13 h of incubation.

Gene ontology analysis
All activation-associated mRNAs were annotated with GO

terms based on sequence similarity using the Blast2GO platform,

and 3-level summaries were prepared for each aspect of GO,

molecular function, biological process and cellular component

(Figure 4). It is important to note that these classifications provide

an estimation only of gene function, because the sequence data

used are mRNAs, and often only partial sequences. Nonetheless,

we identified a number of gene families that were highly

Table 3. Characterization of newly identified A. caninum
sequences

SSH Subtracted library

Totals Forward Reverse

No similar sequences beyond A. caninum 50 32 18

ORF$50 17 14 3

Predicted signal peptide 6 6 0

Predicted transmembrane domain 1 1 0

Similar to existing A. caninum ESTs (dbEST) 5 3 2

Similar sequences from GenBank (nr) 0 0 0

Interpro/Swissprot annotations 2 2 0

Similar sequences from other nematodes 29 21 8

ORF$50 23 18 5

Predicted signal peptide 2 2 0

Predicted transmembrane domain 2 1 1

Similar to other nematode ESTs (dbEST) 8 5 3

Similar sequences from GenBank (nr) 29 21 8

Interpro/Swissprot annotations 4 3 1

103 new sequences were identified by suppression subtractive hybridization, 79
of which have microarray expression data available. These sequences are
divided into those that are similar to sequences from other nematodes and
those that are restricted to A. caninum.
doi:10.1371/journal.pntd.0000130.t003

Table 4. Most highly expressed mRNAs in activated and non-activated L3

GeneName Log2 signal Species Accession E-value Classification

Activated AcL3

Ac_SSH_C_0047 17.9 (1.08) A. caninum AW700368 5610291 Cytochrome oxidase subunit III

Ac_SSH_C_006 17.9 (1.05) A. caninum AW735246 8610282 Cytochrome oxidase subunit I

Ac_SSH_C_0048 17.8 (0.68) A. caninum AW588404 8610254 Large subunit rRNA

BQ666258 17.9 (1.02) C. briggsae CAE68374 2610220 Hypothetical protein cbg14130

Contig1161 17.8 (1.25)

Ac_SSH_C_0028 17.8 (1.08) A. caninum BQ25205 7610284 PRP-like protein

Ac_SSH_C_0009 17.7 (1.07) A. caninum BM130138 2610281 PRP-like protein

Ac_SSH_C_0019 17.7 (1.02) H. contortus Z69345 36102103 Cysteine proteinase

Ac_SSH_C_0008_A 17.6 (1.22) A. caninum BQ666406 36102109 PRP-like protein

SSH Contig 0140 17.6 (1.27) P. pacificus BI500287 7610290 PRP-like protein

Non-activated AcL3

Ac_SSH_C_015 17.4 (0.77) A. caninum AW700351 1610244 Ac-mtp-1

Ac_SSH_S_0190 17.2 (0.82) A. caninum BQ667723 4610279 Metallothionein

Ac_SSH_S_0320 17.2 (0.81) A. caninum AW588291 2610239 Glycerol kinase

Ac_SSH_C_0048 17.2 (0.53) A. caninum AW588404 8610254 Large subunit rRNA

Ac_SSH_C_0047 17.2 (0.84) A. caninum AW700368 5610291 Cytochrome oxidase subunit III

BQ666258 17.2 (0.70) C. briggsae CAE68374 2610220 Hypothetical protein cbg14130

Ac_SSH_C_006 17.2 (0.81) A. caninum AW735246 8610282 Cytochrome oxidase subunit I

Contig1161 17.1 (0.82)

Ac_SSH_C_0122 16.8 (0.85) A. caninum AW181373 8610227 Elongation factor 2

Ac_SSH_C_0051 16.7 (0.76) N. americanus BU088734 9610223 Large subunit rRNA (rpl-7A)

Log2 signal intensities are reported for the most highly expressed genes as evidenced by microarray analysis. Values in parentheses are standard errors. Sequence
similarity searches were conducted through dbEST, NCBI, and Swiss-prot using a translated query. All accession numbers are for GenBank.
doi:10.1371/journal.pntd.0000130.t004
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upregulated in activated L3s. The GO category for catalytic

activity was significantly over-represented in the mRNAs which

were up-regulated upon serum stimulation. Inspection of higher-

level terms in the GO tree showed that this significance was likely

accounted for by the many proteases and other hydrolytic enzymes

which were up-regulated during serum stimulation (Table 7).

Based on the frequency of proteases encoded by the current gene/

cDNA entries (n = 48) for A. caninum in the NCBI databases, only

three such molecules would be expected among the 66 annotated,

up-regulated mRNAs. Instead, a total of seven were observed.

Additionally, three of the 13 genes predicted to encode

metallopeptidases were up-regulated in activated L3. The

importance of proteases in activation seems evident from

Figure 4, which shows that a majority of the up-regulated genes

encode ‘protein catabolism’ functions, a sub-category of the

‘biological process’ GO category.

The GO data were also analysed in the context of mRNA

expression data [29]. This analysis focused on the degree to which

mRNA expression within specified GO categories was greater

than the global array average (Table 9). The absolute log2 ratios of

genes associated with defence and the response to external stimuli

were 2.4 to 2.9 times greater than the average. The log2 ratio of

genes encoding proteins with a predicted extracellular localization

was greater than three times the average, with this trend being

reflected primarily by the PRPs and proteases. Interestingly,

mRNAs associated with carbohydrate binding were more highly

represented than average (EQ = 2.7). The largest group of

annotated genes was associated with catalytic activity. Collectively,

these genes had log2 ratios, which were 1.3 times greater than the

average. However, hydrolases and lyases were largely responsible

for the trend. Hydrolases (n = 93) and lyases (n = 14) were

generally up-regulated 1.5 to 1.7 times more than the average,

which was considerable given the size of those GO categories.

The GO classifications can be useful for functional comparisons

among species. A comparison was made between activated L3 in

A. caninum and C. elegans larvae exiting from dauer. The 3-level

Table 5. Most highly up-regulated mRNAs associated with serum stimulation

GeneName Log2 Ratio (SE) Species Accession E-value Classification

Ac_SSH_C_0032 5.8 (0.54) A. caninum BQ667276 3610284 Novel (SP)

Ac_SSH_C_0042_B 5.5 (0.14) A. caninum BQ666426 36102103 PRP superfamily member (SP)

Ac_SSH_C_0027 5.0 (0.44) A. caninum BQ667497 8610268 PRP superfamily member

Ac_SSH_C_0069 4.9 (0.51) A. caninum BQ666908 2610260 Weak similarity to boophilin

Ac_SSH_C_0008_A 4.8 (0.79) A. caninum BQ666406 36102109 PRP superfamily member (SP)

Ac_SSH_C_0042_A 4.7 (0.12) A. caninum BQ666554 1610295 PRP superfamily member (SP)

Ac_SSH_C_0099 4.6 (1.11) (SP)

Ac_SSH_C_0144 4.5 (0.43) A. caninum AF089728 2610259 PRP superfamily member

Ac_SSH_C_0006 4.4 (0.61) A. caninum CW76671 1610289 PRP superfamily member (SP)

Ac_SSH_C_0081 4.4 (0.50) A. ceylanicum AY136548 16102105 PRP superfamily member

Ac_SSH_C_0044 4.4 (0.59)

Ac_SSH_C_0065 4.2 (0.37) A. ceylanicum AAR03712 3610213 PRP superfamily member (SP)

Ac_SSH_C_0019 4.2 (0.34) H. contortus Z69345 36102103 Cysteine proteinase (SP)

Ac_SSH_C_0041 4.1 (0.41) A. caninum BQ667185 1610279 Apyrase (SP)

Ac_SSH_C_0009 4.0 (0.37) A. caninum BM130138 2610281 PRP superfamily member (SP)

Ac_SSH_C_0118 4.0 (0.45) A. caninum BM130091 8610227 PRP superfamily member (SP)

Ac_SSH_S_0350 4.0 (0.84) A. caninum BQ666550 2610286 PRP superfamily member (SP)

BI744483 4.0 (0.42) C. briggsae CAE72985 2610234 Hyp. protein cbg20329

Ac_SSH_C_0131_B 4.0 (0.42) A. caninum BQ667320 6610244 Novel

BQ666642 4.0 (0.41)

Ac_SSH_C_0040 3.9 (0.62) A. caninum BQ667639 2610267 PRP superfamily member (SP)

Ac_SSH_C_0017 3.9 (0.09) A. caninum BQ667639 6610293 PRP superfamily member (SP)

Ac_SSH_S_0131_A 3.9 (0.35) A. caninum BQ667320 2610222 Novel

Ac_SSH_C_0140 3.8 (0.40) P. pacificus BI500287 7610290 PRP superfamily member (SP)

Ac_SSH_S_0158 3.8 (0.51) A. caninum BQ666836 6610246 PRP superfamily member (SP)

BQ667750 3.8 (0.45) C. elegans CAA94349 261027 Hyp. protein f49e11.5

Ac_SSH_C_0086 3.7 (0.31)

BM077611 3.6 (0.32) (SP)

Ac_SSH_C_0143 3.5 (1.07) A. ceylanicum AY288090 2610264 PRP superfamily member (SP)

Ac_SSH_C_0024 3.5 (0.44) A. caninum BQ666426 1610228 PRP superfamily member (SP)

Log2 ratios are reported for the most highly up-regulated genes as evidenced by microarray. The standard error of the Log2 ratio is provided in parentheses. Sequence
similarity searches were conducted through dbEST, NCBI, and Swiss-prot using a translated query. (SP) indicates a predicted signal sequence peptide. (PRP) indicates
members of the PRP superfamily. PRPs have been termed Ancylostoma secreted proteins (ASPs) in hookworms.
doi:10.1371/journal.pntd.0000130.t005
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charts (Figure 5) display the distribution of GO terms specific to

the category of biological process for the 30–36% of hookworm

ESTs where a GO function could be assigned. While the ‘‘post-

stimulation’’ transcriptome of both organisms was dominated by

genes associated with cellular and physiological processes, it was

evident that dauer exit in C. elegans was associated with a

substantial increase in the proportion of genes involved in growth,

development and reproduction. By comparison, serum stimulation

in A. caninum did not result in an increased representation of these

mRNAs. Interestingly, even the pool of annotated sequences from

C. elegans dauer larvae included (15%) of mRNAs associated with

development. This was not the case for the ensheathed, non-

activated L3 of A. caninum.

Discussion

For many parasitic nematodes, developmental arrest at the L3

stage is critical for their survival in the environment. In the

hookworm model, the exit from developmental arrest is associated

with the invasion of the host, assessment of host suitability (larval

hypobiosis vs. development to adulthood) and evasion of the host

immune response. Therefore, it is plausible that genes associated

with this exit facilitate these processes. Using a SSH-based EST

approach, we explored transcription in the L3 stage of A. caninum

during the transition from a free-living to a parasitic larva, by

simulating the earliest stage of parasitism by hookworms in the

mammalian (canine) host via serum stimulation. The ESTs

produced using this approach were then incorporated into a

customised oligonucleotide microarray together with a set of

known A. caninum sequences, in order to carry out a large-scale

analysis of transcripts during this transition to parasitism.

Pathogenesis-related proteins
High-level GO summaries demonstrated that a large proportion

(12%) of differentially expressed mRNAs appear to be involved in

extracellular localization, of which the majority (27) encode a

group of proteins belonging to the PRP superfamily. The greater

than average transcription of genes encoding PRPs highlights their

Table 6. Most highly down-regulated mRNAs associated with serum stimulation

GeneName Log2 Ratio (SE) Species Accession E-value Classification

Ac_SSH_C_007 26.0 (0.64) A. caninum AW627014 2610248 Novel

AW589190 25.3 (0.49) (SP)

AW626807 25.2 (1.50) A. caninum AAC35986 1610261 Sim. to Ac-asp-2 (PRP)

AW589041 24.8 (0.50)

AW626929 24.9 (0.49)

AW735403 24.6 (0.32) C. briggsae CAE64405 1610211 Hypothetical protein cbg09097

Ac_SSH_S_109 24.6 (0.80) A. caninum AW627087 3610267 Cytochrome P450 Cyp-34A4

Ac_SSH_C_015 24.5 (0.53) A. caninum AW700351 1610244 Ac-mtp-1

AW782975 24.4 (1.18) C. elegans AAG24180 5610213 Hypothetical protein t01g6.10

Contig139 23.9 (0.29)

Ac_SSH_C_017 23.9 (0.13) N. americanus AF079521 26102105 Sim. to Na-asp-1 (SP) (PRP)

Ac_SSH_C_008 23.5 (0.32) A. caninum BM077892 5610242 Alpha-B-Crystallin

Ac_SSH_S_038 23.4 (0.39) A. caninum BG232502 3610263 Novel

Contig543 23.4 (0.54)

AW700711 23.3 (0.36)

BQ666059 23.2 (2.89)

AW588519 23.1 (0.21)

DW718196 23.1 (1.13) H. sapiens AL160151 16102145 RP11-168G22 (chromosome 13)

BM077835 23.0 (0.50) C. elegans CAA92771 5610213 Heat shock protein 12.6

AW626815 22.7 (0.27)

AW700927 22.7 (0.20) (SP)

BM077562 22.6 (0.26) C. briggsae CAE57974 3610227 Hyp. protein cbg01035

AW782965 22.5 (0.22) C. elegans CAA98234 4610217 Hyp. protein c12d8.4

AW181643 22.5 (0.22) D. discoideum AAC77879 3610215 ADP/ATP translocase (SP)

Ac_SSH_C_115 22.5 (0.91) A. ceylanicum CB175511 5610279 Sim. to C-type lectin (Y25C1A) (SP)

BQ667669 22.4 (0.28) C. briggsae CAE58531 3610242 Hyp. protein cbg01687

BQ667555 22.4 (0.19) A. ceylanicum AAN11402 9610240 PRP superfamily member

BF250627 22.3 (0.40) C. elegans AAB00621 4610250 Putative amino acid transporter

AW627137 22.3 (0.16)

AW700856 22.3 (0.18) C. elegans CAA95817 7610217 Hyp. protein f22d6.11

Log2 ratios are reported for the most highly down-regulated genes as evidenced by microarray. The standard error of the Log2 ratio is provided in parentheses.
Sequence similarity searches were conducted through dbEST, NCBI, and Swiss-prot using a translated query. (SP) indicates a predicted signal sequence peptide. (PRP)
indicates members of the PRP superfamily. PRPs have been termed Ancylostoma secreted proteins (ASPs) in hookworms.
doi:10.1371/journal.pntd.0000130.t006
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importance in the transition of A. caninum from a free-living to a

parasitic larva. Although the functions of these molecules are

largely unknown, the identification of eight A. caninum PRP

superfamily members from the excretory/secretory products of

larvae [13,30] and adults [31–33] suggests involvement in host-

parasite interactions. Consistent with this hypothesis is the

observation that the N. americanus orthologue of Ac-ASP-2, a

major vaccine antigen from N. americanus [34], possesses a crystal

structure similar to a chemokine, suggesting that it may serve as an

extracellular ligand for an unknown host receptor involved in

inflammation [35]. Furthermore, Ac-NIF (neutrophil inhibitory

factor) [33] and Ac-HPI (platelet inhibitor) [32], the only two A.

caninum PRPs for which in vivo functions have been proposed, both

exhibit in vitro activities in the mediation of the inflammatory

response. All eight of the A. caninum PRPs characterized to date are

secreted proteins. Similarly, the presence of predicted signal

peptides in most of the activation-associated PRPs suggests that

they too are secreted.

Activation-associated proteases
Although most of the mRNAs encoding extracellular proteins

were PRPs, others encoded proteases. The importance of the

activation-associated proteases was evident in the high-level GO

summary of differentially expressed mRNAs (Table 9). In broad

terms, catalytic activity was over-represented in mRNAs from

activated L3, with proteases largely reflecting this trend. The

activation-associated proteases represented four of the major

catalytic families, namely the metallo-, aspartic, cysteine and serine

proteases. These proteases may serve roles in host tissue

degradation, digestion and/or development. For example, the

activation associated mRNA Ac_SSH_C_0180 is a likely homo-

logue of Parelaphostrongylus tenuis cpl-1, which encodes a cysteine

protease implicated in the digestion of host tissue during the escape

of the L3 from the intermediate snail host [36]. While many

mRNAs encoding proteases were upregulated upon activation, a

few such as those encoding the astacin-like metalloprotease, Ac-

MTP-1, were down-regulated. MTP-1 is thought to play a critical

Table 7. Activation associated proteases

Contig ID MEROPS Log Ratio (SE) Description Species GenBank E

Metallo-

Ac_SSH_C_015 MA.M12.A 24.5 (0.53)* 1) Ac-mtp-1 A. caninum AAK62032 2610255

2) Ac-mtp-1 A. caninum AY036056 1610253

BQ667149 MG.M24.B 1.4 (0.18)* 1) Hyp. protein cbg15103 C. briggsae CAE69085 6610242

2) Sim. to XAA-Pro dipeptidase A. ceylanicum BM131159 6610269

BM130304 MA.M13 2.4 (0.17)* 1) Ac-mep-2 A. caninum AAG29105 4610254

2) Sim to C. elegans F54F11.2 H. contortus BE496743 4610253

Ac_SSH_C_0075 MA.M12 2.9 (0.25)* 1) Metalloprotease O. ostertagi CAD28559 3610235

2) Metalloprotease A. caninum BQ125213 2610288

Ac_SSH_C_0109 MA.M12.A 3.3 (0.07)* 1) Metalloprotease-1 A. ceylanicum AAN11401 4610264

2) Metalloprotease-1 A. ceylanicum AY136547 3610259

Cysteine

BQ125325 CA.C01.A 2.5 (0.23)* 1) Hyp. protein m04g12.2 C. elegans CAB03209 5610232

2) Sim. to C. elegans cpz-2 S. ratti CD421081 3610226

Ac_SSH_C_0180 CA.C01 2.7 (0.05)* 1) Hyp. protein cbg23351 C. briggsae CAE75367 16102137

2) Cysteine protease A. suum U51892 36102101

Ac_SSH_C_0019 CA.C01.A 4.2 (0.34)* 1) Ac-cp-1 A. caninum AAC46877 16102100

2) Cysteine protease H. contortus Z69345 36102103

Aspartyl

Ac_SSH_S_0226 AA.A01 2.2 (0.21)* 1) Hyp. protein cbg11305 C. briggsae CAE66088 2610236

2) Sim. to human cathepsin E C. briggsae CD421081 3610226

Ac_SSH_C_0046 AA.A01 2.8 (0.26)* 1) Aspartyl protease-2 C. elegans AAO25989 16102123

2) Necepsin I N. americanus AJ245458 3610298

Ac_SSH_S_0165 AA.A01 3.0 (0.53)* 1) Hyp. protein cbg20329 C. briggsae CAE72985 2610254

2) Aspartyl protease P. pacificus BH836372 5610250

Ac_SSH_C_0068 AA.A01.A 3.0 (0.07)* 1) Aspartyl protease-1 C. briggsae CAE72985 7610260

2) Aspartly protease A. caninum BQ666543 1610275

Serine

BE352528 PA.S01.A 1.8 (0.13)* 1) Mast cell protease 7 M. musculus AAH11328 2610215

2) Chymotrypsinogen X. index CV512147 2610213

Log2 ratios are reported for activation-associated mRNAs confirmed by microarray. The standard error for each log2 ratio is provided in parentheses. Protease
classifications were determined from the MEROPS database and are reported here in the [Family.Clan.Subfamily] format. 1) Results from tblastn (GenBank NR). 2) Results
of tblastx (nematode dbEST).
doi:10.1371/journal.pntd.0000130.t007
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role in skin penetration in vivo [26], thus supporting its candidacy

as a vaccine antigen [37]. A similar scenario exists in larval

schistosomes, where the major protease involved in tissue penetra-

tion is pre-synthesized and its mRNA is down-regulated before the

cercarial stage infects the mammalian host (reviewed in [38]).

Proteases also serve roles in nematode development. For

example, O. volvulus cathepsin Z (Ov-cpz-1) is expressed in the

cuticle of O. volvulus and is essential for the moult of the L3 to L4

stage [39]. Evidence suggests that the cpz-1 orthologue in C. elegans

is also necessary for normal moulting and development [40]. The

activation-associated A. caninum mRNA, BQ125325, is cathepsin

Z-like and could therefore fulfil a similar role in the moult of

hookworm L3 to L4. In addition to moulting, the beginning of the

exit from dauer in C. elegans involves a major neurological

restructuring [41]. The aspartyl protease Ce-ASP-2 plays an

important role in neurodegeneration in this species [42], and the

association of a likely hookworm orthologue (Ac_SSH_C_0068)

with serum stimulation may also indicate a role in neurological

development.

Lastly, other activation-associated proteases may be involved in

the digestion of host proteins for nourishment. Ac_SSH_C_0046 is

60% identical to H. contortus pepsinogen (CAA96571) and necepsin I

Table 8. Transcription of activation-associated mRNAs

Sequence Log2 ratio (SE)

1 hour 6 hours 13 hours 24 hours

Ac_SSH_C_0042_A PRP superfamily member 0.6 (0.05) 0.3 (0.03) 4.8 (0.43) 8.9 (2.49)

Ac_SSH_C_0008_A PRP superfamily member 20.2 (0.02) 2.4 (0.18) 5.9 (0.65) 6.7 (0.43)

Ac_SSH_C_0109 Metalloprotease 1.5 (0.13) 2.0 (0.17) 2.1 (0.22) 6.2 (0.96)

Ac_SSH_C_0019 Ac-cp1 (cysteine protease) 1.9 (0.17) 6.1 (0.60) 6.2 (0.60) 5.9 (1.39)

Ac_SSH_C_0069 Weak sim. To boophilin 3.4 (0.47) 5.7 (0.83) 5.8 (0.79) 5.9 (0.61)

Ac_SSH_C_0099 Novel mRNA 2.1 (0.21) 3.4 (0.35) 4.8 (0.42) 5.0 (0.31)

Ac_SSH_C_0017 PRP superfamily member 20.5 (0.03) 4.2 (0.31) 5.5 (0.49) 5.0 (0.35)

Ac_SSH_C_0056 O. volvulus related antigen 21.4 (0.14) 1.7 (0.18) 2.0 (0.22) 3.5 (0.88)

Ac_SSH_C_0032 Novel mRNA 20.2 (0.01) 0.9 (0.05) 1.2 (0.08) 2.8 (0.19)

Ac_SSH_C_017 PRP superfamily member 20.2 (0.01) 22.4 (0.23) 23.2 (0.25) 23.4 (0.19)

Ac_SSH_C_015 Ac-mtp-1 (metalloprotease) 0.0 (0.00) 22.5 (0.18) 22.5 (0.12) 23.1 (0.19)

Ac_SSH_C_007 Novel mRNA 21.7 (0.13) 24.1 (0.35) 22.6 (0.18) 23.0 (0.24)

Ac_SSH_C_008 Alpha-beta crystaline 21.7 (0.08) 22.9 (0.15) 22.2 (0.11) 22.3 (0.20)

hsp-12.6 Heat shock protein 12.6 22.8 (0.32) 23.9 (0.38) 23.3 (0.29) 22.1 (0.43)

Ac_SSH_S_105 Weak sim. to a C-type lectin 20.3 (0.03) 21.0 (0.10) 20.8 (0.08) 21.3 (0.15)

Ac_SSH_C_018 Neuropeptide-like protein 0.3 (0.02) 21.3 (0.08) 20.6 (0.05) 21.2 (0.14)

The expression of selected activation-associated mRNAs and hsp-12.6 were examined for each time point. All log2 ratios are relative to the non-activated controls and
standard errors of the mean are provided in parentheses. The number of individual observations for the 24 hour and non-activated controls was at least 24. The
statistics for all other time points are based on at least 6 separate measurements.
doi:10.1371/journal.pntd.0000130.t008

Figure 4. Gene ontology (GO) annotations to activation-associated genes. GO annotations for up- and down-regulated activation
associated mRNAs were tabulated and summarized using high-level terms. GO terms were also tested for statistically significant over-representation
(P,0.05). Over-represented terms are provided here in the context of their parent terms. Red and green bars indicate the observed distribution of a
particular GO term, whereas black ticks denote the expected distribution based on observed frequencies in the entire known (publicly available) EST
data for A. caninum. All P-values reported are not adjusted for multiple testing correction but are only provided for terms which are below the ‘‘false
discovery’’ rate of 0.5.
doi:10.1371/journal.pntd.0000130.g004
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(also referred to as Na-APR-2) from N. americanus (CAC00542.1)

[43]. The pepsinogen of H. contortus is expressed in the gut of the

adult stage, and mRNAs have been detected in the L4 and adult

stages but not in the L3 [44]. Furthermore, its ability to degrade

haemoglobin indicates that it could be involved in feeding [44].

The N. americanus aspartyl proteases Na-APR-2, Na-APR-1 and the

A. caninum orthologue, Ac-APR-1, are all expressed in the gut of the

adult stage where they digest haemoglobin [45].

Comparisons with C. elegans
Mitreva et al. [8] observed that nearly 80% of the A. caninum

clusters that were publicly available (before our study here) shared

some degree of significant sequence similarity with C. elegans

sequences. Moser et al. [7] compared the ‘‘serum-stimulated

expression data’’ from many of these clusters to the 1,984 mRNAs

associated with dauer exit in C. elegans. This was done on a gene-

by-gene basis, and it was observed that cytochrome P450, two

neuropeptides, phospholipase and alcohol dehydrogenase were

enriched in the dauer form of C. elegans and in non-activated L3 of

A. caninum [7]. Conversely, these authors identified mRNAs

representing cytochrome c oxidases, an arginine kinase, a heat

shock protein, a glycerol hydrolase and glyceraldehyde 3-

phosphate dehydrogenase, which were up-regulated in both

nematode species following stimulation. Our findings are in

accordance with these reports. Neither our study nor that of Moser

et al. [7] identified major similarities between the ‘‘activated’’

states of C. elegans and A. caninum. This was attributed to the fact

that many of the C. elegans genes which were up-regulated were

under-represented in the A. caninum dataset [7]. However, even

after enriching for mRNAs that are differentially expressed

between free-living and activated L3, the lack of similarity

between recovered dauers and activated hookworm L3 persisted.

In lieu of a gene-by-gene approach, we used species-independent

GOs to assess the similarity of the relevant A. caninum and C. elegans

transcriptomes. This analysis made use of the microarray data

generated by [46]. This comparison demonstrated that GO

annotations specific to growth, development and reproduction

were highly represented in the recovered dauers of C. elegans

(Figure 5). This was not the case in A. caninum and is consistent

with the observation that serum-stimulation does not invoke

moulting of the L3 stage [47]. Conversely, mRNAs from C. elegans

dauers or larvae recovered 12 h after beginning of the exit from

dauer did not exhibit the significant over-representation of

extracellular products as was observed for A. caninum. This finding

supports the hypothesis that many of the highly up-regulated

mRNAs encoding putatively secreted products are involved in

parasitism.

Another major difference between ‘‘activation’’ in C. elegans and

A. caninum is the down-regulation of several mRNAs encoding

genes involved in G-protein coupled signal transduction during

dauer exit in C. elegans. Such a down-regulation was not observed

for A. caninum in the present study or that of [7]. As opposed to the

PRPs of activated A. caninum L3, the predominant transcripts in C.

elegans 12 h after beginning the exit from dauer included a plethora

of collagens, many of which were up-regulated $32-fold [46].

Even after enrichment for activation-associated mRNAs, only

three potential collagens were identified from A. caninum and only

one of these (cuticulin) was significantly up-regulated. Based on

this information, the activation of A. caninum larvae and the exit

from dauer involve considerably different mRNAs. However, the

mechanisms by which these mRNAs are regulated may be similar.

Ce-hsp-12.6 is a well-known direct target of the fork head

transcription factor (designated DAF-16) in C. elegans [48].

Transcripts for this gene are down regulated during dauer exit.

Interestingly, it was observed that the A. caninum orthologue of hsp-

12.6 (contig 313 from the publicly available ESTs) was also

significantly down-regulated during serum stimulation. Assuming

that the transcription of this gene is also under the direct

regulation of a DAF-16 homologue, the earliest transcriptional

events in the transition of A. caninum L3 to parasitism may also be

regulated by DAF-16. Real-time PCR conducted on several

activation-associated mRNAs at various time points throughout

the serum-activation process showed that the levels of many of

these mRNAs changed rapidly, as half of those assessed achieved

log2 ratios of noticeably more than zero in less than 1 h. The hsp-

12.6 transcript was represented in this group of ‘‘early responder’’

molecules. Other mRNAs with similar expression profiles may also

be directly regulated by DAF-16. Interestingly, one of the most

highly up-regulated PRP mRNAs did not increase substantially in

transcription until 13 h after serum-stimulation, which suggests

that it may be under the indirect control of DAF-16.

Table 9. Annotation-specific expression quotients

Term n N EQ (SE)

Biological process 372 747

Cellular process 338 684 1.05 (0.04)*

Cell adhesion 3 7 1.87 (0.57)

Physiological process 344 697 1.08 (0.05)*

Organismal physiological process 11 27 1.75 (0.38)*

Response to stimulus 26 41 1.06 (0.14)

Defense response 4 6 2.38 (0.60)*

Physiological response to stimlus 10 14 1.48 (0.30)

Response to external stimulus 3 7 2.83 (0.81)*

Cellular component 302 621

Extracellular region 14 26 3.33 (0.51)*

Extracellular region part 4 6 1.63 (0.59)

Extracellular space 3 5 2.12 (0.76)

Molecular function 485 927

Binding 270 504 0.93 (0.03)

Carbohydrate binding 4 7 2.73 (0.72)*

Catalytic activity 275 503 1.29 (0.05)*

Hydrolase activity 93 176 1.69 (0.14)*

Lyase activity 14 23 1.54 (0.22)*

Enzyme regulator activity 8 16 0.79 (0.19)

Enzyme inhibitor activity 2 10 1.49 (0.82)

Motor activity 3 7 1.78 (0.67)

Microtubule motor activity 2 3 1.50 (0.75)

Structural molecule activity 23 96 0.68 (0.09)

Structural constituent of cytoskeleton 3 5 1.61 (0.48)

Transporter activity 48 96 0.98 (0.10)

Organic acid transporter activity 3 5 1.87 (0.79)

Protein transporter activity 2 5 2.07 (1.52)

Expression quotients were calculated for each 3-level gene ontology term
mapped to activation-associated genes. The quotients are calculated as the
mean of the absolute log2 ratio of a category divided by the global log2 ratio of
the chip. A single asterisk indicates that the 95% confidence interval for the
quotient did not include 1. Differences observed in n (number of genes with
array data) and N (number of annotated genes in the suppression subtractive
hybridization and public EST databases) are due in combination to probe failure
as well as an inability to produce unique probes for some genes.
doi:10.1371/journal.pntd.0000130.t009
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Genes of unknown function
The SSH enrichment of activation-associated mRNAs identified

17 sequences which were up-regulated $4-fold and appeared to

be unique to parasitic nematodes (Table S1). For example, the

EST Ac_SSH_C_0056 was similar in sequence to an unchar-

acterised gene, ora-1, from C. elegans which is related to an O.

volvulus antigen (Ov39) and is thought to play a role in the ocular

pathogenesis caused by this parasite [49]. The mRNA represent-

ing Ac_SSH_S_0199 was up-regulated nearly 9-fold with the EST

showing sequence similarity to the genes Hc-nim-1 and Hc-nim-2

from H. contortus. The mRNAs encoding these genes are abundant

in adult H. contortus and represent almost 10% of total mRNA [50].

Hc-NIM-1 is expressed in the hypodermis of the pharyngeal region

of the adult worm [50]. Lastly, SSH contigs 0099 and 0032 were

among the most highly up-regulated mRNAs in activated L3 of A.

caninum, with log ratios of ,4.7 and 5.9, respectively. Both were

predicted to possess a signal peptide and appeared to be specific to

A. caninum. Their apparent novelty and stage specificity suggest

that they are parasite-specific molecules which might be involved

in interactions with host tissues. Functional characterization of

these and other novel activation-associated mRNAs may provide

insights into the roles that such molecules play in the transition to

parasitism. Furthermore, this information may warrant investigat-

ing their potential as targets for novel therapeutics.

Conclusions
Having identified a suite of mRNAs associated with serum

stimulation, future efforts should be focused on gaining an

understanding of the biological function/s of selected members of

these parasitism-associated genes. Of particular interest is the large

group of PRPs that are up-regulated upon serum stimulation. In

combination with their considerable stage specificity and diversity,

many of these PRPs may have evolved to perform several

coordinated yet distinct functions involved in the parasitic process.

Given that PRP-like proteins occur in a wide range of taxa,

delineating their function could potentially provide a deeper insight

into their roles in parasitism as well as their broader biological

significance. It is also of interest that the two most efficacious

hookworm vaccine antigens, ASP-2 and APR-1, are members of the

two most represented families/groups of proteins associated with this

transition to parasitism, PRPs and proteases. We believe that this

bodes well for the pursuit of these new molecules identified by SSH

as targets for novel vaccines and drugs.

The near absence of mRNAs associated with reproduction,

growth and development among activated hookworm L3 probably

reflects their ability to further arrest in tissues of non-permissive hosts

or in the external environment when conditions for transmission are

unfavourable. Although this should not invalidate C. elegans dauer

exit as a model for hookworm activation, it highlights the limitations

of this free-living nematode as a model organism for the transition of

nematode larvae from a free-living to a parasitic state.

Supporting Information

Figure S1 Magnitude (M) versus Amplitude (A) plot of dye-swap

self-hybridisations. RNA from serum-activated third-stage larvae

(L3) of A. caninum was labelled with Cy3 or Cy5 for ‘‘self’’

hybridisation. The resultant log ratios were plotted against the

log2 of the mean signal intensity, thus providing a visual means of

inspecting potential artefacts for a range of signal intensities. A self-

hybridisation was also performed for RNA extracted from non-

activated L3 as a control.

Found at: doi:10.1371/journal.pntd.0000130.s001 (0.08 MB PPT)

Table S1 Up-regulated activation associated mRNAs apparently

unique to nematodes

Found at: doi:10.1371/journal.pntd.0000130.s002 (0.03 MB DOC)

Table S2 Primer sequences used for real-time PCR analysis

Found at: doi:10.1371/journal.pntd.0000130.s003 (0.03 MB DOC)

Figure 5. Comparison of gene ontology (GO) terms associated with analogous processes. Two-level GOs with respect to biological
process for activated A. caninum and C. elegans 24 h post-dauer exit.
doi:10.1371/journal.pntd.0000130.g005
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