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Patterns of coexpression can reveal networks of functionally related genes and provide deeper understanding of processes
requiring multiple gene products. We performed an analysis of coexpression networks for 1,330 genes from the AraCyc
database of metabolic pathways in Arabidopsis (Arabidopsis thaliana). We found that genes associated with the same metabolic
pathway are, on average, more highly coexpressed than genes from different pathways. Positively coexpressed genes within
the same pathway tend to cluster close together in the pathway structure, while negatively correlated genes typically occupy
more distant positions. The distribution of coexpression links per gene is highly skewed, with a small but significant number of
genes having numerous coexpression partners but most having fewer than 10. Genes with multiple connections (hubs) tend to
be single-copy genes, while genes with multiple paralogs are coexpressed with fewer genes, on average, than single-copy
genes, suggesting that the network expands through gene duplication, followed by weakening of coexpression links involving
duplicate nodes. Using a network-analysis algorithm based on coexpression with multiple pathway members (pathway-level
coexpression), we identified and prioritized novel candidate pathway members, regulators, and cross pathway transcriptional
control points for over 140 metabolic pathways. To facilitate exploration and analysis of the results, we provide a Web site
(http://www.transvar.org/at_coexpress/analysis/web) listing analyzed pathways with links to regression and pathway-level
coexpression results. These methods and results will aid in the prioritization of candidates for genetic analysis of metabolism
in plants and contribute to the improvement of functional annotation of the Arabidopsis genome.

The advent of whole-system approaches, such as
DNA chips and metabolomics, have created new op-
portunities for studying how metabolic pathways are
coordinated to meet cellular demands (Sweetlove and
Fernie, 2005). Connectivity in the yeast (Saccharomyces
cerevisiae) metabolic network has been explored using
gene coexpression data and structural information
about the pathways; these studies have revealed fun-
damental insights into the general properties of met-
abolic gene networks in eukaryotes (DeRisi et al., 1997;
Ihmels et al., 2004b). One early result was that func-
tionally related genes are often coexpressed, and this
observation has provided strong motivation for the
adoption of expression microarrays in biological re-

search (DeRisi et al., 1997). In addition, it has been
shown that many genes encoding metabolic enzymes
form modules of coexpression and that coexpressed
genes occupy nonrandom positions with respect to
the pathway structure (Ihmels et al., 2004a, 2004b). A
number of methods based on integration of gene ex-
pression data with other data types have been devel-
oped, allowing identification of undiscovered modules
(Stuart et al., 2003) as well as control elements and
transcription factors that regulate their expression
(Pilpel et al., 2001). Other important results from the
study of biological networks include observations that
lethality correlates with high connectivity in the pro-
tein interaction and coexpression networks in yeast
(Jeong et al., 2001; Carlson et al., 2006), while for mam-
malian protein interaction networks, the lethality/
connectivity correlation is less pronounced (Gandhi
et al., 2006). For both network types, connectivity dis-
tributions are highly uneven and are well described
by power functions of the form f ; k2a, where f is the
frequency of nodes having k connections. Although
the goodness of fit of power law functions is some-
times controversial, it is clear that most biological
networks include a small but significant number of
nodes (e.g. genes or proteins) that have a large number
of connections, but most nodes have very few (for
review, see Albert, 2005). Until recently, the bulk of
research done on coexpression networks and metabo-
lism has focused primarily on analysis of data from
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yeast. However, the accumulation of genomic and
metabolic information for more complex eukaryotes,
most notably the model dicot Arabidopsis (Arabidopsis
thaliana), now allows for analogous studies in higher
plants (Minorsky, 2003; Gutierrez et al., 2005).
AraCyc (http://Arabidopsis.org/tools/aracyc/) is

a database and visualization system for metabolic
pathways in Arabidopsis developed by The Arabi-
dopsis Information Resource (TAIR). The first version
of the AraCyc database was based on the MetaCyc
compendium of known biochemical pathways and
output from the Pathologic software, which uses key-
word matching to assign gene products to individual
pathway steps recorded inMetaCyc. Since then, AraCyc
has undergone continuous improvement through
manual editing and literature-based curation (Mueller
et al., 2003). However, approximately 40% of the
biochemical reactions in AraCyc have no gene anno-
tation, while many others have multiple gene annota-
tions. Because the pathways are based primarily on
shared sequence similarity with enzymes from other
organisms, it is likely that many annotations will
require validation from other sources. In this article,
we explore the idea that it may be possible to deepen
the annotation of plant metabolic pathways by using
coexpression patterns deduced from publicly avail-
able DNA microarray datasets to infer functional re-
lationships among genes.
In previous work, we described a method that uses

coexpression relationships inferred from regression
analysis of DNA microarray data to identify new
players in biological pathways (Persson et al., 2005).
Using this method, we analyzed quality-screened
Affymetrix ATH1 microarray experiments and identi-
fied sets of genes that are highly coexpressed with one
or more cellulose synthase (CESA) genes in Arabidop-
sis. The general utility of the approach was demon-
strated through mutant analyses of candidate genes:
Two genes coexpressed with CESA genes implicated
in secondary cell wall formation exhibited cell wall-
related phenotypes. Here we further develop the coex-
pression approach and apply it to metabolic pathways
in Arabidopsis. Using the AraCyc database as a start-
ing point, we conducted large-scale coexpression anal-
yses for 1,330 genes encoding metabolic enzymes in
Arabidopsis and generated metabolic networks based
on the transcriptional relationships between genes. By
comparing the AraCyc view of Arabidopsis metabo-
lism with gene expression data, we propose a richer
and more detailed picture of metabolic pathways in
Arabidopsis and introduce a wealth of candidates for
genetic and biochemical analysis.

RESULTS

Genes Belonging to the Same Pathway Are Coexpressed

We used publicly available data from 486 quality-
screened ATH1 array hybridizations to analyze coex-

pression patterns for metabolic pathway genes in
Arabidopsis. The ATH1 expression microarray from
Affymetrix contains over 22,000 probe sets that hy-
bridize to one or more Arabidopsis genes (Redman
et al., 2004). Using probe set annotations from Affy-
metrix, we identified 1,330 nonpromiscuous, nonre-
dundant probe sets that each measure a single gene
from the AraCyc database of metabolic pathways. We
then performed large-scale linear regression analysis
of expression values between these 1,330 probe sets
and all other probe sets on the array using the meth-
odology developed previously (Persson et al., 2005).
Each regression analysis generates three values useful
for evaluating coexpression relationships: a slope pa-
rameter that indicates the direction (positive or nega-
tive) of coexpression, and p and R-squared (r2) values
that indicate the strength of the coexpression relation-
ship. The r2 value, also known as the coefficient of
determination, is the square of the Pearson’s correla-
tion coefficient (r) and is the fraction of variance in one
variable that can be explained by variation in the other
(Rodgers and Nicewander, 1988). Thus, r2 values that
are closer to 1 indicate higher correlation and a stron-
ger linear relationship between compared variables.
The p value quantifies the confidence in the correla-
tion; it is the probability that the observed value for r2

could have been obtained by chance under the null
hypothesis that the two variables being compared are
not linearly related. Figure 1 describes the relationships
between p and r2 values obtained in our study and
presents illustrative examples of gene pairs that are
highly or weakly coexpressed in positive or negative

Figure 1. Coexpression p and r2 values for genes from the AraCyc
database of metabolic pathways. A, Logarithm (base 10) of regression p
values plotted against corresponding r2 values obtained from regressing
expression values for 1,330 AraCyc genes against all genes on the
ATH1 expression microarray. B to D, Example plots showing positive
(D) and negative (B) linear relationships between normalized expres-
sion values (log base 2) for weakly (C) and strongly (B and D)
coexpressed genes.
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directions. As shown in Figure 1A, a strong relation-
ship exists between p and r2 values in our data set;
however, because of the greater range among p values,
we decided to use primarily the p values to assess
coexpression between genes.

It is generally expected that gene products that are
regulated at the level of mRNA abundance and that
collaborate in a shared function or pathway are likely
to be coexpressed. To assess whether this was the case
with Arabidopsis metabolic pathways, we compared
r2 and p values obtained from linear regressions per-
formed between genes annotated as belonging to the
same or different metabolic pathways in AraCyc. In
general, the population of within-pathway compari-
sons contained a higher proportion of high-confidence
(low p and high r2) results than did comparisons
involving genes from different pathways (Table I).
Thus, we found that genes annotated as belonging to
the same pathway tend to be more tightly coexpressed
than genes from different metabolic pathways, a result
that is consistent with results obtained from simi-
lar studies in yeast (Ihmels et al., 2004b). Interestingly,
we also found that the relative proportion of high-
confidence coexpression relationships is also higher
among positively coexpressed genes than among neg-
atively coexpressed genes.

Core Metabolic Pathways Display Tighter Level
of Transcriptional Coordination

To investigate whether coexpression levels of genes
within pathways vary from one pathway to another,
we used a random sampling approach to identify
pathways that contained above-average numbers of
coexpressed gene pairs. For each gene, we created a
list of all other genes represented on the ATH1 array
and ordered the list by increasing p (or, equivalently,
decreasing r2) values. In this scheme, genes within
highly coexpressed pathways should appear near the
top of each other’s coexpression lists and have small

ranks. Moreover, the average of their mutual ranks
should be unusually small when compared to samples
of genes selected at random without regard to their
pathway affiliation. To test this, we selected 10,000
random samples of size N for each pathway having N
genes, computed the average rank for each sample,
and then compared the distribution of average ranks
from the samples to the actual average rank obtained
for each pathway. The frequency with which we ob-
served average ranks as small or smaller than the
actual observed values thus provided an empirically
determined, within-pathway coexpression p value for
each pathway.

Table II presents the most tightly coregulated path-
ways according to this analysis. These tightly coex-
pressed pathways were enriched in core metabolic
pathways such as glycolysis, tricarboxylic acid (TCA)
cycle, and the pentose phosphate pathway, which
produce precursors for many other pathways. By
contrast, pathways involved in noncore or peripheral
biochemical pathways were coexpressed to a lesser
degree. A full list of the pathways we analyzed, with
links to Web pages for individual genes, pathways,
probe sets, and plain-text spreadsheets of regres-
sion results, is available at http://www.transvar.org/
at_coexpress/analysis/web.

Inferring Coexpressed Genes for Metabolic Pathways

We have shown that pathways are enriched for
coexpressed genes, a result that is consistent with the
commonly held view that genes involved in related
functions are expressed in a coordinate fashion. Pre-
viously, we used this aspect of transcriptional regula-
tion to identify new members of cellulose biosynthesis
pathways. Using large-scale coexpression results for a
group of known CESA genes, we identified candidate
genes outside the group that were coexpressed with
some or all group members. In this earlier analysis, we
observed that although genes in cellulose biosynthesis
pathways typically appear near the top of each other’s
coexpression lists, often there are many more genes
that have a higher ranking in terms of coexpression
than the other group members. We found that this was
also the case for the AraCyc coexpression data set. We
found that individual pathway genes are typically co-
expressed with tens or sometimes hundreds of genes
even at relatively stringent p or r2 value coexpression
cutoffs and that often these nonpathway genes out-
rank other members of the pathway in terms of co-
expression (Fig. 2).

Previously, we narrowed the field of candidate
genes for genetic analyses based on the number of
CESA bait genes with which the candidates were
coexpressed. That is, we chose candidate genes that
were tightly coexpressed with as many bait genes as
possible. Here, we present a more general version of
this approach that uses both the coexpression set size
and p values to select and rank candidates (Fig. 3A).
The method computes a network structure in which

Table I. Gene pairs in the same pathway contain a higher
proportion of high-confidence coexpression results

Each row reports the percentage of regression results within each
column’s category having the p values indicated in the first column. The
final row reports the number of pairs (N) considered in each category.
The table counts each gene pair once and excludes promiscuous probe
sets that match more than one gene.

2Log (p)

Within

Pathway,

Positive

Slope

Across

Pathway,

Positive

Slope

Within

Pathway,

Negative

Slope

Across

Pathway,

Negative

Slope

.200 0.8% 0.05% 0 0
120–200 1.4% 0.53% 0 0.0009%
80–120 2.9% 1.2% 0.28% 0.11%
60–80 2.8% 1.5% 1.2% 0.53%
40–60 5.8% 3.5% 3.3% 2.3%
,40 86% 93% 95% 97%
N (100%5) 4,033 426,724 3,226 434,388
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genes are considered linked when their linear regres-
sion p and r2 values meet a user-defined threshold. It
then identifies genes within the network that are linked
withmultiplemembers of a given pathway; using graph
analysis terminology, this is equivalent to finding genes
whose neighborhood of connected genes include mul-
tiple genes in the pathway. Next, it ranks these candi-
date genes based on the number of connected pathway
genes (within-pathway neighborhood size) and resolves
ties using the product of regression p values between
coexpressed gene bait and candidate genes.
Note that analyzing the network structure in this

way does not require that the pathway members
themselves be coexpressed (linked) with each other,
although this is often the case. In fact, this is a potential
strength of the approach in that it can exploit potential
redundancies in the system. For example, two iso-
zymes that perform the same pathway step may not
necessarily be coexpressed with each other, but they
could each require coexpression with a third gene that
supplies necessary functionality. Depending on the
strength of coexpression, the approach would identify
this third gene or any other genes that are connected
with multiple genes within the same pathway group.
In recognition that this approach is based on coex-
pression with multiple pathway members, not just
single genes, we have termed this approach pathway-
level coexpression (PLC) analysis.
We used PLC analysis to survey coexpression rela-

tionships for 205 AraCyc pathways, using coexpres-

sion p value cutoffs ranging from 1e-40 to 1e-200.
Figure 3B summarizes the number of genes identified
as being connected to one or more pathway members
at different p value cutoffs. A coexpression p value of
1E-80 or better and pathway neighborhoods of two or
more pathway genes produces 4,022 candidates con-
nected with 144 pathways. Interestingly, we identified
more than 100 genes (using p value cutoff 1E-80) that
are coexpressed with pathway neighborhoods con-
taining 15 or more genes. These PLC-identified genes
were from two of the most highly coexpressed path-
ways: chlorophyll biosynthesis and the Calvin cycle.

Table II. Most highly coexpressed pathways

Pathways with unusually high levels of coexpression (empirically determined pathway p value, 0.0001)
and at least five coexpression links (edges) between genes are listed. The column labeled Genes gives the
number of genes per pathway included in the coexpression analysis. The column labeled Edges lists the
number of coexpression links in the within-pathway coexpression network, using coexpression cutoff
1E-80. C is the clustering coefficient for the coexpression network; larger values for C indicate a higher degree
of connectivity (Watts and Strogatz, 1998). Super-pathway designations are fromAraCyc: PME, Generation of
precursor metabolites and energy; B, biosynthesis; D/U/A, degradation/utilization/assimilation.

Pathway Genes Edges C Super Pathway

Photosynthesis, light reaction 10 40 0.923 PME
Carotenoid biosynthesis 10 22 0.754 B
Gly degradation I 8 10 0.604 D/U/A
tRNA charging pathway 44 102 0.412 B
Calvin cycle 36 93 0.399 D/U/A
Photorespiration 29 42 0.318 PME
Chlorophyll biosynthesis 49 105 0.298 B
Gluconeogenesis 55 82 0.288 B
Fru degradation (anaerobic) 57 57 0.266 D/U/A
Glycolysis I 59 57 0.257 PME
Sorbitol fermentation 59 57 0.257 PME
Glycolysis IV 59 57 0.257 PME
Acetate fermentation 60 57 0.252 PME
De novo biosynthesis of purine nucleotides II 29 22 0.22 B
Starch biosynthesis 19 7 0.211 B
Fatty acid biosynthesis—initial steps 30 13 0.156 B
De novo biosynthesis of purine nucleotides I 46 32 0.151 B
TCA cycle—aerobic respiration 42 11 0.111 PME
Acetyl-CoA assimilation 28 6 0.107 PME
Colanic acid building blocks biosynthesis 53 12 0.066 B

Figure 2. Relative proportions of high-confidence coexpression links.
Each column reports the relative numbers of coexpression pairs with p
values indicated on the x axis, where the paired genes are both in the
same AraCyc pathway (I), both are in different AraCyc pathways (N), or
only one is in an AraCyc pathway (O).
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For the Calvin cycle pathway, the highest-ranking
PLC-identified gene candidates included several pu-
tative chloroplast proteins, including four of unknown
function and several more with predicted functions
related to electron transport and photosynthesis, such
as iron binding and ferrochelatase activity. The high-
est-ranking PLC result for the chlorophyll biosynthesis
pathway is GUN4 (AT3G59400), a well-studied regulator
of chlorophyll biosynthesis and a key player in plastid-to-
nuclear signal transduction (Larkin et al., 2003).

Further manual and computational inspection of
PLC-identified candidate genes reveals many more
that appear to be good candidates for biologically
meaningful coordinate expression. The flavonoid bio-
synthesis pathway (PWY1F-FLAVSYN), one of the
best-studied pathways in plant secondarymetabolism,

provides a representative example (Winkel-Shirley,
2001). Table III lists top-ranking genes linkedwith flavo-
noid biosynthesis according to PLC. Five of these are
already associated with the pathway, a consequence of
within-pathway coexpression relationships. Three others
have gene ontology (GO) annotations linking them to
flavonoid biosynthesis. One of these, At5g17050,was re-
cently identified as a flavonoid 3-O-glucosyltransferase,
which influences the flow of metabolites through the
flavonoid pathway (Tohge et al., 2005).

The Trp biosynthesis pathway provides another illus-
tration of how coexpression analysis can lead to new
hypotheses regarding gene function. Two genes in
the pathway are coexpressed with At3g26830 (PAD3),
which encodes a cytochrome p450 monoxygenase and
was recently shown to catalyze the final step in the
camalexin biosynthesis pathway (Zhou et al., 1999;
Schuhegger et al., 2006; note that the version of AraCyc
we used predates the latter finding and assigns the
PAD3 gene product to the first step of the pathway).
Camalexin is the major phytoalexin compound pro-
duced in Arabidopsis and plays a role in defense
against several pathogens (for review, see Glazebrook,
2005). As it is synthesized from precursors derived
from Trp, it is not surprising that we have detected a
coexpression relationship between these two path-
ways (Glawischnig et al., 2004). However, we also
found that the two Trp biosynthesis pathway genes
coexpressed with PAD3 are also coexpressed with
two other genes of unknown function (At2g38860 and
At3g46110), which are themselves coexpressed with
PAD3. These two genes occupy positions 62 and 137
(out of 22,000) in the sorted list of coexpression results
for PAD3, suggesting that they may play a role in
linking camalexin and Trp biosynthesis pathways in
Arabidopsis.

Using GO Annotations to Evaluate PLC-Identified
Candidate Genes

As described above, PLC analysis ranks candidate
genes first by the number of coexpressed partners
from the bait pathway and second by the p values of
the coexpression relationships. Further selection of
candidate genes is possible using annotations derived
from independent sources unrelated to coexpression
data, such as functional information inferred from
sequence homology or curated from the literature. For
this study, we used GO annotations as a convenient
summary of known and predicted functional infor-
mation for Arabidopsis gene products (Harris et al.,
2004). None of the annotations from GO are (thus far)
based on large-scale coexpression analysis.

The GO is a structured vocabulary of terms that that
organizes knowledge of gene products according to
their molecular function, biological role, or cellular
localization. GO annotations are associations between
terms and gene products, and each GO annotation is
tagged with an evidence code indicating the annota-
tion source. The GO annotations can aid the evaluation

Figure 3. Coexpression network analysis. A, Schematic showing PLC
analysis for identifying functionally relevant candidate genes outside a
functional grouping (e.g. a metabolic pathway) using their connections
to genes within the group. Bait genes that are members of the same
functional group (rectangular area) are connected via coexpression
relationships (dotted lines) to genes not currently annotated as belong-
ing to the group. Some of the genes outside the group are connected to
more than one group member and are selected as candidates for further
analysis. B, Numbers of coexpressed genes selected under different
coexpression p value cutoffs (ranging from 1E-40 to 1E-120) or requir-
ing increasingly large numbers of coexpression partners within a
pathway (2–15). No gene pair is counted more than once per column.

Wei et al.

766 Plant Physiol. Vol. 142, 2006



of PLC analysis results in two ways: First, they can
direct attention to particular classes of coexpressed
genes, such as transcription factors or protein kinases,
and second, they can allow further prioritization of
candidate genes based on the similarity of annotations
with bait genes from the target pathway.We found that
terms appearing frequently among annotations associ-
ated with the bait genes also appear frequently among
the genes identified in the PLC analysis.
For flavonoid biosynthesis, the term chloroplast is

one of themost abundantly used terms for genes within
the pathway as well as for the pool of candidate genes
identified by PLC analysis (Supplemental Table S1).
This annotation derives from electronic annotation by

TargetP, a program that usesN-terminal sequence infor-
mation to predict subcellular localization (Emanuelsson
et al., 2000). Although the chloroplast assignment may
not be correct given that flavonoid biosynthesis is
thought tobeassociatedwith theendoplasmic reticulum,
it is notable that TargetP assigned the same localization
to genes both within the pathway and to coexpressed
genes inferred by the PLC method. In addition, 14 PLC-
identified genes are annotated with the term transcrip-
tion factor activity, suggesting a potential role in the
regulation of the pathway.

The GO also includes terms indicating that the pro-
cess, function, or cellular localization of the annotated
gene product is currently unknown. We found that a

Table III. Genes coexpressed with the flavonoid biosynthesis pathway

Top-ranking genes identified by PLC analysis using p value , 1e-80 are shown with GO annotations. Asterisks indicate genes that are already
annotated as members of the flavonoid biosynthesis pathway. The number of coexpressed flavonoid biosynthesis genes is indicated in parentheses
in the column labeled Gene ID.

Rank Gene ID Annotations (GO ID and Term)

1 AT5G08640 (5) GO:0008372:cellular component unknown
GO:0005554:molecular function unknown
GO:0000004:biological process unknown

2 AT5G17050 (5) GO:0016757:transferase activity, transferring glycosyl groups
GO:0008194:UDP-glycosyltransferase activity
GO:0008152:metabolism
GO:0016999:antibiotic metabolism
GO:0009507:chloroplast

3* AT3G51240 (4) GO:0009813:flavonoid biosynthesis
GO:0008372:cellular component unknown
GO:0045486:naringenin 3-dioxygenase activity

4* AT5G05270 (4) GO:0005554:molecular function unknown
GO:0009813:flavonoid biosynthesis
GO:0008372:cellular component unknown

5* AT5G13930 (4) GO:0009715:chalcone biosynthesis
GO:0009705:vacuolar membrane (sensu Magnoliophyta)
GO:0016210:naringenin-chalcone synthase activity
GO:0005783:endoplasmic reticulum
GO:0009813:flavonoid biosynthesis

6* AT3G55120 (4) GO:0045430:chalcone isomerase activity
GO:0005783:endoplasmic reticulum
GO:0009813:flavonoid biosynthesis
GO:0009705:vacuolar membrane (sensu Magnoliophyta)
GO:0009411:response to UV
GO:0042406:extrinsic to endoplasmic reticulum membrane

7* AT1G65060 (4) GO:0009698:phenylpropanoid metabolism
GO:0009411:response to UV
GO:0016207:4-coumarate-CoA ligase activity
GO:0008372:cellular component unknown

8 AT1G01280 (3) GO:0004497:monooxygenase activity
GO:0019825:oxygen binding
GO:0005509:calcium ion binding
GO:0006118:electron transport
GO:0012505:endomembrane system

9 AT4G20420 (3) GO:0000004:biological process unknown
GO:0005554:molecular function unknown
GO:0012505:endomembrane system

10 AT3G11980 (3) GO:0009507:chloroplast
GO:0009522:PSI
GO:0016628:oxidoreductase activity, acting on the CH-CH group of donors,
NAD or NADP as acceptor

GO:0009556:microsporogenesis
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large number of candidate genes identified through
PLC analysis are annotated with the unknown func-
tion GO terms including 1,205 for biological process
unknown; 1,021 for molecular function unknown; and
32 for cellular component unknown out of a total of
4,022 PCL-identified genes. If coexpression patterns
can imply functional information, then large-scale
coexpression analysis as described here has the po-
tential to contribute to functional annotation of Arabi-
dopsis gene products.

Distance-Dependent Distribution of Coexpressed
Metabolic Genes

Manual inspection of the coexpression relationships
between genes in the same pathway reveals that the
distribution of connections between pathway genes
appears nonrandomwith respect to pathway structure
and reaction order. As an example, Figure 4A shows a
schematic view of positively coexpressed genes from
the glycolysis pathway. Subsets of genes in the path-
way form three groups of coexpressed genes, one of
which involves nearly every pathway step. Other
groups involve genes that catalyze adjacent or nearby
reaction steps, which may reflect a general trend. To
investigate this possibility, we plotted the number of
pathway steps that separate coexpressed gene pairs
for pathways containing at least six pathway steps (for
a list of these pathways, see Supplemental Table S2).
Figure 4B summarizes the results; positive coexpres-
sion typically involved genes associated with adjacent
pathway steps. Negative coexpression, on the other
hand, more often involved genes separated by two to
three pathway steps.

Topological Features of the Metabolic Network

To explore the topology of the metabolic network,
we examined the distribution of linked nodes (genes)
in networks based on coexpression relationships (Fig.
5, A and B). We found that the distribution of links per
node in the coexpression network of metabolic genes
in Arabidopsis is highly skewed, with most genes
having a small number of connections and a small but
significant number having many connections (Fig. 5C).
For example, at coexpression p value cutoff 1E-80, over
70% and 95% of linked nodes in the positive and
negative AraCyc coexpression networks are connected
to 10 or fewer genes/nodes. At this same p value
threshold, both positively and negatively connected
genes formed large networks of interconnected
genes, but many genes (over half) lacked coexpression

Figure 4. Transcriptional organization of metabolic pathway genes. A,
Connectivity in the glycolysis pathway based on coexpression p value
threshold 10280. Lines connect groups of coexpressed genes. Only
genes with nonpromiscuous probe sets are shown. B, Distribution of
connections for pathways with six or more pathway steps and at least

two coexpressed pathway genes. The x axis shows distance in pathway
steps. Genes catalyzing the same step are counted as zero pathway
steps, genes catalyzing adjacent steps are counted as one pathway step,
and so on. The y axis gives the number of coexpression links for positive
(dark) and negative (lighter) coexpression relationships. Pathways in-
cluded in the analysis are listed in Supplemental Table S2.

Wei et al.
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connections with other genes in the AraCyc data set.
Overall connectivity within the positive network was
higher than for the negative network: network density
(actual links divided by possible links) was larger for
the positive coexpression network at coexpression p
value cutoffs ranging from 10E-40 to 10E-120.
We also investigated correlation between connectiv-

ity in the coexpression network (i.e. links per node)
and number of paralogous genes per node. We used
BLASTp to identify homologous sequences and then
asked whether genes with larger numbers of paralogs
in the Arabidopsis genome tend to have more or fewer
coexpression connections with other genes. For the
positive coexpression network (coexpression p value,
1E-80), we found that 65% of the 139 hub genes
having 20 or more connections were single-copy
genes, but only 37% of genes having fewer than 20
connections were single-copy genes. To assess the
significance of this difference, we used random sam-
pling to estimate the probability of obtaining such a
high percentage of single-copy genes among the 139
hub genes purely by chance. We generated 100,000
random samples, computed the percentage of single-
copy genes for each sample, and found that only four
of the random samples contained more than 50%
single-copy genes. Thus, we find that the relationship
between uniqueness in the genome and status as a hub
gene is highly significant. Furthermore, single-copy
genes have an average of 11.5 connections, but genes
with paralogous copies have an average of five con-
nections per gene. We tested whether this difference
in average links per gene is significant using the
Wilcoxon rank sum test, which allows an assessment
of whether or not two samples come from the same
underlying distribution. Using this test, we determined
that, on average, genes with paralogs are significantly
less well connected (p value 5 1.2E-5) than genes with
no paralogs. We therefore find that highly connected
nodes tend to be single-copy genes, whereas less-well
connected genes tend to be present in multiple copies
in the genome.

Coexpression Connectivity between Metabolic Pathways

Because pathways are interconnected in the sense
that many utilize intermediate metabolites or end

products from other pathways, it is likely that some
pathways include genes that are highly coexpressed
with genes in other pathways. We expect that this
would be particularly common for pathways that
supply precursors for multiple processes, such as
glycolysis or the TCA cycle. We found that this was
indeed the case. Figure 6 shows a heatmap visualiza-
tion in which each cell represents the degree of
coexpression (high, medium, and low) between pairs
of genes from the different pathways in the corre-
sponding rows and columns. Several pathways con-
tain genes that are highly coexpressed both within
and across pathway boundaries. For instance, genes in
the photosynthesis light reaction pathway are highly
coexpressed with each other and with genes in other
pathways, all of which utilize common metabolites,
including malate, 3-phosphoglycerate, and Fru-1,6-
bisphosphate. Figure 7 diagrams pathways that are
linked to the photosynthesis light reaction pathway
via coexpressed gene pairs; these include the photo-
respiration pathway (seven genes), gluconeogenesis
(four genes), and the Calvin cycle (four genes). This
transcriptional coordination of genes across pathway
boundaries suggests corresponding coordination of
metabolic flow.

To investigate coregulatory connections between
metabolic pathways in greater detail, we computed
PLC networks in which each node in the network
represents an individual pathway and connections
between nodes represent pairs of coexpressed genes in
which each member of the pair belongs to one, but not
both, of the connected pathway nodes (Fig. 8). We
considered negative and positive coexpression links
separately because of the different distribution of
high-confidence coexpression relationships for posi-
tive versus negative coexpression. In this scheme, each
node-to-node connection represents a high degree of
cross pathway coexpression. We found that pathways
with the greatest number of internal coexpression
connections are also among the most tightly coregu-
lated across pathway boundaries. These included
several core metabolic processes relating to energy
metabolism, including the Calvin cycle, gluconeogen-
esis, Fru degradation, and sorbitol and acetate fer-
mentation (Fig. 8). We found that pathways with large
numbers of positive cross pathway connections also

Figure 5. Coexpression links per gene. The distribu-
tions for positive (A) and negative (B) coexpression
links (p , 10280) per AraCyc pathway genes are
shown. C, Link frequency distribution for positive (1)
and negative (o) coexpression networks, p value ,

10280. The y axis indicates the number of genes that
are coexpressed with the number of genes shown on
the x axis.
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possess large numbers of negative cross pathway
coexpression links (compare Fig. 8, A and B).

DISCUSSION

Using linear regression p and r2 values to identify
and rank coexpression relationships, we showed that,
on average, genes involved in the same metabolic
pathway are coexpressed to a greater degree than
genes involved in different pathways. However, most
genes in the AraCyc data set are coexpressed with tens
to hundreds of genes, only a small number of which
are annotated as belonging to the same pathway or
pathways. If understanding a pathway of interest is
the main analytical focus, then a method of narrowing
the field of candidates is required. To facilitate this
type of analysis, we developed a PLC analysis ap-
proach that identifies and ranks candidate genes based
on coexpression with groups of pathway genes and

the relative strength (p and/or r2 values) of these
coexpression relationships (Fig. 3A).

We used an earlier version of the PLC analysis to
identify novel genes involved in cellulose biosynthesis
in Arabidopsis (Persson et al., 2005) and here demon-
strate a larger-scale application to metabolic pathways
in Arabidopsis. Using the method, we identified 4,022
coexpression partners for 144 pathways using a rela-
tively stringent threshold for coexpression. A large
proportion of these PLC-identified genes lack GO
process, molecular function, or cellular component
annotations. Information we have provided regarding
their coexpression patterns with pathway genes from
the AraCyc database provides new insight into their
biological roles by linking these genes to biochemical
pathways. Experimental investigation of the coex-
pressed genes’ biological roles is beyond the scope of
this current work; however, we have made the results
available at our Web site to facilitate exploration and
analysis by groups interested in individual pathways.

Figure 6. Within- and across-pathway coexpression patterns. Coexpression relationships are viewed as a grayscale heatmap
between a subset of pathways listed in Table I. Cells are shaded according to the negative logarithm (base 10) of coexpression p
values between genes from corresponding rows and columns. Coexpression p values less than or equal to 102100 are shown using
the darkest shade. When rows and columns represent the same gene but intersect off the diagonal (due to shared genes across
pathways), the corresponding cells are colored using the lightest shade. A version labeled with gene identifiers and pathway
names is available as Supplemental Figure S1. Pathway designations and annotations are from AraCyc 2.1.

Wei et al.

770 Plant Physiol. Vol. 142, 2006



On the Web site, we provide lists of all pathways
examined in the study, the genes from each pathway
that we included in the analysis, machine-readable
spreadsheet files listing regression results for each
pathway gene and all other probe sets (genes) on the

ATH1 array, and ranked results from PLC using dif-
ferent p values as coexpression cutoffs. In addition, we
established a mirror of the AraCyc database version
used in our study to allow browsing of pathway
structures. For future work, we plan to add tools that
will allow users to run the PLC method on gene
groupings of their own choosing.

Using random sampling, we computed empirical p
values assessing the degree to which genes in each
pathway are coexpressed with each other. We found
that core metabolic pathways exhibited an unusually
high level of within-pathway coexpression. We also
identified pathways that possess multiple positive and
negative coexpression links across pathway bound-
aries. These results are based on over 400 individual
array hybridizations involving many different cell
types, developmental stages, and experimental treat-
ments. Coexpression, in this setting, means that re-
gardless of the experimental condition, high (or low)
expression of one member of a coexpression pair (or
group) predicts similarly high (or low) expression of
the other group members. We do not suggest that the
coexpressed genes are expressed in every cell type,
only that when they are expressed, they are expressed
together. We suggest that the groups of coregulated
genes are involved in maintaining and regulating
metabolic flow within and across pathways. In addi-
tion, we saw that not all genes annotated as belonging
to a pathway are involved in within- or across-pathway
coexpression relationships. These genes may serve

Figure 7. Patterns of coexpression with photosynthesis pathway genes.
Genes that are coexpressed (p value , 1E-60) with each gene in the
photosynthesis light reaction pathway are shown.

Figure 8. Metabolic network connectivity. A, Network of positively coexpressed metabolic pathways using a p value cutoff of
1E-200. B, Network of negatively coexpressed metabolic pathways using a cutoff of 1E-80. Connected pathways share at least
seven pairs of coexpressed genes.
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specialized functions that are not apparent when hun-
dreds of experiments are considered. Alternatively, some
of these genes may be incorrectly assigned in AraCyc,
possibly reflecting the computational origins for
AraCyc pathway annotations.

We found that the distribution of positive and
negative coexpression relationships is highly skewed;
the majority of genes have few links but a small but
significant number of genes are very well connected.
Similarly skewed distributions have been observed in
a number of different biological networks, and it has
been proposed that these networks arise in an incre-
mental fashion via two mechanisms: duplication of
components of the existing network and random mu-
tation (for review, see Albert, 2005). Both models fit
well with what is known about how genomes change
over time; new sequences are created from preexisting
sequences via duplicative mechanisms that affect re-
gions of many different sizes, and duplicate sequences
drift apart through random mutation. In our setting,
wholesale duplication of preexisting genes, including
both coding and transcriptional control regions, would
increase the complexity and size of the coexpression
network in that each gene duplication event would
add a new node that would connect to the parent node
and all its coexpression partners. Unless the presence
of both duplicates with identical expression confers a
selective advantage, we would expect that over time,
the two genes would drift apart with respect to their
relative patterns of coexpression. There should be no
selective pressure blocking this drift as long as all
essential coexpression relationships with either the
source gene or its copy are maintained. Our observa-
tion that less well-connected nodes are represented by
multiple copies in the Arabidopsis genome supports
this scenario: We found that genes with one or more
paralogs (as detected by blast analysis) are signifi-
cantly less well connected than single-copy genes that
have no within-genome homologs.

We found that the majority of highly connected (20
or more expression links) were single-copy genes. In
yeast, single-copy genes exhibit a higher proportion of
lethal or reduced-fitness phenotypes than do genes
with duplicates (Gu et al., 2003). Similarly, well-
connected genes in networks based on protein inter-
actions and/or coexpression are also more likely to
exhibit severe phenotypes (Albert et al., 2000; Jeong
et al., 2001). It is well known that many genes do not
exhibit easily recognized phenotypes, possibly due to
functional redundancy or some form of genetic buff-
ering (Cutler and McCourt, 2005). Indeed, we have
found that for many pathways, only a subset of the
genes annotated as belonging to the pathway exhibit
coexpression relationships across a large number of con-
ditions, suggesting that these genes may be the most
important players in their respective pathways. Taken
together, these results suggest that well-connected
genes in Arabidopsis are also likely to be the most
promising targets for genetic analysis of metabolic
pathways.

An earlier study from Wille et al. (2004) used micro-
array expression data to examine transcriptional coor-
dination between plastid, mitochondrial, and cytosolic
isoprenoid pathways in plants (Wille et al., 2004). The
studymeasured transcriptional coordination using 118
ATH1 arrays and focused on 19 genes in the plastid
pathway, 16 genes in the cytosolic pathway, and five
genes in the mitochondrial pathway. However, their
approach used joint correlation to build the network,
whereas ours has used simple linear regression. De-
spite this difference, we find some interesting similar-
ities in the results. For example, similar to Wille et al.
(2004) we found that several genes in the Arabidopsis
isopentenyl diphosphate biosynthesis pathway (chlo-
roplast non-mevalonate pathway) are highly coex-
pressed. In addition, Wille et al. (2004) observed joint
regulation of many consecutive and closely positioned
genes, which is similar to our finding that genes
occupying nearby positions in a pathway tend to be
coexpressed.

We believe that the results and methods presented
here can aid scientists in choosing candidate genes for
genetic analysis based on their position in the coex-
pression network. We recommend that researchers
seeking to characterize any group of functionally re-
lated genes perform group- or PLC analysis to identify
key players within and outside the group whenever
there is good reason to expect that membership in the
group will imply coexpression. As demonstrated here,
the abundance of microarray expression data for
Arabidopsis now available makes this analysis both
feasible and productive. Furthermore, the results from
coexpression analysis could help to improve annota-
tion of the Arabidopsis genome. Indeed, we propose
that lists of high-confidence coexpression partners
could be added to gene-level Web pages at sites such
as TAIR, providing a new dimension of functional
annotation for the Arabidopsis genome.

MATERIALS AND METHODS

Data Files

AraCyc data are from version 2.1 of the database as available in August,

2005. Data were obtained from TAIR (www.arabidopsis.org) as a flat file dump

that listed accessions for 221 different pathways associated with 1,612 genes.

Affymetrix ATH1 GeneChip probe set and target gene information are from

an annotations data file downloaded from the Affymetrix Web site in August,

2005 and dated June 20, 2005. GO annotations are from a file downloaded from

TAIR’s ftp site September, 2005. Copies of all primary data files are available

upon request.

Mapping Gene Identifiers onto Probe Set IDs

To map genes onto probe sets and vice versa, we cross-referenced gene

identifiers from the AraCyc database flat file against the AGI and Represen-

tative Public ID fields in the Affymetrix ATH1 probe set annotations file. This

mapping produced a list of 1,488 probe sets. We purged redundant and

promiscuous probe sets, i.e. genes mapped to multiple probe sets and probe

sets recognizingmore than one gene, to create a list of 1,330 AraCyc-associated

probe sets. In a few cases, an AraCyc gene identifier was not represented on

the ATH1 array. Visualization of a randomly selected subset of these using the

Integrated Genome Browser, which shows the location of ATH1 probe sets

Wei et al.
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alongside Arabidopsis (Arabidopsis thaliana) genome version 5 gene annota-

tions, revealed that these genes are not interrogated on the ATH1 array, most

likely because they appeared in the public databases after the ATH1 array

entered production. The Integrated Genome Browser is available at http://

www.affymetrix.com/support/developer/tools/download_igb.affx. A list

of all pathways, probe sets, and gene identifiers is available at http://www.

transvar.org/at_coexpress/analysis/web.

Array Processing and Regression Analysis

We obtained 553 CEL files for Affymetrix ATH1 array experiments from

the Nottingham Arabidopsis Stock Center AffyWatch subscription service. A

number of the files obtained were duplicates; after removing these, we

processed the remaining CEL files using the robust multichip average algo-

rithm implementation in Bioconductor (Gentleman et al., 2004). Using the

deleted residuals quality control method implemented in the HDBStat!

software (Trivedi et al., 2005) and described in detail in Persson et al. (2005),

we identified low-quality arrays (Kolmogorov-Smirnov D . 0.15) and re-

moved these from consideration, leaving a total of 486 high-quality array

experiments. Linear regression between the 1,330 AraCyc genes and all ATH1

probe sets was then performed as described previously in Persson et al. (2005),

using the following procedure.

For each probe set (gene) associated with AraCyc, use simple linear re-

gression to compare its vector of N expression values Æx1; ::xNæ with matching

expression vectors corresponding to other genes represented on the same

array design (Daniel, 2004). For each pairwise comparison of gene X and Y,

compute a fitted regression line yi 5b01b1xi1ei where xi and yi are expression

values for gene X and Y on array i; bo and b1 are the intercept and slope; ei
is random error or deviation of yi from the fitted value; b15ðN+N

i51 xiyi2

ð+N
i51 xiÞð+

N
i51 xiÞ=N+N

i51 x
2
i 2ð+N

i51 xiÞ
2Þ and b05y2b1x. The arithmetic means

of xi (x) and yi (y) are +N
i51 xi=N and +N

i51 yi=N, respectively. A p value for

a simple linear regression expresses the probability that the slope b1 of the

regression line is equal to zero. In other words, if y varies randomly with x,

and vice versa, then the slope of the regression line computed between them

will be equal to zero. To compute the probability p that b1 5 0 for each

regression given the data, we use an F test for simple linear regression. For

each regression, F5ðN22Þ3 +N
i51ðyi2yÞ=+N

i51ðyi2ŷÞ2, where ŷ5ð+N
i51 yi1

b1ðxi2xÞ=NÞ, N is the number of arrays (CEL files) or points used in the

regression, and ŷ is the arithmetic mean of the fitted values for y from

the regression. The probability (p value) of b1 5 0 is the area under the F

distribution curve to the right of test statistics F. For each regression, the

coefficient of determination r2512+N
i51ðyi2ŷÞ=+N

i ðyi2yÞ2, which is also

the square of Pearson’s correlation coefficient, was calculated (Rodgers

and Nicewander, 1988). To perform the linear regressions and compute the

F statistic, p values, and r2 we used software written in Java and R (http://

www.r-project.org). The Java software used a statistical programming library

from Visual Numerics Inc. Copies of the code are available upon request.

The regression results for all metabolic genes included in the study are

available as tab-delimited files from http://www.transvar.org/at_coexpress/

analysis/web.

Computing Empirical p Values for
Within-Pathway Coexpression

For each AraCyc-associated probe set, we sorted its regression results by

increasing p value and computed the average of the mutual ranks for each

pathway probe set in the sorted lists of the other pathway probe sets. We used

random sampling of probe sets to compute an empirical distribution of

average ranks: for each pathway with M probe sets, we selected a random

sample of sizeM from the 1,330 AraCyc probe sets in the study and computed

its average rank. We repeated the sampling procedure 10,000 times for eachM

to develop an empirical distribution of average ranks for pathways including

M genes. The average rank for each pathway was then compared to the

empirical distribution of average ranks for a pathway of that size to estimate

the p value for within-pathway coexpression. The heatmaps showing within-

and across-pathway coexpression patterns were generated using matrix2png

(Pavlidis and Noble, 2003).

PLC Analysis

Pathway- or group-level coexpression identifies and ranks genes based on

their coexpression with a group of genes, such as a metabolic pathway. The

procedure operates as follows: Select a subset of functionally related bait

genes, B5 {g1, g2, .., gM} (e.g. all the members of a metabolic pathway) from the

larger set G of all genes gi and gj represented on an expression microarray, e.g.

ATH1. For every pairwise comparison between gi and gj, where one or both are

in B, perform linear regression between gi and gj, yielding p value pij and

coefficient of determination rij
2. Use the set of p and r2 values obtained from the

pairwise regressions to construct an undirected graph, where an edge eij
connects gi and gj whenever pij , pt and rij

2
. rt

2 for user-defined thresholds

pt and rt
2. Any two genes gi and gj that share an edge (link) in the resulting

network graph are considered to be coexpressed. Using the coexpression

network graph, identify every candidate gene ci where ci is coexpressed with

two or more bait genes. Define Bi 5 {g1, g2, .., gK} as the set of K . 1 bait genes

coexpressed with candidate gene ci and P5 {pi1, pi2, .., piK} as the set of p values

associated with coexpressed gene pairs {(ci, g1), (ci, g2),..,(ci, gK)}. To prioritize

candidates for manual analysis, order the list of candidate genes by the

relative sizes of their bait gene sets jBij, such that if jBij. jBjj for ci and cj, then ci
is listed before cj. When jBij 5 jBjj, list ci first whenever the product of its

coexpression p values (pp) with members of Bi is smaller than for cj, where (pp)

for ci is
QK

j51 pij .

Paralog Identification

We used BLASTp to search the 1,330 Aracyc pathway genes used in the

study against a database of Arabidopsis protein sequences obtained from

TAIR. We considered hits as paralogs when the query and subject shared

greater than 70% amino acid sequence identity across 90% or more of both

sequences.

Analyzing Pathway and Coexpression Networks

Networks of coexpressed genes were assembled from pairwise linear

regression results comparing AraCyc metabolic pathway genes to each other.

We analyzed a number of different networks, which varied by different linear

regression p and r2 value thresholds used to define coexpression. Depending

on the analysis, pathways were considered connected when they shared at

least pairs of coexpressed genes, where neither member of a pair was in both

pathways and Np varied from two to seven, depending on the analysis.

Coexpression networks were analyzed using the networkx Python toolkit for

computing on graphs (https://networkx.lanl.gov/) and visualized using the

Cytoscape network visualization software program (Shannon et al., 2003).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. GO terms for the flavonoid biosynthesis pathway

and genes identified using the PLC algorithm.

Supplemental Table S2. List of pathways analyzed in Figure 4B.

Supplemental Figure S1. Fully labeled heatmap showing coexpression

patterns within and across pathways.
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