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Transcriptional drug repositioning 
and cheminformatics approach 
for differentiation therapy 
of leukaemia cells
Yasaman KalantarMotamedi1,6, Fatemeh Ejeian2,6, Faezeh Sabouhi2,3,6, Leila Bahmani2,4, 
Alireza Shoaraye Nejati2, Aditya Mukund Bhagwat5, Ali Mohammad Ahadi2,3, 
Azita Parvaneh Tafreshi4, Mohammad Hossein Nasr‑Esfahani2* & Andreas Bender1*

Differentiation therapy is attracting increasing interest in cancer as it can be more specific than 
conventional chemotherapy approaches, and it has offered new treatment options for some cancer 
types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a 
pressing need to identify additional molecules which act in this way, both in leukaemia and other 
cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, 
based on both bioinformatics and cheminformatics components, that enables selecting such 
compounds in a more informed manner. We have validated the approach for leukaemia cells, and 
retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti‑
parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it 
can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 μM and 
within as short a time period as 3 days. This work hence provides a systematic and validated approach 
for identifying small molecules for differentiation therapy in cancer.

Di�erentiation therapy has several advantages compared to chemotherapy, such as its irreversible e�ect and the 
rapid clearance of tumour bulk, following terminal maturation of blast  cells1. One prominent example of this 
type of therapy is the treatment of acute promyelocytic leukaemia (APL, an aggressive type of acute myeloid 
leukaemia or AML) by a combination of all-trans retinoic acid (ATRA) and  arsenic1. In acute myeloid leukaemia 
(AML) cells, di�erentiation is blocked in the cellular maturation  stage2 which prevents leukaemia cells from 
terminal di�erentiation. It is assumed that many neoplastic cells have reversible defects in their di�erentiation 
patterns, where small molecules can cause tumour reprogramming and thereby induce terminal di�erentiation 
and  apoptosis3. Despite the importance of di�erentiation therapy, selecting particular small molecules to induce 
such di�erentiation is challenging. However, the recent availability of large-scale biological data can uncover 
mechanisms in the di�erentiation process one would like to modulate to achieve this aim, with one such approach 
being compound selection and drug repurposing based on gene expression (transcriptomics) data.

Transcriptional drug repositioning has recently gained signi�cant attention, both due to increased data avail-
ability, as well as several success stories that have been  reported4,5. �e key idea is that a modulation of a biological 
system by a process (such as a disease) should be counteracted by compound treatment, in the particular readout 
space that is available, such as transcriptomics space. �is is rather distinct from single-target approaches in drug 
discovery, where �rst a target of interest is isolated and then a ligand is desired—in the case here, rather modu-
lation of the whole system is taken into account. �is in particular enables identifying compounds that would 
modulate multiple genes and pathways of a disease simultaneously. One of the key elements of transcriptional 
repurposing is that it is an unbiased approach and enables scientists to come up with a testable hypothesis, both 
in terms of compounds and modes of action of the compounds selected, in a disease or biological process of 
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interest. Its application in oncology, neurodegenerative,  infectious6 and rare diseases has enabled the identi�ca-
tion of new indications for approved  drugs4.

Various scoring systems exists that enable the scoring (and ranking) of compounds in the database against 
a disease of interest quantitatively, given a set of transcriptomics  data7. In the absence of a gold standard to 
compare all scoring systems, we can only evaluate methods fully by experimental validations for the disease of 
interest, or, in the absence of this, by retrospective literature validation. Moreover, gene expression data is noisy 
and for each compound we usually have several instances of application of the compound available, with dose, 
time and cell line being major experimental factors to  consider8. Some studies integrate all di�erent instances 
of the same compound into a uni�ed signature representing the  compound9; however, given that e.g. dose/
exposure is a signi�cant factor that in�uences treatment response this is not the option preferred by the authors 
of the current work.

To address some of the challenges that still exist in the transcription layer of the data, we have integrated the 
transcriptional drug repositioning approach with cheminformatics approaches for incorporating protein level 
inference data and selecting compounds in a more informed manner. �e cheminformatics side of the work 
bene�ts from learning from large scale databases of compound target pairs (385,126 pairs) and predicting activity 
pro�le of compounds in the connectivity map (CMap)10 database against 1,643 protein  targets11 which is further 
annotated with importance of the predicted target for the disease of interest and leads to a cheminformatics based 
scoring system that complements the transcriptional based bioinformatics scores.

Even though connectivity map approaches have been studied before for cancer. Its application in di�erentia-
tion therapy is an emerging and attractive  area12,13. In this work, we evaluate and validate our transcriptional drug 
repositioning approach in the emerging application area of di�erentiation therapy for acute myeloid leukaemia. 
For this purpose, the disease state is de�ned as comparison of HL60 leukaemia cells compared to healthy granu-
locytes. �is comparison raises to a blueprint of di�erentiation and we hypothesise that �nding a compound that 
can target those genes e�ectively would induce di�erentiation of leukaemia cells to granulocytes. �is rationale 
was chosen because such di�erentiation is known to induce apoptosis in the cancer cells, and it is hence more 
suitable for therapeutic purposes than more broad cytotoxic modes-of-action14.

Our computational approach presented here, integrates transcriptional drug repositioning and cheminfor-
matics approaches, and enables identifying compounds that can induce di�erentiation of leukaemia cells to 
granulocytes (Fig. 1). In this work we prospectively validated fenbendazole that was identi�ed by the approach 
and validated that it can truly induce the di�erentiation of leukaemia cells to granulocytes.

Results
Our integrated drug repositioning and cheminformatics approach was applied for selecting compounds that can 
induce di�erentiation of leukaemia cells to granulocytes. Figure 1 depicts the work�ow and data sources used for 
this purpose. �e Bioinformatics part of the work (Fig. 1a) extracts disease signature (HL60 leukaemia cells vs. 
granulocyte) from  GEO15 dataset and rank orders genes based on di�erential expression. 5764 gene signatures 
extracted from connectivity map database were used to query the disease pro�le using Gene Set Enrichment 
analysis (GSEA)16 and rank ordered to target most di�erentially expressed genes of the disease pro�le most 
e�ciently in a reverse way. �e Cheminformatics part of the work (Fig. 1b) used an arti�cial intelligence (AI) 
engine that is based on Laplacian modi�ed naïve bayes approach developed  earlier11. �e underlying principal 
is that structurally similar compounds tend to bind to similar targets and is capable of predicting targets for 
any compound given its structure. �e AI engine trained a model on compound target pairs extracted from 
 ChEMBL11 database and predicts probability of binding of all the compounds in the connectivity map database 
to 1643 protein targets. �is facilitates incorporating all known and potential targets of each compound into 
the model. �e model also takes into account relevance of each predicted target to leukaemia by incorporating 
relevance scores extracted from Comparative Toxicogenomics database (CTD)17. �e Cheminformatics score 
highly ranks compounds that target most relevant protein targets of the disease estimated by averaging relevance 
score to leukaemia for top seven predicted targets for each compound. Moreover, protein–protein interaction 
network is incorporated to elucidate mode of action of selected compounds based on the bioinformatics and 
cheminformatics scoring system.

Retrospective validation in leukaemia. It was found that 20 out of the 30 highest-ranked compounds 
from CMap with negative connectivity were supported by literature according to their relevance to leukaemia 
(Table 1). Notably current standard di�erentiation therapy for leukaemia, tretinoin (retinoic acid, ATRA) was 
ranked 15 based on the bioinformatics score among 5765 CMap signatures. It is also showing over the aver-
age (12.5) cheminformatics score (14.5). One example of active compounds on leukaemia cells is �ioridazine 
(ranked 11) which is known to inhibit proliferation and induce apoptosis in leukaemia cells, but does not a�ect 
normal  lymphocytes18. We predicted from the cheminformatics side of the analysis that �ioridazine targets 
the Histamine H1 receptor, the Dopamine D1-3 receptors, and the Muscarinic acetylcholine receptors M4 and 
M5. Binding to all of these targets are supported in  ChEMBL19 for Homo sapiens (with  IC50 values of 0.07 µM, 
0.19 µM, 0.03 µM, 0.01 µM, 0.09 µM and 0.009 µM, respectively). Interestingly, all these proteins are frequently 
targeted among the 50 highest-ranking compounds selected for this disease, based on gene expression data (P 
values: 0.1, 0.02, 0.08, 0.03, 0.03, and 0.06). Wortmannin (ranked 14) inhibits K562 myelogenous leukaemia cells 
proliferation and induces apoptosis by regulating survival signalling pathways, such as PI3K/Akt/Nκ-KB. �is 
pathway is known to be important in the development of  leukaemia20. �e most probable predicted target for 
Wortmannin is the PI3-kinase p110-alpha subunit (PIK3CA). PIK3CA is a member of the PI3K-Akt signalling 
pathway, and the activity against which is reported in ChEMBL with an  IC50 of 0.013 µM. �e CMap instance of 
this compound (ID 6202) downregulates TRIB3, FYN and MLST8 in the “PI3K-Akt Signalling” pathway. Among 
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the top 30 ranked compounds based on the Bioinformatics score, 14 had over the average (12.5) cheminformat-
ics score (Table 1). 13 out of that 14 had literature support for leukaemia and only fenbendazole, one type of 
benzimidazole, was novel and hence was selected for experimental validation in this work.

A recent study explored application of transcriptional drug repositioning in di�erentiation therapy of leu-
kaemia blast  cells21. Notably, mebendazole, another member of benzimidazole family, was highly ranked in the 
results of that study as well as ours. It was also prospectively validated in that study that mebendazole treat-
ment of leukaemia cells at doses of 1 μM for 9 days induced morphology changes. �ere are several di�erences 
in terms of computational approach and the �ndings. �e signature in the previous study was retrieved from 
multiple data sets, including normal haematopoiesis, the classical model of ATRA di�erentiation therapy, and 
drugs known to modulate di�erentiation, and all contributed to the scoring using a computational approach 
called Lineage Maturation Index. However, the computational approach in this study does not include ATRA in 
the dataset and comes directly from the comparison of HL60 cells to granulocytes, which makes the rediscovery 
of mebendazole and ATRA as a current therapy more remarkable. In terms of comparison of the �ndings, we 
discover mebendazole as well in our top results along with another member of the same family, fenbendazole. 
However, the cheminformatics approach enabled us to select fenbendazole over mebendazole due to its more 
relevant predicted bioactivity pro�le as discussed in results. To compare the experimental side of the studies of 
this work and the previous  work21, we should mention that phenotypically, mebendazole in the previous work 
induced morphological changes but did not induce granulocytes di�erentiation; however with fenbendazole in 
this work we show in the next section that granulocytes were formed. Fenbendazole induces the di�erentiation 
in lower doses of 0.1–0.5 μM for shorter duration of 3 days and a�er 7 days at dose of 0.1 μM apoptotic cells 
appeared. For mebendazole, full morphological changes appeared a�er 9 days at dose of 1 μM. However, it is dif-
�cult to compare the two studies quantitatively due to di�erences in the use of NBT assay (calculating absorbance 
in this study vs. the percentage of dark blue cells in the previous study). Etoposide is also another drug predicted 
in both studies which was shown to induce the di�erentiation with 44% of cells identi�ed as positive in the NBT 

Figure 1.  Combination of gene expression and in silico target prediction approaches for compound selection 
and mode-of-action analysis: (a) bioinformatics part of the work involves extracting disease signature from 
GSEO database and rank ordering di�erentially expressed genes as well as extracting gene signatures of 
compounds from the connectivity map database. Gene set enrichment analysis was used to rank order al 
the compounds in CMap database that can optimally reverse most dysregulated genes in the leukaemia 
signature. Highly ranked compounds based on the bioinformatics were supported by literature. It also displays 
di�erentially expressed genes in the leukaemia signature (on the right side). (b) Cheminformatics part of the 
work involves training an Arti�cial Intelligence engine on a database of compound target pairs extracted from 
ChEMBL and predicting binding scores for all compounds in CMap vs. a large range of protein targets. It also 
involves extracting inference scores that identi�es relevance of each target to leukaemia. �e Cheminformatics 
score calculates average relevance of top seven predicted targets of CMap compounds to leukaemia. 
Combination of the bioinformatics score and the cheminformatics score led to the identi�cation of fenbendazole 
which was followed up with in-vitro validation. Gene signature and protein targets of fenbendazole as well as 
gene signature of leukaemia was mapped to a protein–protein interaction network to rationalise mode of action.
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assay. Also another recent study con�rmed the use of mebendazole for leukaemia patients in pre-clinical and 
clinical  settings22. Another recent study used network pharmacology and applied it in the area of di�erentiation 
therapy for  leukaemia13. Remarkably, among the compounds that came up in top results of our and their study, 
ATRA (our rank = 15), mebendazole (rank = 8), colchicine (rank = 3), podophyllotoxin (rank = 1), nocodazole 
(rank = 12) and dinoprost (rank = 230) were shared. �ey further con�rmed that mebendazole, podophyllotoxin 
and dinoprost can also induce the di�erentiation of leukaemia cells. Moreover, a quantitative proteomics study 
also identi�es one of our highly ranked compound genistein (rank = 16) to induce apoptosis in both MV4-11 
and HL-60 cells via caspase  activation23. Genistein is also known to induce granulocytic di�erentiation and 
DNA Strand Breakage in HL60 and K562  cells24,25. Terfenadine (rank = 29) and ouabain (rank = 30) in our top 
results were also discovered using a connectivity map approach previously for AML leukaemia and validated 
experimentally but were not tested for di�erentiation  therapy26.

Prospective validation on leukaemia. Among the highest-ranked predictions based on the bioinfor-
matics score without any current literature support proxymetacaine (ranked 18), fenbendazole (ranked 20) and 
terazosin (ranked 4) were selected to be tested in vitro on the HL60 leukaemia cell line with genistein (ranked 
16) serving as a control. Here, proxymetacaine and terazosin were selected based on high bioinformatics score 
only, whilst fenbendazole was selected based on the combined bioinformatics- and cheminformatics-approach 
as it had both high bioinformatics and cheminformatics score (see Table 1). As shown in Table 1, fenbendazole is 

Table 1.  Top 30 ranked compounds for leukaemia: the table shows the highest ranked compounds along 
with their predicted targets and the scores for the predicted targets (Target score). High target scores show 
high probability of the compound to bind to that protein target based on our in-silico prediction approach. 
�e “Target disease score” shows how much the target is related to the disease according to Comparative 
Toxicogenomic Database (CTD). Compounds that have retrospective validation and literature support for 
leukaemia or other cancer types and the ones selected for experimental validation in this work are marked with 
a * for each relevant column. �e Bioinformatics score is the score calculated based on anti-correlation of the 
compound gene signature and leukaemia di�erentiation signature. �e Cheminformatics score is the rounded 
average of Target Disease Score for the top seven predicted targets of each compound.

Rank

Bioinformatics 

score

Cheminformatics 

score

Compound 

name

Retrospective 

validation for 

leukaemia

Retrospective 

validation for 

other cancers

Selected for 

experimental 

validation

Target 1 

name

Target 1 

score

Target 1 

disease 

score

Target 2 

name

Target 

2 score

Target 2 

disease 

score

Target 3 

name

Target 3 

score

Target 3 

disease 

score

Target 4 

name

Target 

4 

score

Target 4 

disease 

score

Target 5 

name

Target 

5 score

Target 5 

disease 

score

Target 6 

name

Target 6 

score

Target 6 

disease 

score

Target 7 

name

Target 

7 score

Target 7 

disease 

score

1 − 0.81 23
Podophyl-

lotoxin
*76 EDNRB 26 30 EDNRA 21 11 F3 20 40 PDE11A 13 3 FKBP1A 13 12 CYP3A4 10 44 NR3C1 9 22

2 − 0.79 15 Le�unomide *77 MTTP 21 2 APOB 19 20 DHODH 16 0 ATF1 14 2 TRPV1 13 12 NFKB1 13 46 RAF1 12 22

3 − 0.79 16 Colchicine *78 TUBB1 37 3 F3 8 40 STS 5 24 BDKRB1 2 11 ALK 2 2

4 − 0.79 5 Terazosin * EHMT2 20 18 CCR4 18 3 ADRA1B 18 4 ADRA1A 15 3 EHMT1 14 0 UBE2N 14 0 PDPK1 8 9

5 − 0.78 7 Prenylamine *79 ADRB2 18 9 CASR 16 2 ADRB3 13 3 ADRB1 12 6 C3AR1 9 7 CAPN2 8 17 SSTR2 8 2

6 − 0.78 21

Trimethyl-

colchicinic 

acid

*80 TUBB1 23 3 STS 14 24 DRD1 8 0 F3 7 40 ALK 6 2 ABCC1 6 57 ACHE 5 18

7 − 0.78 29 Etoposide *81 NCOA3 30 100 F3 23 40 NCOA1 20 16 RORC 15 0 TOP1 13 17 SLC5A1 12 0

8 − 0.78 14 Mebendazole*21 TEK 30 14 RAF1 20 22 KDR 17 25 F9 10 0 GRB7 6 14 CHEK2 6 22 ITK 5 3

9 − 0.78 5
Adenosine 

phosphate
*82 RSEL 99 3 IMPDH1 91 4 P2RY2 87 12 P2RY1 70 0 P2RX1 69 0 AHCY 68 12

10 − 0.78 5
Cefopera-

zone
SLC22A8 72 9 SLC22A6 66 7 CMA1 44 3 ELANE 35 0 PGF 15 5

11 − 0.77 2 �ioridazine *18 HRH1 34 0 DRD1 24 0 DRD2 23 3 CHRM5 20 6 DRD3 18 0 CHRM4 18 3 HRH2 18 0

12 − 0.77 14 Nocodazole *83 TEK 36 14 KDR 21 25 STK33 17 3 ITK 15 3 F9 13 0 RAF1 12 22 ABL1 9 32

13 − 0.77 4 Tetryzoline ADRA2A 27 4 ADRA2B 24 7 NISCH 23 0 ADRA2C 23 3 BDKRB1 21 11 DRD1 12 0 ADRA1A 12 3

14 − 0.77 20 Wortmannin *20 PIK3CA 72 11 MTOR 58 23 MYLK 18 17 ABCB1 10 63 SOAT2 10 3 CYP19A1 9 23 ADCY1 9 4

15 − 0.77 15 Tretinoin *84 RARG 65 11 RARB 65 28 RXRA 64 12 RARA 59 20 RXRG 53 11 RXRB 53 8 RBP4 49 11

16 − 0.77 46 Genistein *85 ALDH2 40 15 ESR2 25 16 ESR1 23 100 TOP2A 20 100 XDH 15 17 CYP1A1 15 38 CYP1B1 15 36

17 − 0.76 15 Ly-294002 *86 PRKDC 68 18 PIK3CA 38 11 PIK3CB 32 6 PIK3CD 26 24 PIK3CG 25 18 PIK3C2B 14 3 MTOR 11 23

18 − 0.76 4
Proxymeta-

caine
* UBE2N 11 0 HTR4 10 0 P2RY12 6 0 PDGFRA 1 4 BCHE 1 18 CHRM4 1 3 MBTPS1 1 3

19 − 0.76 9 Sulfapyridine*87 NTRK1 7 5 CYP2C18 6 10 GRM4 6 0 EDNRA 6 11 HTR6 4 0 EDNRB 4 30 PIK3C3 3 7

20 − 0.75 22
Fenbenda-

zole
*31 * TEK 27 14 AURKB 11 21 RAF1 11 22 KDR 10 25 AURKA 8 13 ITK 7 3 MCL1 5 56

21 − 0.75 4
Mephenter-

mine
CASR 12 2 GHSR 10 4 ADRB2 8 9 ADRB1 6 6 ADRB3 5 3 TACR3 2 3 CCKBR 2 3

22 − 0.75 5 Dobutamine ADRB2 32 9 ADRB1 31 6 ADRB3 30 3 PGF 5 5 OPRD1 5 0 OPRM1 4 4 KISS1R 4 11

23 − 0.75 11 Clenbuterol ADRB2 27 9 ADRB1 27 6 ADRB3 18 3 BACE1 3 8 CTSD 1 25 IGF1R 0 16 CYP2D6 -1 11

24 − 0.75 2
�ioridazine 

(rep)
*18 HRH1 34 0 DRD1 24 0 DRD2 23 3 CHRM5 20 6 DRD3 18 0 CHRM4 18 3 HRH2 18 0

25 − 0.75 15
Ly-294002 

(rep)
*86 PRKDC 68 18 PIK3CA 38 11 PIK3CB 32 6 PIK3CD 26 24 PIK3CG 25 18 PIK3C2B 14 3 MTOR 11 23

26 − 0.75 8
Trichosta-

tin a
*88 HDAC6 28 3 HDAC10 25 3 HDAC1 24 17 HDAC8 23 3 HDAC2 23 9 HDAC9 23 11 HDAC11 22 7

27 − 0.74 2 Remoxipride *89 DRD2 28 3 DRD3 10 0 UTS2R 9 0 HCRTR1 9 7 HCRTR2 9 0 HTR4 7 0

28 − 0.74 5 Nadide IMPDH1 105 4 P2RY2 90 12 RSEL 86 3 GAPDH 77 18 P2RX1 74 0 P2RY1 70 0 P2RY4 66 0

29 − 0.74 4 Terfedine *26 TACR2 28 3 NPY2R 22 7 HRH1 18 0 CHRM3 11 2 KCNH2 11 10 NPC1L1 10 0 CCR5 10 5

30 − 0.74 27 Ouabain *y26 KLF5 39 0 NR3C1 37 22 ATP12A 30 0 SHBG 28 7 STAT3 24 42 FGF2 23 16 FGF1 23 100
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the only compound with both high bioinformatics (in the top 30) and cheminformatics score with no previous 
literature on leukaemia. As shown in Fig. 2a–f the prospective validation revealed that genistein (Fig. 2c) was 
only minimally active (with LC50s of 12 µM a�er 48 h) while terazosin (Fig. 2d) and proxymetacaine (propa-
racaine, Fig. 2e) were inactive in HL60 cells. On the other hand, fenbendazole exhibited a profound e�ect on 
HL60 cells with  LC50 values of 0.50 µM, 0.36 µM and 0.31 µM at 24, 48 and 72 h, respectively (Fig. 2a). In order 
to establish functional selectivity over healthy cells, the toxicity of fenbendazole was further evaluated on human 
bone marrow stem cells (BMSC) and exhibited  LC50 values of 5.1 µM and 4.5 µM a�er 48 and 72 h, respectively 
(Fig.  2b). Hence, at time point of 72  h, fenbendazole exhibits 14.5-fold selectivity in killing HL60 cells over 
BMSC cells was observed (Fig. 2f).

We further investigated if selectivity is driven by the slower cell cycle of BMSC cells, compared to HL60 cells. 
�erefore, toxicity of fenbendazole was also measured on HFF cells, which gave rise to the same  LC50 values to the 
BMSCs and hence same 14.5-fold selectivity. Hence, overall, the data show that the  LC50 values of fenbendazole 

Figure 2.  Prospective validation of selected compounds on HL60 cell line. Among the compounds tested on 
the HL60 cell line fenbendazole (a) shows highest e�cacy with  LC50 values of 0.5 µM, 0.36 µM and 0.31 µM 
a�er 24, 48 and 72 h, respectively. �e LC50 of Fenbendazole on BMSC cells was 5 µM (b). Genistein (c) was 
only minimally active (with LC50s of 12 µM a�er 48 h) while terazosin (d) and proxymetacaine (e) were inactive 
in HL60 cells. Fenbendazole exhibited 14.5-fold selectivity at 72 h over BMSC cells (f).
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were ca. 35 times lower than that of the positive control, genistein (with  LC50 values of 12.5 µM and 10.8 µM at 
48 and 72 h, respectively). Moreover, fenbendazole exhibits 14.5-fold selectivity of cancer cells over somatic cells.

Next, the mode-of-action of fenbendazole on HL60 cells was investigated by cellular imaging in 1, 3, 5 
and 7 days a�er treatment with three di�erent concentrations (0.1, 0.2 and 0.5 µM) of fenbendazole via stain-
ing with Wright–Giemsa (Fig. 3a) in order to determine the possible transformation of leukaemia cells to the 
granulocyte lineage as predicted. A�er 1 day in the presence of 0.5 µM fenbendazole, we found a heterogeneous 
cell population of apoptotic cells (marked by nuclear fragmentation and apoptotic body formation, Fig. 3d) 
along with necrotic cells (marked by intact nuclei and increased cell volume, Fig. 3b) and cells with a lobulated 
nucleus. �e latter indicates the presence of granulocytes (Fig. 3c). In the presence of 0.2 µM of fenbendazole, 
many indented cells were observed a�er 1 day of treatment. A�er day three, the 0.1 µM-treated cells revealed 
nuclear indentation while lobulated cells were seen at 0.2 µM concentration. On the other hand, most of the cells 
incubated with 0.5 µM fenbendazole underwent cell death while others showed multi-lobed nucleus. Apoptotic 
morphology was observed in 0.2 µM and 0.1 µM-treated cells a�er 5 and 7 days, respectively (Fig. 3d). Hence, it 
can be concluded that at lower concentrations, the majority of cells appear to go through apoptosis via induced 
di�erentiation to granulocytes which is consistent with our prediction. However, in higher concentrations of 
fenbendazole treatment (around LC50) we found a mixture of three physiological events (apoptosis, necrosis 
and neutrophil di�erentiation) a�er a short time (day 1). It seems that in this concentration, some of the cells are 
killed directly, which may occur by necrosis or apoptosis, and unspeci�c e�ects are frequently observed at such 
higher concentrations. Comparison of these �ndings with 1.25% DMSO treatment, as a well-known inducer of 
granulocytic  di�erentiation27, revealed a similar response at a later time point in case of DMSO treatment (on 
day 7), compared to 0.1 and 0.2 µM fenbendazole-treatment at an earlier time point (day 5, Fig. 3a). An NBT 
reduction assay, as a marker of granulocyte and monocyte  di�erentiation24, was used to quantitatively verify the 
hypothesis of granulocytic di�erentiation. It was revealed that an acute treatment with fenbendazole (0.5 µM) 
resulted in a sharp increment in NBT reduction upon neutrophil di�erentiation (Fig. 3e). We observed a moder-
ate (but signi�cant) increase in absorbance of formazan deposits by lower concentrations of fenbendazole during 
the time. �ese �ndings were comparable to positive control treatment with DMSO, which hence supported the 
hypothesis of a transformation of leukaemia cells to granulocytes (Fig. 3e). Taken together, the results obtained 
are consistent with the hypothesis that fenbendazole induces cell death via induction of di�erentiation.

In the next step, the nature of cell death and selectivity of the compound was further investigated. Flow 
cytometry analysis of cells treated for 24 h with fenbendazole via Annexin V-FITC demonstrated a concentration-
dependent selective cell death induced in leukaemia cells, around the LC50 of the compound, with no signi�cant 
e�ect on normal HFF cell population (Fig. 4a). Further experiments revealed that in a shorter time point (16 h) 
post 0.5 µM fenbendazole treatment, necrotic cells (23%) outnumbered apoptotic cells (16%, see Fig. 4b), while 
a�er incubating the HL60 cells with 0.2 µM fenbendazole for 72 h apoptotic cells (8%) outnumbered necrotic 
cells (2%, Fig. 4c). Based on these �ndings it was observed that higher concentrations of fenbendazole lead cells 
to a sudden death, which much resembles necrosis, while lower concentrations convert cells to granulocytes 
and subsequently induce programmed cell death, in agreement with the previous �ndings from microscopy.

Although some derivatives of benzimidazole anthelmintics, such as mebendazole, albendazole, and �uben-
dazole, draw increasing attention as potent anticancer  agents28, to the best of our knowledge, fenbendazole has 
not been previously used in the treatment of leukaemia. It has however been tested against other cancer types 

Figure 3.  Fenbendazole-induced di�erentiation of HL60 cells to granulocytes followed by cell death: (a) Cell 
morphology at 1, 3, 5 and 7 days post treatment with 0.1 µM, 0.2 µM and 0.5 µM of fenbendazole via staining 
with Wright–Giemsa; (b) necrotic cells; (c) granulocytes; (d) apoptotic cells. (e) Di�erent concentrations of 
fenbendazole were employed in the NBT reduction assay at di�erent time points. �e assay demonstrates 
that 0.5 µM of fenbendazole increased NBT reduction upon neutrophil di�erentiation signi�cantly compared 
to positive control treatment with DMSO). Hence it can be concluded that the mode-of-action hypothesis 
fenbendazole inducing cell death via di�erentiation to granulocytes is supported by experiment.
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where it was found to induce apoptosis in a lung cancer cell line by accumulating apoptosis regulatory proteins 
such as cyclins, tumour proteins p53 (TP53), and IĸBα and induced stress-associated genes like HSPA5(GRP78), 
DDIT3(GADD153), ATF3, ERN1 (IRE1α) and PMAIP1(NOXA)29. Fenbendazole alone was previously reported 
to be ine�ective in a lymphoma mice xenogra� model, but e�cacious when co-administered with a vitamin-
supplemented  diet30. �e highest dose of fenbendazole did not change the growth of mammary tumours (EMT6 
cell line) or radiation e�cacy in one  study31, and did not alter the dose–response curves when combined with 
 Docetaxel31.

Analysis of the mode‑of‑action of fenbendazole. As mentioned before, the mode-of-action of a com-
pound can be considered on a systems level, e.g. via the induced gene expression changes, or on a protein level, 
both approaches of which have signi�cant strength in di�erent areas (most notably when it comes to e�cacy in 
the former case, and understanding ligand–protein interactions, and hence supporting lead optimization, in the 
latter case). We now aimed to understand the mode-of-action of fenbendazole on both a systems level, and a 
protein level, in agreement with the whole algorithmic approach presented in this work.

In silico mode-of-action  prediction11 suggests that on the protein level, fenbendazole targets the Angiopoi-
etin-1 receptor (TIE-2), Aurora kinase B, RAF proto-oncogene serine/threonine-protein kinase (RAF1) and 
Vascular endothelial growth factor receptor 2 (VEGFR2), as well as Aurora kinase A (Table 1). Aurora kinase 
B has been previously suggested to be a promising therapeutic target for  leukaemia32. RAF1 is important in 
inducing apoptosis in leukaemia cells and is related to relapse-free survival of AML  patients33,34. Also on a 
compound-set level in silico target prediction identi�ed RAF1 as the most enriched targeted protein among the 
top 50 compounds (with a P value of 0.0016, see Table 2). �e Comparative Toxicogenomics Database (CTD)17 

Figure 4.  Flow cytometry analysis of fenbendazole treated cells with Annexin V-FITC: (a) concentration 
dependent selective cell death induced in HL60 leukaemia cells by fenbendazole compared to Human 
Foreskin Fibroblast cells (HFF); (b) 16 h post 0.5 µM fenbendazole treatment (16% apoptotic (Annexin+) and 
23% necrotic cells (Annexin−, PI+)); (c) 72 h post 0.2 µM of fenbendazole (8% apoptotic (Annexin+) and 
2% necrotic cells (Annexin−, PI+)). It can be seen that longer time point, and less concentration increases 
percentage of apoptotic cells over necrotic one.
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also identi�ed relatively high scores (14, 20, 21, 25, 12, with an average of 18) for these predicted protein targets 
in leukaemia, agreeing with our predictions. �e average of the �ve top target scores of terazosin and proxym-
etacaine were lower (5 and 4 retrospectively), indicating that there is more evidence linking fenbendazole to 
this indication, compared to terazosin and proxymetacaine, based on both bioinformatics and cheminformatics 
information.

�e cheminformatics approach enabled us to select fenbendazole over mebendazole due to its more relevant 
predicted bioactivity pro�le. �e bioactivity pro�le predicted for both fenbendazole and mebendazole included 
Tyrosine-protein kinase TIE-2, Serine/threonine-protein kinase RAF and Vascular endothelial growth factor 
receptor 2. However, fenbendazole’s predicted bioactivity pro�le only included Serine/threonine-protein kinase 
Aurora-A and B. It is known that inhibition of Aura A and  B32 induces apoptosis in leukaemia AML  cells35. Also, 
Aurora kinase A is required for  hematopoiesis36 and its expression is increased in leukaemia stem  cells37. �is 
advantage on the cheminformatics side enabled us to select fenbendazole over mebendazole (Table 1).

�e GSEA algorithm also identi�ed the genes most upregulated by fenbendazole treatment of HL60 cells 
(instance ID 2360), which are in turn downregulated in the disease, to be RGS2, FPR1, SAT1, PLSCR1, PTPRE, 
FCER1G and CD55 (Supplementary Table S1). Among those RGS2 showed highest upregulation in the compound 
signature, and literature shows that this gene is involved in myeloid di�erentiation and leukemic transformation, 
thereby providing a biological rationale for compound  selection38. SAT1 is overexpressed in intestinal cancer, 
breast cancer and melanomas, compared to  control39, while PLSCR1 has been previously linked with prolifera-
tion arrest of leukaemia cells and granulocyte-like di�erentiation, as well as causing downregulation of MYC, 
which is also implicated in the latter process (as discussed below)40. Also the upregulation of other genes has 
been mechanistically liked to the development and progression of leukaemia (or other cancers): protein phos-
phatases including PTPRE are important regulators of cell signalling and their deregulation contribution to cell 
 transformation41, while expression of PTPRE is reported to be signi�cantly upregulated in AML leukaemia  itself41, 
and FCER1G is signi�cantly downregulated in CML leukaemia patients where it is also associated with T-cell 
 immunode�ciency42. On the other hand, fenbendazole treatment on HL60 cells downregulates WDR12, MYC, 
WDR3, CTH, TTC27 and ATF5, which are in turn signi�cantly upregulated in the disease state. Here, WDR12, 
MYC, WDR3, are critical in the regulation of cell cycle progression in cancer  cells43,44. MYC is important in cell 
cycle progression and transformation as well as induction of apoptosis (http:// www. ncbi. nlm. nih. gov/ gene/ 4609) 
and it has been associated with the di�erentiation of HL60 cells to  granulocyte24,45. Tretinoin (ranked 15) and 
genistein (ranked 16) as known inducers of di�erentiation of HL60 cells also downregulate MYC. ATF5 is widely 
expressed in carcinomas and has previously been shown to be a selective target for breast cancer  treatment46. On 
the pathway level, fenbendazole is predicted to target the “PI3K-Akt signalling” pathway, which is known to be 
active in acute myeloid  leukaemia47, by inhibiting TIE-2, RAF-1 and VEGF and downregulating the Myc proto-
oncogene protein (MYC), while upregulating cyclin-D3 (CCND3). �e “Cell Cycle” pathway is also enriched 
by inhibiting Aurora kinase-B and Aurora kinase-A and downregulating TUBB, TUBB4B, MYC and TUBA1A 
and upregulating CCND3. Another important enriched pathway is the “Acute myeloid leukaemia” pathway by 

Table 2.  Most enriched protein targets in the top results. Frequency of all predicted protein targets were 
counted in the top 50 results compared to all compounds in the Connectivity map database. Probability of 
observing each protein target (count in top 50/count in all compounds) is displayed as Probability. P value 
displays signi�cance of observing each target in the top results compared to all the compound signatures 
extracted from CMap (5,764 signatures). Average position of the target denotes average rank of the protein 
target for the top 50 compounds using in silico target prediction.

Target ID Target name Gene symbol
Count in top 50 
predicted compounds

Count in all CMap 
compounds Probability

Average position of 
the target Average rank P value

CHEMBL1906 Serine/threonine-
protein kinase RAF RAF1 4 61 0.066 4.5 10.5 0.00165

CHEMBL4308 Bradykinin B1 receptor BDKRB1 4 62 0.065 5.3 21.3 0.00175

CHEMBL4081 Coagulation factor III F3 5 116 0.043 2.6 11.2 0.00267

CHEMBL210 Beta-2 adrenergic 
receptor ADRB2 7 279 0.025 1.4 26.3 0.00716

CHEMBL213 Beta-1 adrenergic 
receptor ADRB1 7 283 0.025 3.0 26.3 0.00768

CHEMBL1941 Histamine H2 receptor HRH2 4 97 0.041 5.5 31.0 0.00819

CHEMBL246 Beta-3 adrenergic 
receptor ADRB3 7 337 0.021 2.7 26.3 0.01720

CHEMBL2056 Dopamine D1 receptor DRD1 7 369 0.019 2.6 27.6 0.02529

CHEMBL234 Dopamine D3 receptor DRD3 6 296 0.020 5.0 31.2 0.02833

CHEMBL1821 Muscarinic acetylcho-
line receptor M4 CHRM4 5 220 0.023 5.6 27.2 0.02944

CHEMBL2035 Muscarinic acetylcho-
line receptor M5 CHRM5 4 194 0.021 4.3 29.5 0.06092

CHEMBL217 Dopamine D2 receptor DRD2 6 416 0.014 3.0 30.8 0.08312

CHEMBL231 Histamine H1 receptor HRH1 6 450 0.013 1.3 33.3 0.10076

http://www.ncbi.nlm.nih.gov/gene/4609
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inhibiting RAF1 and down-regulating MYC. We can hence conclude that genes targeted by fenbendazole accord-
ing to CMap data has biological relevance to leukaemia according to literature.

Based on the above information, we next attempted to understand the mode-of-action of fenbendazole with a 
network analysis approach. Figure 5 depicts the di�erentially expressed genes in leukaemia as well as gene targets 
(from CMap) and the predicted protein targets of fenbendazole. In agreement to the above GSEA approach, the 
network approach points out the particular importance of MYC. It appears that MYC has a particular impor-
tance in leukaemia where it is signi�cantly upregulated (six folds), while at the same time being connected to 23 
other upregulated genes and having highest ‘betweenness’ (0.87) of the most connected part of the network. It is 
known that MYC regulates several other genes involved in growth, cell cycle, signalling, and  adhesion48 which 
is in agreement with the network visualization. fenbendazole targets MYC by downregulating it and based on 
all information available this seems to be of major relevance for its mode-of-action. One of the likely supportive 
activities of fenbendazole is the predicted inhibition of RAF kinase, which has a high ‘betweenness’ (ranked 
third for betweenness, 0.17) in the network and its indirect inhibition appears to lead to e�cient disruption of 
the network. Even though RAF is not signi�cantly di�erentially expressed in the leukaemia signature itself, it is 
the �rst neighbour of signi�cantly di�erentially expressed genes of the disease, such as PBK, OIP5 and CDC25A, 
and may thereby exert indirect e�ects on the system. In agreement with the above discussion, �e importance of 

Figure 5.  Protein–protein interaction network of the proteins associated to fenbendazole-induced gene 
expression changes and its protein targets: each node represents a gene speci�ed by the gene symbol, arrows 
indicate up- and downregulation of genes by fenbendazole (according to CMap data) and the rest of genes 
are in a rectangle. �e genes that were up/down regulated in leukaemia disease signature are highlighted in 
red and blue, respectively. Predicted protein targets of fenbendazole are highlighted with green border. MYC, 
transcription factor that plays a role in cell cycle progression, apoptosis and cellular transformation, is a key gene 
in the topology of this network; it shows highest ‘betweenness’ in the connected part of the network. MYC is 
upregulated in the disease signature and in turn is downregulated by fenbendazole. On the other hand, RAF1, 
which is predicted as a target from the cheminformatics-side, is a �rst neighbour of many genes dysregulated in 
leukaemia, indicating the multi-faceted nature of the mode-of-action of a compound.
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RAF1 has been previously established for  leukaemia33,34. TUBB (ranked second for betweenness, 0.26), TUBA1A, 
TUBB6 and TUBB4B are also similarly important as they have high betweenness and connected to di�erentially 
expressed genes of TTK, EPRS, PSAT1, LMAN1 and BUB1B even though they are not di�erentially expressed 
themselves.

Furthermore, we explored whether pathway annotations such as Gene Ontology (GO) would add informa-
tion to understanding the mode-of-action of fenbendazole. �e network analysis suggests that fenbendazole 
enriches the rather broad “negative regulation of biological process” (GOID: 48519) by upregulating HBEGF, 
TIMP1, ANXA1, PTPRE, FTH1, RGS2, IER3 and downregulating CTH, ATF5, MYC, ADRB2 and inhibiting 
RAF1 and MCL1 proteins as suggested by the target prediction algorithm. More speci�c in the current context, 
the compound enriches the “Apoptosis” pathway by inhibiting RAF1 and MCL1 and “natural killer mediated 
cytotoxicity” by downregulating TUBB and TUBB4B. CTH, which is downregulated by fenbendazole, is also a 
member of the “negative regulation of apoptotic signalling” pathway (GO: 2001234). �e experimental validation 
of the e�ects of fenbendazole to induce di�erentiation followed by programmed cell death is hence consistent 
with the enriched biological processes from this section of the work.

Experimental validation of the mechanism of fenbendazole. Expression of few up/down regulated 
genes in the fenbendazole signature extracted from CMap were con�rmed experimentally in this work a�er 
longer time point. �e fenbendazole instance from CMAP was at dose 13 µM a�er 6 h treatment on HL60 cells 
(instance ID: 2360). Here we check those genes at longer timepoint of 5 days in mRNA level. Among up-regu-
lated genes in response to fenbendazole, the expression of RGS2, FPR1, FTH1, PLSCR1, and CD55 was assessed 
a�er 5 days of treatment with fenbendazole as well as DMSO, which were normalized to the expression level in 
cells prior to induction (see Fig. 6a–e). It can be seen that all genes except CD55 were signi�cantly upregulated 
as the result of fenbendazole treatment with the higher level, in comparison to DMSO treated cells.

We experimentally checked RNA expression of PI3K-Akt signalling genes to investigate e�ect of fenbendazole 
in this pathway which was in agreement with pathways enriched based on fenbendazole signature in CMap data. 
We found a remarkable decline in the expression of MYC, MRTO4, and ATF5 due to the induction by either 
fenbendazole or DMSO (Fig. 6f,h,j). On the other hand, signi�cant down regulation occurred for TUBB and 
WDR12 only following fenbendazole treatment (Fig. 6g,i). To determine whether fenbendazole treatment is 
accompanied with the accumulation of cells in the non-division phase, cell cycle analysis was carried out, using 
propidium iodide (PI)  staining49. As expected, fenbendazole triggered signi�cant G1-phase cell cycle arrest in 
HL60 cells, mainly via decreasing of cell population in S phase (Fig. 6k–n). However, DMSO treatment slightly, 
but not signi�cantly, increased cells in G1 phase from 22% in control to 34%.

In order to investigate the role of PI3K/AKT, MEK/ERK or JAK/STAT pathways in the induction of neu-
trophil di�erentiation in HL-60 cells by DMSO or fenbendazole, the activation of key e�ector proteins of these 
signalling pathways were evaluated through Western blot analysis. Figure 7a displays the expression level of 
total AKT, ERK1/2, and STAT3 as well as the amount of the phosphorylated form of each protein. Densito-
metric quanti�cation of bands relative to GAPDH showed a slight, but not signi�cant increase in total AKT for 
fenbendazole and DMSO treated samples (Fig. 7b,c). However, only fenbendazole treatment (but not DMSO) 
resulted in a signi�cant increase in phosphorylation of Ser-473 of AKT. In contrast, level of ERK and p-ERK 
were reduced in response to both interventions, which was speci�cally e�ected by ERK activation (Fig. 7d,e). In 
addition, total expression level of STAT3 was highly elevated in response to fenbendazole (Fig. 7f). However, the 
activated p-STAT3 (Tyr-705) was not detected in HL60 cells in either DMSO- and fenbendazole-treated groups. 
We also found that the mRNA expression of AKT and ERK were showed almost similar pattern as their proteins 
(Fig. 7g,h). �e mRNA level of STAT3 signi�cantly declined a�er application of both fenbendazole and DMSO 
(Fig. 7i). �ese were accompanied with a marked rise in the expression of GCSF and GSFR mRNA, following 
fenbendazole treatment (Fig. 7j,k).

Although several studies have highlighted the role of STAT3 activity in myeloma cell  lines50,51, there is con-
troversy about its importance in HL60  cells52,53. According to the undetectable level of p-STAT3 in all groups, 
the regulatory e�ect of JAK/STAT pathway in this process requires further investigation. Notably, HL-60 as 
a cancer cell line has several new mutations over time and exhibits genetic/epigenetic heterogeneity in cells 
provided from di�erent  sources54. Furthermore, the mRNA expression of STAT3 did not show any signi�cant 
changes in response to fenbendazole treatment, however, total STAT3 proteins a�er fenbendazole treatment is 
signi�cantly higher. On the other hand, there have been partially contradictory �ndings on the involvement 
of the MAPK/ERK pathway on the maturation of granulocyte progenitors. While some studies support the 
proliferation e�ect of this  molecule55, other studies approve its role in  di�erentiation56,57. Concerning this, we 
provide some evidence that DMSO, independent of fenbendazole, signi�cantly decreased ERK expression in 
both mRNA and protein level.

Discussion
In this work, we have employed an integrated transcriptional drug repositioning and cheminformatics approach 
to �nd novel small molecules that can induce di�erentiation of leukaemia cells to granulocytes. �e approach 
rediscovered current standard of care, retinoic acid, for APL (HL60 cells) that is a well-known drug for dif-
ferentiation therapy along with some novel candidates. Among highly ranked compounds, fenbendazole was 
shortlisted as a suitable candidate and validated experimentally that it can induce di�erentiation of HL60 cells 
to granulocytes. Moreover, it was shown that the compound exhibits 14.5-fold selectivity in killing HL60 leu-
kaemia cells at low doses of 0.36 µM and 0.31 µM at 48 and 72 h compared to bone marrow stem cells (5.1 µM 
and 4.5 µM a�er 48 and 72 h). �is con�rms that the compounds that induce the di�erentiation are generally 
less toxic than chemotherapy  agents3.
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In this work, we have also investigated the mechanisms underlying neutrophilic di�erentiation induced by 
fenbendazole via studying three major pathways underlying granulocyte di�erentiation, including PI3K/AKT, 
JAK/STAT and, MAPK pathways. To this end, we studied expression and activation of key e�ector proteins of 
mentioned pathways. Our results showed that following induction of neutrophil di�erentiation, expression 
of AKT in both mRNA and protein level, have not signi�cantly changed, thus it seems that this process was 
induced independent of AKT expression. Whereas AKT activation (via ser-473 phosphorylation) elevated dur-
ing fenbendazole treatment and this result occurred independent of DMSO, as vehicle. PI3K/AKT pathway is 
known as an important regulator of various physiological events such as apoptosis, progression of cell cycle, dif-
ferentiation, and metabolism. Notably, up-regulation of this pathway can be detected in majority of cancers and 
facilitates tumour growth, angiogenesis and therapy  resistance58. Furthermore, constitutive activation of PI3K/
AKT signalling has been known as a common event in AML  patients59. �erefore, e�cient blocking of PI3/AKT 
pathway, seems to be a potent regulator to inhibit proliferation of cancerous cells, especially in AML. Despite the 
mentioned overall role of this pathway, activation of AKT induced by G-CSF resulted in di�erentiation, but not 
proliferation, in myeloid precursor  cells60. Also activation of this pathway has been reported during granulocytic 
di�erentiation of HL_60 and NB4 cell lines following ATRA  induction61,62. To elucidate the potential impact of 
GCSF on AKT activation, the e�ect of fenbendazole on G-CSF signalling, G-CSF and G-CSFR expression were 
measured in mRNA level, which showed remarkable overexpression of both genes. G-CSF is known as a hemat-
opoietic cytokine, which have critical role on neutrophil progenitors survival and stimulates them in bone mar-
row to proliferate and di�erentiate to functional  neutrophils63,64. It is known that G-CSF receptor show highest 
level of expression in  neutrophils65. In addition, various mutations in the CSF3R have been reported in myeloid 
disorders including, chronic neutrophilic leukaemia (CNL), myelodysplastic syndrome (MDS), Acute Myeloid 
Leukaemia (AML), and atypical chronic myelogenous leukaemia (aCML)55, which con�rmed the importance of 
this receptor in neutrophil di�erentiation. GCSF cytokine binds to extra cellular domain of GCSFR and through 
its cytoplasmic domain, activates two major protein tyrosine kinases: SRC family kinase and Janus kinase which 
e�ect on multiple intracellular signalling cascades. During GCSF stimulation, SRC kinase activates AKT protein 
in a separate mechanism from STAT and ERK. Mediating PI3K protein and JAK kinase likely have major role on 

Figure 6.  Mode-of-action analysis of fenbendazole (compared to DMSO control and relative to HL60 cells 
prior to treatment). �e relative RNA expression level of genes expected to undergo upregulation a�er treatment 
according to our model: (a) RGS2, (b) FTH1, (c) FRP1, (d) CD55, and (e) PLSCR1 as well as downregulation: 
(f) c-Myc, (g) TUBB, (h) MRTO4, (i) WDR12, and (j) ATF5. Representative histograms of cell cycle analysis of 
(k) Control, (l) DMSO-, and (m) fenbendazole- treated HL-60 cells, and (n) number of cells per cell cycle phase 
following DMSO and fenbendazole treatment. *P < 0.05 and **P < 0.01. Each value is presented as mean ± SEM 
of three independent experiments.
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activation of STAT 66. So, it seems that the impact of fenbendazole, at least partially, is associated with activation 
of GCSF/GCSFR signalling, which increased AKT activity through SRC cascade.

In this work, we highlight one important application of drug repositioning approaches in di�erentiation 
therapy and how our combined bioinformatics and cheminformatics approaches can facilitate selection of small 
molecules for this purpose. We also show that the choice of disease signature and the two states that are being 
compared is directly in�uencing the biological outcome we would want to achieve. As opposed to conventional 
approaches of drug repositioning, the comparison does not have to necessarily be between disease and healthy 
states. It should be viewed as comparison of two biological states. One representing the current state and one as 
a target state. Here we have shown using a di�erential transcriptional pro�le between HL60 cells with granulo-
cytes serves as a blueprint for selecting compounds that induce dedi�erentiation of cell types, of relevance for 
cell di�erentiation therapy in leukaemia. A�er identifying the right signature for di�erentiation, the challenging 
part is to prioritise compounds. �e Bioinformatics scoring system rank ordered all drug signatures in the CMap 
database from 1 to 5,765. �en, the list was �ltered to the top 30 drugs. For prioritisation, we took into account 
the cheminformatics scoring system that scores compounds based on the predicted targets and their relevance 
to leukaemia. �ese two scoring systems accompanied with novelty literature search only prioritised one single 
novel drug, fenbendazole, with good scores in bioinformatics and cheminformatics scoring system. �e Network 
visualisation approach discussed, facilitated elucidating mode of action of selected compound candidate and 
enabled visualising all potential targets of a candidate drug and how it is placed in the protein–protein interac-
tion network of di�erentially expressed genes in the leukaemia di�erentiation signature. All bioinformatics, 
cheminformatics and network approaches are useful for shortlisting compounds and a�er that further literature 
search might be useful for selecting compounds for experimental validation.

�e authors have also shown previously that comparing stem cell and cardiomyocyte gene expression pro�les 
can lead to blueprint of di�erentiation of stem cells to cardiomyocyte and compounds that come up out of the 
drug repositioning can cause the di�erentiation of stem cell to  cardiomyocytes67. �is highlights a new way of 
observing transcriptional drug repositioning approaches in general and how its application can facilitate iden-
tifying small molecules for di�erentiation therapy and beyond.

Online methods
Pre‑processing of CMap. CMap8 provides a rank matrix of all genes for all compound instances. �is data 
was used for the generation of rank-ordered list of compounds for breast cancer (GDS2626). In case of leukaemia 
and large-scale diseases, raw CEL �les of CMap were preprocessed. For this purpose, CEL �les were obtained 
from the CMap website and Factor Analysis for Robust Microarray Summarization (FARMS)68 was utilised in R 

Figure 7.  Pathway analysis of HL-60 cells treated with DMSO and fenbendazole determined by Western 
Blotting. (a) Expression and phosphorylation levels of AKT, ERK, and STAT3; the quantitative analysis of 
relative protein level of (b) Total AKT, (c) p-AKT, (d) Total ERK, (e) p-ERK (f) Total STAT3 vs GAPDH; and the 
relative RNA expression level of (g) AKT, (h) ERK, (i) STAT3, (j) GCSF, and (k) GCSFR following fenbendazole 
and DMSO (control) treatment, compared to HL-60 cells prior treatment (day 0). *P < 0.05 and **P < 0.01. Each 
value is presented as mean ± SEM of three independent experiments. As the blots were cropped, full length blots 
are provided in Supplementary Figure S1.
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to preprocess the cell �les. �e data consisted of three cell lines (MCF7, PC3, and HL60) and three di�erent array 
types (HGU133A, HTHGU133A, and EA.HTHGU133A). Di�erent combinations of array types and cell types 
were pre-processed separately. Custom CDF de�nitions (from Brainarray) were utilized and then I/NI  �ltering69 
was performed, using the informative (I)/non-informative (NI) calls approach integrated in FARMS. �is allows 
�ltering out genes for which the probes did not show a consistent behaviour across di�erent samples. FARMS 
was performed with a Laplacian prior with default settings in order to keep even the least informative genes.

Log fold changes of gene expression were calculated by dividing the intensity value for each gene by the inten-
sity value of the respective vehicle. When multiple vehicles were present, the vehicle closest to the spatial median 
of all vehicles was chosen. �e spatial median was preferred over the standard median because it maintains the 
correlational structure of the genes of each sample.

Transcriptional drug repositioning approach. For identifying compounds and diseases correlated and 
anti-correlated in gene expression space, Gene Set Enrichment Analysis (GSEA) as implemented by the Broad 
 Institute16 was employed in this work. �is method checks whether a query gene signature is occurring at the 
extremes (top or bottom) of a rank-ordered list of genes, or whether it shows closer to random distribution 
(i.e., there is no correlation between both spaces). An enrichment score was calculated by descending the rank-
ordered list of genes and incrementing a variable when encountering a gene in the given query signature. �e 
magnitude of increment depends on the position of the gene in the list, which is chosen corresponding to a 
weighted Kolmogorov–Smirnov statistic. �e enrichment score can range between − 1 and 1, where − 1 shows 
strong negative connectivity, 1 identi�es strong positive connectivity and 0 represents zero connectivity. �e 
query signature in the GSEA approach is a short list of di�erentially expressed genes of a disease, which are used 
to search the full rank-ordered gene expression pro�le of drugs. However, in the current work, the query signa-
ture was chosen to be the di�erentially expressed genes caused by compound treatment, which were screened 
against the full gene expression pro�le of a disease. �e reason for this choice was that the disease signal was 
generally found to be stronger than the gene expression signal a�er compound treatments. In addition, due to 
the noisy nature and low fold-changes of gene expression data from compound treatments, only the 20 most 
over- and under-expressed genes were employed. �e optimal cut-o�s were chosen a�er using various di�erent 
cut-o�s and selecting the one with maximum precision (percentage of predicted compounds in top results which 
were supported by literature) for leukaemia. For each compound, two query signatures, namely one of the most 
upregulated genes ( scoreup ), and one of the most downregulated genes ( scoredown ) were used. For each disease 
vs. drug the following formula was used to combine the two scores:

�e combined score was used to rank order the compounds in CMap database for the leukaemia di�erentia-
tion gene expression pro�le.

Cheminformatics approach. A target prediction algorithm as established  before11 has been utilised to 
predict protein targets of compounds in the CMap databases using the Naïve Bayes approach. �is algorithm 
predicts a score for each protein target included in the training set, which represents the probability of the 
compound ability to bind to this target (without considering the nature of the particular e�ect, say agonism, 
antagonism, etc.). �e extraction of compound-target pairs was identical to the benchmarking dataset query 
introduced in the previous  work11 (which included targets with binding a�nity less than 10 µM and con�dence 
level of 9 or 10) except that it was applied on  ChEMBL19 v.17 and hence le� us with a training database of 385,126 
compound-protein pairs, 1643 distinct proteins and 226,791 unique compounds. Compounds were standard-
ised and ECFP4 �ngerprints were generated using the JChem package of ChemAxon (Jchem 6.1.2. ChemAxon, 
http:// www. chema xon. com, 2013). �e standardisation options were Aromatise, RemoveExplicitH, Clean 2D, 
Clean 3D, RemoveFragment and Neutralise. �e Laplacian modi�ed Naïve Bayes version of the algorithm provided 
in the previous  publication11 was then trained on the extracted data.

�e cheminformatics part of the integrated approach includes prediction of targets for all compounds. In 
order to identify the importance of predicted targets for a disease of interest, the Comparative Toxicogenom-
ics Database (CTD)17 has been used. Disease-gene links were downloaded separately as provided on the CTD 
website. �e CTD database provides an inference score for each target which indicates the level of relevance 
of each target with each disease, based on text mining approaches of a large set of scienti�c publications. �e 
gene-protein links were retrieved from  ChEMBL19 to map gene identi�ers to proteins implicated in diseases.

A cheminformatics score for all compounds in CMap was calculated. �is involved averaging relevance score 
to leukaemia (Extracted from CTD) for top seven protein targets predicted (using the in-silico approach) for 
each of the compounds in the connectivity map database.

Network visualization method. �e list of up/downregulated genes of fenbendazole Instance in CMap 
(instance-ID 2360) as well as protein targets predicted with the target prediction  algorithm11 was prepared. �is 
list was searched in  Cytoscape70 public network databases and the proteins-protein interactions of those genes 
were retrieved from the Mentha  database71. �is yields a visualisation of proteins as nodes and their interactions 
as undirected edges. �e nodes in Cytoscape are linked to a table carrying all the information of the protein 
including the protein Uniprot ID, Gene Symbol and Entrez Gene ID. Gene expression data of leukaemia was 
retrieved from the GEO database GSE48558, where HL60 cells were compared to granulocytes.  GenePattern72 
was used to pre-process the leukaemia database and following this log fold changes of the HL60 samples over 
granulocytes were calculated. In order to load this information to Cytoscape, it was required to map probe IDs to 

score =

scoreup − scoredown

2

http://www.chemaxon.com


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12537  | https://doi.org/10.1038/s41598-021-91629-x

www.nature.com/scientificreports/

gene ID/Uniprot ID. Hence, the probe IDs of the array which were used in the leukaemia database (A�ymetrix 
Human Gene 1.0 ST Array, GPL6244) were mapped to Entrez Gene IDs, Uniprot IDs and Chembl IDs using the 
Ensembl Biomart interface. All the information (gene expression changes and gene mappings) were loaded in 
to Cytoscape. As a result, the log-fold changes of each gene were represented in each node of the network. �en 
the genes with log-fold change above 1 or below − 1 were selected and exported to a new smaller network to 
take closer look at the most important genes involved in leukaemia, as well as their interactions. �e nodes were 
then coloured relative to their gene expression log fold change for better representation of the leukaemia protein 
interaction network. �en it was aimed to see which of these genes are targeted by the predicted compound 
(fenbendazole). For this purpose the list of up and downregulated genes of the compound from the CMAP 
data (instance 2360 applied on HL60) was achieved and loaded into Cytoscape. Up/down genes were visual-
ized with up and down arrows on the respective nodes of the network. Furthermore, the predicted proteins that 
were inhibited by the compound were also loaded to the node information and visualized in with a larger size 
and green border colour. Up/downregulated genes and inhibited proteins were selected using the �lter tool. �e 
BINGO  plugin73 was utilized to calculate pathway enrichment using the Fisher exact test and Homo sapiens GO 
biological processes.

Culture methods for drug toxicity measurement. Human Bone Marrow-derived mesenchymal Stem 
Cells (BMSC) were kindly gi�ed by Royan cell therapy centre and Human Foreskin Fibroblast cells (HFF) were 
isolated from human foreskin as previously described following obtaining informed consent form volunteer 
 donors74. HL60 promyelocytic leukaemia cell lines were purchased from the Iranian National Cell Bank (Pas-
teur Institute of Iran, Tehran). BMSC and HFF cells were cultured in DMEM/F12 medium, supplemented with 
10% (v/v) heat inactivated fetal bovine serum (FBS), 1% (v/v) NEAA, 1% (v/v) l-glutamine, 1% (v/v) Penicillin/
Streptomycin, and incubated at 37 °C in a humidi�ed 5%  CO2 incubator. Human leukaemia HL60 cells were 
maintained in RPMI 1640, supplemented with 1% (v/v) l-glutamine 10% (v/v) heat inactivated fetal bovine 
serum (FBS), 1% (v/v) NEAA, 1% (v/v) Penicillin/Streptomycin (all from Gibco, Paisley, UK), and incubated 
at 37 °C in a humidi�ed 5%  CO2 incubator. HL60, BMSC and HFF cells were plated according to their growth 
curves with 100,000, 35,000 and 30,000 cells respectively in each of 24 wells of cell culture plates. One hour later, 
serial concentrations of each predicted compound (5 µl/well) were added to cultured cells with equal amounts, 
based on literature data. To serve as solvent control, appropriate solvent concentrations, as the one used for 
maximum concentration of drugs were added to untreated wells. Cells were treated for 24, 48 and 72 h and then 
50 µl MTS solution (Promega, WI, USA) was added to each well. Absorbance was measured 3.5 h later at 450 nm 
using an ELISA microplate reader (Stat fax 3200, Awareness Technology Inc.). Cell viability was calculated using 
the following formula: cell viability (%) = (mean experimental absorbance/mean control absorbance) × 100 and 
presented as means ± SDs.

Verifying differentiation of leukaemia cells to granulocytes. We subsequently asked whether or 
not the fenbendazole treated HL60 cells were converted to neutrophil granulocytes. �e cells were cultured for 
1–6 days with 0, 0.1 µM, 0.2 µM and 0.5 µM of fenbendazole and 1.25% Dimethyl sulfoxide (DMSO) as a positive 
control (fenbendazole was dissolved in 0.65% DMSO). To evaluate the morphological features of treated cells, 
they were subjected to Wright-Giemsa staining following smear preparation and methanol �xation, as described 
 earlier75. Cell transformation was also evaluated using the Nitro Blue Tetrazolium (NBT) reduction assay. �e 
cells were resuspended in RPMI-1640 media containing 1 mg/ml of NBT and incubated at 37 °C in 5%  CO2 for 
25 min. A�erwards, the blue formazan particles were dissolved in DMSO and 2 M potassium hydroxide and 
their absorbance at 630 nm was determined.

Finding the nature of cell death. In order to study the nature of cell death induced by fenbendazole, 
cells from two HL60 and HFF cell lines were incubated with various concentrations (0 µM, 0.2 µM, 0.5 µM and 
1 µM) for 24 h and apoptosis was analyzed using an Annexin-V Apoptosis Detection kit (IQP-116F) with a 
FACSCalibur Flow Cytometer (Becton Dickinson, San Jose, CA, USA). Brie�y, according to the modi�ed manu-
facturer’s instruction,  106 cells were collected by centrifugation (1500 rpm, 10 min), washed in calcium bu�er 
and resuspended in Annexin V staining bu�er. �e cells were then counterstained with Propidium Iodide (PI), 
and �nally treated with 50 μg/ml RNase A for 15 min at 37 °C. We also examined the apoptotic e�ect of 0.5 µM 
fenbendazole both a�er 16 and 24 h of treatment using the abovementioned procedure.

Cell cycle analysis. Cell cycle progression was analysed under di�erent conditions through staining with 
propidium iodide (PI) by means of �ow cytometry. 1 ×  106 cells from each sample were collected in ice-cold PBS 
and were then �xed in 70% cold ethanol for 1 h at 4 °C. Following further washes, DNA was stained by addition 
of PI solution (0.1% (v/v) Triton X-100, 10 μg/ml PI, and 100 μg/ml DNase-free RNase A in PBS) for 20 min at 
RT. Propidium iodide intensity was measured by FACS �ow cytometer system (Becton Dickinson, CA, USA) 
and data were processed using Mod Fit v 4.0 program.

RNA Isolation and qRT‑PCR. Total RNA from three mentioned groups were isolated using TRIzol rea-
gent (Ambion, Burlington, Canada) and revers transcribed by Takara cDNA synthesis kit (Takara, Otsu, Japan), 
based on manufacturer’s instruction.

Quantitative PCR was performed using SYBR Premix Ex Taq II (TaKaRa, Otsu, Japan) in a Rotor-Gene 
6000 Real Time PCR System (Corbett, Sydney, Australia). �e gene expression level was quanti�ed via the ddCt 
method relative to the GAPDH, as the internal housekeeping gene. All gene-speci�c primers are listed in Sup-
plementary Table S2.
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Western blot analysis. Activity of PI3K/AKT, MEK/ERK and JAK/STAT pathways were evaluated by 
comparing the expression of total and phosphorylated proteins using western blot analyses. HL-60 Cells were 
incubated with fenbendazole or DMSO for 5 days, along with untreated cells, as previously described. At the 
end of incubation time, whole-cell extracts were collected, using RIPA lysis bu�er (Beyotime, Shanghai, China), 
according to the manufacturer’s instruction. �e cells were washed twice with PBS, resuspended in ice-cold 
RIPA bu�er (containing Tris HCL 7.6, NACL, NP-40, sodium deoxycholate, and SDS) enriched with a cocktail of 
protease (Melford, Ipswich, UK) and phosphatase inhibitors (Sigma, MO, USA) and incubated on ice for 10 min. 
Cell derbies were removed following centrifugation under 8000g for 10 min and suspended proteins were quan-
ti�ed via Bradford assay (Bio-Rad, WA, USA) according to the manufacturer’s instructions.

For western blotting, the separation of proteins was achieved in 15% SDS–polyacrylamide gel, which was 
followed by protein transfer onto a PVDF membrane. Subsequently, nonspeci�c binding sites were blocked 
with 5% BSA in TBS-tween bu�er (10 mM Tris base, 150 mM NaCl, 0.05% [v/v] Tween 20) for overnight at  4◦C. 
A�erward, membranes were incubated with the appropriate primary antibodies diluted in blocking bu�er for 
2 h at room temperature. Next, the blots were washed three times in washing bu�er (0.01%Tween20) and probed 
with HRP-conjugated secondary antibodies for 45 min at room temperature. �e chemiluminescence detection 
of speci�c bands was performed using enhanced chemiluminescence (ECL) substrate (Amersham, NJ, USA) 
and densitometric analysis of the images were carried out image J analysis so�ware (version 1.42). All primary 
and secondary antibodies are listed in Supplementary Table S3.

Statistical analysis of cell viability curves. Data are expressed as mean ± SEM. Statistical analysis for 
the cell viability curves was done using GraphPad Prism 6.01 (GraphPad So�ware, San Diego, CA, USA).

Ethics approval and consent to participate.. All experimental protocols were approved by Ethics com-
mittee of Royan Institute (IR.ACECR.ROYAN.REC.1397.142). All methods were carried out in accordance with 
relevant guidelines and regulations.

Code availability
�e code for reproducing results is accessible here: https:// github. com/ yk313- ab454/ Leuka emiaD i�er entia tionT 
herapy.
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